ICAR-NBPGR Bridging Science and Service (2012-2018)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allium Chinense) Using Non-Destructive Method
THEASIAN JOURNAL OF HORTICULTURE Volume 9 | Issue 1 | June, 2014 | 147-149 e ISSN- 0976-724X | Open Access-www.researchjournal.co.in | Research Paper Article history : Received : 16.12.2013 Estimation of leaf area model in hooker chives Revised : 30.04.2014 Accepted : 10.05.2014 (Allium hookeri) and chollng (Allium chinense) using non-destructive method S.R. SINGH AND W.I. MEITEI1 Members of the Research Forum ABSTRACT : A field trial was conducted from 2011-12 on hooker chives (Allium hookeri) and chollang Associated Authors: (Allium chinense), to find out the best method of estimation of leaf, at Horticultural Research Farm, 1Department of Horticulture, College Andro, Central Agricultural University, Manipur. In this study, a leaf area estimation model was developed of Agriculture, Central Agricultural University, IMPHAL (MANIPUR) using linear measurement such as laminar length and breadth individually and together with the product INDIA of length and breadth by step wise regression analysis. Allium species are commercially used by the people of Manipur as spice crops however; their cultivation is not commercialized for large scale production. Leaf area estimation in situ of these crops is important for studying the relationship between leaf area development and plant growth. The proposed leaf area (LA) estimation model of regression equation based on leaf length, Y=6.426 + 2.051X1 having correlation of co-efficient of determination (r2=0.91) were suited for the estimation of leaf area of hooker chives, while for chollang the proposed leaf area (LA) estimation model of regression equation based on dry weight of leaf, Y=3.636+4.605X3 having the co-efficient of determination (r2 = 0.94) were most suited for the estimation of leaf area for chollang. -
Traditional Uses, Phytochemicals and Pharmacological Properties Of
Journal of Medicinal Plants Studies 2019; 7(2): 214-220 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Traditional uses, phytochemicals and NAAS Rating: 3.53 JMPS 2019; 7(2): 214-220 pharmacological properties of Allium tuberosum © 2019 JMPS Received: 23-01-2019 Rottler ex spreng Accepted: 28-02-2019 Khoshnur Jannat Department of Biotechnology Khoshnur Jannat, Taufiq Rahman and Mohammed Rahmatullah and Genetic Engineering, University of Development Abstract Alternative, Lalmatia, Dhaka, Allium tuberosum is a lesser known plant of the Allium genus compared to the more known Allium cepa Bangladesh (onion) or Allium sativum (garlic). However, Allium tuberosum is now being increasingly recognized to be an important plant in its own right with diverse important pharmacological activities. This review will Taufiq Rahman attempt to describe the reported phytochemicals and pharmacological activities of the plant with the Department of Pharmacology, University of Cambridge, Tennis objective to determine the plant’s potential to be a source of lead compounds and effective new drugs. Court Road, CB2 1PD, UK, Bangladesh Keywords: Allium tuberosum, garlic chive, amaryllidaceae Mohammed Rahmatullah 1. Introduction Department of Biotechnology and Genetic Engineering, From ancient periods people have been using a diverse range of medicinal plants for curing University of Development diseases. In the last 200 years, traditional systems of plant based medicines have been largely Alternative, Lalmatia, Dhaka, replaced with allopathic system of medicine, the latter being based on the principle of one Bangladesh drug-one therapy. Allopathic medicines are largely synthetic. Now the traditional way of healing is making a comeback as a large number of synthetic drugs are costly and shows adverse side-effects. -
Allium Species Poisoning in Dogs and Cats Ticle R
The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 1 | pages 4-11 Allium species poisoning in dogs and cats TICLE R A Salgado BS (1), Monteiro LN (2), Rocha NS (1, 2) EVIEW R (1) Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo State, Brazil; (2) Department of Veterinary Clinical Sciences, Veterinary Pathology Service, School of Veterinary Medicine and Animal Husbandry, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo State, Brazil. Abstract: Dogs and cats are the animals that owners most frequently seek assistance for potential poisonings, and these species are frequently involved with toxicoses due to ingestion of poisonous food. Feeding human foodstuff to pets may prove itself dangerous for their health, similarly to what is observed in Allium species toxicosis. Allium species toxicosis is reported worldwide in several animal species, and the toxic principles present in them causes the transformation of hemoglobin into methemoglobin, consequently resulting in hemolytic anemia with Heinz body formation. The aim of this review is to analyze the clinicopathologic aspects and therapeutic approach of this serious toxicosis of dogs and cats in order to give knowledge to veterinarians about Allium species toxicosis, and subsequently allow them to correctly diagnose this disease when facing it; and to educate pet owners to not feed their animals with Allium- containg food in order to better control this particular life-threatening toxicosis. Key words: Allium spp., poisonous plants, hemolytic anemia, Heinz bodies. INTRODUCTION differentiate them from other morphologically similar poisonous plants (6, 7). -
European Collections of Vegetatively Propagated Allium
EuropeanEuropean CooperativeCooperative ProgrammeProgramme forfor CropCrop GeneticGenetic European collections ResourcesResources NetworksNetworks ECP GR of vegetatively propagated Allium Report of a Workshop, 21–22 May 2001, Gatersleben, Germany L. Maggioni, J. Keller and D. Astley, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) European collections ECP GR of vegetatively propagated Allium Report of a Workshop, 21–22 May 2001, Gatersleben, Germany L. Maggioni, J. Keller and D. Astley, compilers ii EUROPEAN COLLECTIONS OF VEGETATIVELY PROPAGATED ALLIUM The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRI is conferred under an Establishment Agreement which, by January 2002, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, -
Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific
Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific Bangkok, Thailand, November 13-15, 2017 Thematic, Strategic Papers and Country Status Reports Citation: R.K. Tyagi, A. Pandey, A. Agrawal, K.S. Varaprasad, R.S. Paroda, R.K. Khetarpal (2018) Regional Expert Consultation on Underutilized Crops for Food and Nutritional Security in Asia and the Pacific – Thematic, Strategic Papers and Country Status Reports. Asia-Pacific Association for Agricultural Research Institutions (APAARI), Bangkok, Thailand, November 13-15, 2017, x+349 p. Cover page photo identity: Front cover page: Amaranthus caudatus (chaulai) Back cover page: Carissa carandas (karonda) (Photo credit: Dr K.C. Bhatt, NBPGR, New Delhi, India) Editors: Rishi Kumar Tyagi, Anjula Pandey, Anuradha Agrawal, K.S. Varaprasad, Raj S. Paroda, Ravi K. Khetarpal Disclaimer: The information contained in this publication is provided on an “as is” basis with full responsibility or liability for any errors or omissions with the authors and not on the editors. Some contents of chapters have been sourced by the authors from their prior publications, and APAARI is not liable for any copyright infringement whatsoever. Published by: Asia-Pacific Association of Agricultural Research Institutions (APAARI) 2nd and 4th Floor, FAO Annex Building 202/1 Larn Luang Road Pomprab Sattrupai District, Bangkok 10100, Thailand ISBN: 978-616-7101-10-1 Copyright © APAARI For copies, please contact: The Executive Secretary Asia-Pacific Association of Agricultural Research Institutions (APAARI) 2nd and 4th Floor, FAO Annex Building 202/1 Larn Luang Road Pomprab Sattrupai District, Bangkok 10100, Thailand Phone: +662-2822918; Fax: +662-2822920 Email: [email protected]; Website: http://www.apaari.org Contents Foreword iii Acknowledgements v The Organizers vii Thematic Papers 1. -
Unbiased Profiling of Volatile Organic Compounds in the Headspace Of
Kusano et al. BMC Res Notes (2016) 9:133 DOI 10.1186/s13104-016-1942-5 BMC Research Notes RESEARCH ARTICLE Open Access Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in‑tube extraction device Miyako Kusano1,2*, Makoto Kobayashi2, Yumiko Iizuka2,3, Atsushi Fukushima2 and Kazuki Saito2,4 Abstract Background: Plants produce and emit important volatile organic compounds (VOCs), which have an essential role in biotic and abiotic stress responses and in plant–plant and plant–insect interactions. In order to study the bouquets from plants qualitatively and quantitatively, a comprehensive, analytical method yielding reproducible results is required. Results: We applied in-tube extraction (ITEX) and solid-phase microextraction (SPME) for studying the emissions of Allium plants. The collected HS samples were analyzed by gas chromatography–time-of-flight–mass spectrometry (GC-TOF–MS), and the results were subjected to multivariate analysis. In case of ITEX-method Allium cultivars released more than 300 VOCs, out of which we provisionally identified 50 volatiles. We also used the VOC profiles of Allium samples to discriminate among groups of A. fistulosum, A. chinense (rakkyo), and A. tuberosum (Oriental garlic). As we found 12 metabolite peaks including dipropyl disulphide with significant changes in A. chinense and A. tuberosum when compared to the control cultivar, these metabolite peaks can be used for chemotaxonomic classification of A. chinense, tuberosum, and A. fistulosum. Conclusions: Compared to SPME-method our ITEX-based VOC profiling technique contributes to automatic and reproducible analyses. Hence, it can be applied to high-throughput analyses such as metabolite profiling. -
Download E-Book (PDF)
African Journal of Biotechnology Volume 13 Number 48, 26 November, 2014 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N. -
Allium Species in the Fight Against Cancer
ISBN 978-81-936678-8-0 MedDocs eBooks Allium Species in the Fight Against Cancer Isbilen O; Volkan E* Faculty of Pharmacy, Cyprus International University, Nicosia, Northern Cyprus 99258 via Mersin 10, Turkey Corresponding Author: Volkan E Faculty of Pharmacy, Cyprus International University, Nicosia, Northern Cyprus 99258 via Mersin 10, Turkey Email: [email protected] Published Online: Apr 30, 2020 eBook: Cancer Therapy Publisher: MedDocs Publishers LLC Online edition: http://meddocsonline.org/ Copyright: © Volkan E (2020). This Chapter is distributed under the terms of Creative Commons Attribution 4.0 International License Introduction Cancer is one of the most common causes of death in the and their constituents have been widely used for development developed world affecting people from any age, race or gender of the new therapeutics for cancer with approximately 60% of [1,2]. Breast cancer is the most common carcinoma observed current cancer drugs having been developed from plant prod- in women followed by other forms of cancer like colorectal, ucts [7]. lung, cervical and stomach cancers [3-5]. Chemotherapy and ra- diation therapy are currently the methods of choice along with Genus Allium (including garlic) have been commonly used new generation anti-tumoragents used alongside surgical pro- as therapeutic plants for treatment of hypertension and infec- cedures however current treatments end to have severe side tious diseases [8]. Specifically, constituents of Allium sativum is effects that can reduce patients’ quality of life. Immunotherapy, of interest for scientific research as it has anticoagulant, anti- hormone therapy and targeted therapy methods are gaining histaminic, antiparasitic, antifungal, antiprotozoal and antiviral momentum and success despite not being without side effects. -
Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan*
® International Journal of Plant Developmental Biology ©2010 Global Science Books Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan* Key Laboratory of Biotechnology & Bio-Resources Utilization, Dalian Nationalities University, Dalian City, Liaoning 116600, China Correspondence : * [email protected] ABSTRACT The flowers of the Malvaceae with varying levels of herkogamy via style curvature have long intrigued evolutionary botanists. This review covers the flower opening process, approach herkogamy, style curvature and character evolution based on molecular phylogenetic trees, adaptive significances of style curvature and the mating system in some portions of the genera in this family. Hermaphroditic flowers of some species have showy petals and pollen and nectar rewards to pollinators. Approach herkogamy, in which stigmas are located on the top of a monadelphous stamen, has evolved as a mechanism to reduce the frequency of intra-floral self-pollination or the interference between male-female organs. Protandrous or monochogamous flowers in the fields open at about 5-7 days and 1-2 days respectively, and pollination is conducted by insects and birds. Interestingly, un-pollinated styles in some species curve when pollination fails. According to our observations and published or internet data, this curvature occurs in 23 species distributed in eight genera of four tribes (Malvavisceae, Ureneae, Hibisceae, Malveae) and appears to have evolved at least eight times. A shift to use style curvature is associated with a shift to annual or perennial herbs, and an unpredictable pollinator environment is likely an important trigger for this evolution. The adaptive significances of style curvature in the Malvaceae include delayed selfing, promotion of outcrossing or reduction in intrafloral male-female interference, sometimes two or three of which simultaneously occur in style curvature of one species (e.g., Kosteletzkya virginica). -
Aspects of Agronomy of Rakkyo (Allium Chinense G. Don) in New Zealand
Aspects of agronomy of rakkyo (Allium chinense G. Don) in New Zealand JJC Scheffer1, JA Douglas2 , CM Triggs3, ML Shaw4 and JA McCallum4 1New Zealand Institute for Crop and Food Research Ltd, Cronin Rd, RD I, Pukekohe 2New Zealand Institute for Crop and Food Research Ltd, Private Bag 3123, Hamilton 3Departrnent of Statistics, University of Auckland, Private Bag 92019, Auckland "New Zealand Institute for Crop and Food Research Ltd, Private Bag 4704, Christchurch Abstract Rakkyo (Allium chinense G.Don, Syn. A. bakeri Regel) is an Asian bulb vegetable highly regarded in Japan for pickling. Crop and Food Research introduced the crop into New Zealand in· 1997 for commercial evaluation. A series of field trials were conducted to determine the effects of time of planting, time of harvest and planting density on bulb yield and quality. A preliminary trial investigated the effect of storage temperatures on bulb quality, whilst bulbs of three maturities were analysed for dry matter content and fructan and cysteine sulfoxide levels. Delaying planting from April to June reduced bulb yields from 23 t/ha to 8 tlha possibly due to declining quality of the planting material. The mean number of bulbs per plant declined from 17 to 9 for the April and June plantings respectively, whilst the average bulb weight was 5.3 g. Total bulb yields increased from 8 tlha to 18 tlha with delay in harvest from September to January. The mean bulb weight increased from 3.9 to 6.9 g between the September and October harvests, but did not vary significantly over the four remaining harvests. -
Eg, Engler, Bentham, and Hooker
Flora Malesiana ser. I, Vol. 11 (2) (1993) 375-384 Alliaceae J.R.M. Buijsen Leiden, The Netherlands) Alliaceae Agardh, Theor. Syst. PI. (1858) 32; Dahlgren, Clifford & Yeo, Fam. Monocot. (1985) 193-196. — Liliaceae subfam. Allioideae, Melchior in Melchior, Syll. Pflan- zenfam.ed. 12(1964)521. Perennial herbs with bulbs, bulb-like corms or rhizomes. Leaves simple, basally concen- trated, spirally set or distichous. Inflorescence usually umbellate and with 1, 2 or more membranous spathes. Flowers generally bisexual, actinomorphic or sometimes zygomor- phic. Tepals in 2 whorls, free or often connate, forming a campanulate or tubularperianth with erect, spreading or sometimes recurved lobes. Stamens usually 6 or sometimes 5 with several staminodes, free, inserted at the base of the tepals or in the perigone-tube; anthers dorsifixed. Ovary superior, 3-celled, with axillary placentas, septal nectary grooves loculicidal Seeds present on the ovary; ovules 2 to several per locule. Fruit a capsule. often half-ovoid, half-globose ortetrahedraland triangular in transection, sometimes ovoid or ellipsoid to subglobose and roundedin transection. Distribution— As circumscribed by Dahlgren et al. (1985) this segregate fromLilia- ceae s. 1. comprises the South African Agapanthoideae, the mainly Chilean Gilliesioideae, and Allioideaewith the neogeic tribeBrodiaeeaeand the nearly cosmopolitan Allieae. Taxonomy — The taxonomic position of the genus Allium and related genera is still disputed. Earlierbotanists (e.g., Engler, Bentham, and Hooker) placed them in the Lilia- ceae, as recently followed again by, e.g., Cronquist (1981) and Mabberley (1987). Alter- natively, they were included in the Amaryllidaceae by, e.g., Hutchinson and Traub (see Hanelt 1990). Often also Allium and its close relatives are recognized as a distinct family close the al. -
Project Title: Exploration, Utilization, Conservation and Documentation of Allium Species in Northeast India
Title of the Project Exploration, utilization, conservation and documentation of Allium species in northeast India 2. NAME AND ADDRESS OF THE PRINCIPAL INVESTIGATOR Dr. Ashalata Devi Dept. of Environmental Science 3. NAME AND ADDRESS OF THE INSTITUTION Tezpur University Napaam-784028, Tezpur, Assam 4. UGC APPROVAL LETTER NO. AND DATE F. No. 41-1087/2012 (SR) & 26th July, 2012 5. DATE OF IMPLEMENTATION 01.07.2012 6. TENURE OF THE PROJECT 3 years 7. TOTAL GRANT ALLOCATED Rs. 10,89,300.00 8. TOTAL GRANT RECEIVED Rs. 8,75,040.00 9. FINAL EXPENDITURE Rs. 8,99, 926.00 10. TITLE OF THE PROJECT Exploration, utilization, conservation and documentation of Allium species in northeast India 11. OBJECTIVES OF THE PROJECT 1. Exploration, identification and habitat characterization of Allium species occurred in different habitat of northeast India. 2. Germplasm collection and protection of Allium species under the existing microclimatic conditions at nursery. 3. Study on ethnobotanical importance of the Allium species. 4. Study on phenology, and growth and regeneration potential of a few Allium species having food value and ornamental value. 5. Estimation and biochemical characterization of some important Allium species. SUMMARY OF THE FINDINGS A total of 15 Allium species namely, Allium cepa, Allium chinense, Allium fasciculatum, Allium hookerii, Allium macranthum, Allium porrum, Allium prattii, Allium rubellum, Allium sativum, Allium scheonoprasum, Allium sikkimense, Allium stracheyi, Allium tuberosum, Allium victorialisand Allium wallichii were recorded through extensive filed survey in different parts of northeast India. Recorded Allium species are distributed in different habitat type and altitudinal gradient ranging from 400 to 5400 m amsl.