Actephila Alanbakeri (Phyllanthaceae): a New Nickel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards an Understanding of the Evolution of Violaceae from an Anatomical and Morphological Perspective Saul Ernesto Hoyos University of Missouri-St
University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 8-7-2011 Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective Saul Ernesto Hoyos University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Hoyos, Saul Ernesto, "Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective" (2011). Theses. 50. http://irl.umsl.edu/thesis/50 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Saul E. Hoyos Gomez MSc. Ecology, Evolution and Systematics, University of Missouri-Saint Louis, 2011 Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science July 2011 Advisory Committee Peter Stevens, Ph.D. Chairperson Peter Jorgensen, Ph.D. Richard Keating, Ph.D. TOWARDS AN UNDERSTANDING OF THE BASAL EVOLUTION OF VIOLACEAE FROM AN ANATOMICAL AND MORPHOLOGICAL PERSPECTIVE Saul Hoyos Introduction The violet family, Violaceae, are predominantly tropical and contains 23 genera and upwards of 900 species (Feng 2005, Tukuoka 2008, Wahlert and Ballard 2010 in press). The family is monophyletic (Feng 2005, Tukuoka 2008, Wahlert & Ballard 2010 in press), even though phylogenetic relationships within Violaceae are still unclear (Feng 2005, Tukuoka 2008). The family embrace a great diversity of vegetative and floral morphologies. Members are herbs, lianas or trees, with flowers ranging from strongly spurred to unspurred. -
Approved Conservation Advice for Actephila Foetida
This Conservation Advice was approved by the Minister / Delegate of the Minister on: 16/12/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Actephila foetida This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Actephila foetida, Family Euphorbiaceae, is a subshrub up to 1 m tall. The young branchlets are densely covered with soft, short hairs. The leaf stalks are 1.8–7.8 cm long and dark olive- green when dry. The thin leaves are broadly elliptic to obovate, measuring 4.5–53 cm long by 3–21.3 cm wide and are alternately arranged along the branchlets. The upper leaf surface is dark olive-green and more or less hairless; the lower surface is pale olive-green, with a dense covering of spreading hairs on the lateral veins. The flowers are unisexual. Male and female flowers are mixed together in clusters borne in leaf axils. The flower clusters measure 7– 13 mm in diameter and the flowers are approximately 4–8 mm in diameter. Both male and female flowers have 5 sepals and a conspicuous fleshy disk. The fruits are depressed-globose in shape, 15–19 mm in diameter and split releasing up to 3 seeds. This species is distinguished by the (usually) large leaves and the hispid indumentum on the lower surface of the leaf and the flowers that lack petals (Forster, 2005). Conservation Status Actephila foetida is listed as vulnerable. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Ultramafic Geocology of South and Southeast Asia
Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation. -
Chapter 25. the Ecophysiology, Genetics, Adaptive Significance, And
Chapter 25 The ecophysiology, genetics, adaptive significance, and biotechnology of nickel hyperaccumulation in plants Anthony L. Ferrero1, Peter R. Walsh1 and Nishanta Rajakaruna1,2 1Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States, 2Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 25.1 Introduction Plants are challenged by various environmental stressors that interfere with their biochemical and physiological pro- cesses. Some heavy metals have critical physiological roles [1À3] in plants, but elevated concentrations of these essential heavy metals or exposure to other heavy metals, which lack any known physiological roles, may result in stress via interference with either the function of enzymes or information-coding DNA or RNA in cells [4À6].Some plants are more metal-tolerant than others, and thus heavy metal tolerance has been central to understanding adaptive evolution in plants [7À12] as well as the development of biotechnological fields such as phytoremediation and phyto- mining [13À16]. Some soils, including serpentine soils [17], have naturally high levels of heavy metals, and plants that can withstand these metal-rich soils are known as metallophytes [18,19]. Metallophytes tolerate metals via exclusion or accumulation. Most metallophytes exclude metals by chelation, binding ions to organic acids or other ligands, or by sequestration, storing metals within vacuoles of root cells where they cannot interrupt key cellular processes [20]. Accumulators, on the other hand, concentrate metals in plant parts, especially the epidermal tissues of leaves, whereas excluders generally keep shoot metal levels consistently low over a wide range of soil metal concentrations. Some metallophytes, termed “hyperaccumulators” [21À23], take up and sequester considerably high concentrations of metals in their aboveground tissues, often beyond thresholds that would be lethal to most plants [3]. -
Revision of the Genus Cleidion (Euphorbiaceae) in Malesia
BLUMEA 50: 197–219 Published on 22 April 2005 http://dx.doi.org/10.3767/000651905X623373 REVISION OF THE GENUS CLEIDION (EUPHORBIACEAE) IN MALESIA KRISTO K.M. KULJU & PETER C. VAN WELZEN Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; e-mail: [email protected], [email protected] SUMMARY A revision of the Malesian species in the genus Cleidion is presented. Cleidion javanicum is shown to be the correct name for the widespread type species (instead of the name C. spiciflorum). A new species, C. luziae, resembling C. javanicum, is described from the Moluccas, New Guinea and the Solomon Islands. In addition, C. salomonis is synonymised with C. papuanum and C. lanceolatum is treated as a variety of C. ramosii. In total 7 Malesian Cleidion species are recognized. Cleidion megistophyllum from the Philippines cannot reliably be confirmed to belong to the genus due to lack of information and specimens and is treated as a doubtful species. Key words: Cleidion, Acalypheae, Cleidiinae, revision, taxonomy, Malesia. INTRODUCTION Cleidion is a pantropical genus belonging to the large angiosperm family Euphorbiaceae s.s. It was described by Blume (1825), who included a single species C. javanicum1. The first revision was made by Müller Argoviensis (1865, 1866). His work was fol- lowed by the comprehensive treatment of Pax & Hoffmann (1914), which included 17 species. Pax & Hoffmann excluded the section Discocleidion Müll.Arg. which differs from Cleidion by the presence of a staminate and pistillate disc (in Cleidion a disc is absent), stipellate and palmatinerved leaves (in Cleidion the leaves are non-stipellate and pinnatinerved), and differences in anther type. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time. -
Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell. -
PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron Spp
Berita Biologi, Volume 6, Nomor 3, Desember 2002 PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron spp. (Euphorbiaceae) in Malesia] Tutie Djarwaningsih Puslit Biologi - LIPI Jl. IT. H. JuandaNo. 18 Bogor 16122 ABSTRACT The analysis of geographical distribution of Pimelodendron in Malesia based especially on data from the revision study of Pimelodendron (Euphorbiaceae) in Malesia. An analysis of distribution indicated that the highest number of species can be recognized, i.e. in Sumatera four species P. griffithianum, P. macrocarpum. P. zoanthogyne, and P. yatesianum; Peninsular Malaysia and Borneo have three species P. griffithianum, P. macrocarpum, and P. zoanthogyne; while Celebes, Moluccas, Lesser Sunda Islands, New Guinea, Solomon Islands and tropical Australia have one species (P. amboinicum). The geographical distribution indicated that the Malesian region can be considered as the centre of distribution of Pimelodendron. Kata kunci/ Key words: Pimelodendron, P. amboinicum, P. griffithianum, P. macrocarpum, P. zoanthogyne, P. yatesianum, persebaran geografi/ geographial distribution, aspek ekologi/ ecological aspects, Malesia. PENDAHULUAN sendiri dan kemampuan dari masing-masing jenis Fitogeografi atau geografi tumbuhan merupa- dalam berkompetisi. Dengan demikian informasi ini kan suatu bidang ilmu yang mencakup persebaran sangat penting dan diperlu-kan oleh lembaga-lembaga geografi, habitat, sejarah serta faktor-faktor biologi yang berkaitan dengan program penghijauan. -
The Potential Use of Indigenous Nickel Hyperaccumulators for Small-Scale Mining in the Philippines
JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT ISSN: 2339-076X, Volume 1, Number 1 (October 2013): 21-26 Research Article The potential use of indigenous nickel hyperaccumulators for small-scale mining in The Philippines E.S. Fernando1, M.O. Quimado1, L.C. Trinidad2, A.I. Doronila3,* 1 Department of Forest Biological Sciences, College of Forestry and Natural Resources, The University of the Philippines – Los Baños College, 4031 Laguna, Philippines 2 Central Analytical Services Laboratory,National Institute of Molecular Biology and Biotechnology,The University of the Philippines – Los Baños College 3 School of Chemistry, University of Melbourne, Victoria 3010, Australia *corresponding author: [email protected] Abstract : Uptake of nickel and three other heavy metals (copper, cobalt, and chromium) was examined in 33 species of the common and rare native vascular plants growing in an ultramafic area currently subjected to mining in Zambales Province, Luzon, Philippines. Leaf tissue samples were initially screened in the field using filter paper impregnated with dimethylglyoxime (1% solution in 70% ethyl alcohol) and later analyzed by atomic absorption spectroscopy. One species was found to be a hypernickelophore (>10,000 µg/g), eight species were nickel hyperaccumulators (>1,000 µg/g), nineteen species were hemi-accumulators (>100-1,000 µg/g), and five species were non-accumulators (<100 µg/g). This paper significantly adds to the list of hyperaccumulator species first reported for the Philippines in 1992. The findings will be discussed in context of using indigenous species for post mining ecological restoration and nickel phytoextraction in small-scale mining in the Philippines.. Keywords: hyperaccumulator species, nickel laterites, Zambales Introduction hyperaccumulated, however over 70% of hyperaccumulators are specific to Ni (Brooks, 1998; Hyperaccumulators are a suite of plants with the rare Baker et al., 2000). -
Phyllanthus Rufuschaneyi Roderick Bouman, Peter Van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, Antony Van Der Ent
Phyllanthus rufuschaneyi Roderick Bouman, Peter van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, Antony van der Ent To cite this version: Roderick Bouman, Peter van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D Erskine, et al.. Phyllanthus rufuschaneyi: A new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Botanical Studies, Springer Verlag, 2018, 59 (1), 10.1186/s40529-018-0225-y. hal-01811437 HAL Id: hal-01811437 https://hal.archives-ouvertes.fr/hal-01811437 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Bouman et al. Bot Stud (2018) 59:9 https://doi.org/10.1186/s40529-018-0225-y ORIGINAL ARTICLE Open Access Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining Roderick Bouman1,2,3, Peter van Welzen1,3, Sukaibin Sumail4, Guillaume Echevarria5, Peter D. Erskine6 and Antony van der Ent5,6* Abstract Background: Nickel hyperaccumulator plants are of much interest for their evolution and unique ecophysiology, and also for potential applications in agromining—a novel technology that uses plants to extract valuable metals from soil.