Fabrication & Analysis of Jute, Hemp & Banana Fiber Hybrid Composites

Total Page:16

File Type:pdf, Size:1020Kb

Fabrication & Analysis of Jute, Hemp & Banana Fiber Hybrid Composites ISSN 2319-8885 Vol.04,Issue.57, December-2015, Pages:12315-12324 www.ijsetr.com Fabrication & Analysis of Jute, Hemp & Banana Fiber Hybrid Composites 1 2 K. RUTHU RANI , SK. BAZANI 1PG Scholar, Eswar College of Engineering, Narasaraopet, Guntur, AP, India. 2Assistant Professor, Eswar College of Engineering, Narasaraopet, Guntur, AP, India. Abstract: An attempt has been made in the present work to explore and the possible use of variety of cultivated/wild grown fiber in the development of jute, hemp and banana fiber reinforced polyester hybrid composites. The fiber is extracted from manual method and retting, and the test specimens are prepared as per ―ASTM‖ standards. Four different contents are incorporated in the specimen, with each fiber content two identical specimens are prepared. Jute, hemp and banana fiber reinforced polyester hybrid composites are prepared by incorporating up to (0.5grms, 1grms, 1.5grms, 2grms) by mass. It is observed clearly (2grms) only mass of fiber compare with (1.5grms) of hybrid composites. Increase in the weight percentage of fibers changes the tensile strength, bending strength, impact strength. Keywords: ASTM, Fiber, Anatomical Structure, Leaves, Roots, Fruits, Seeds. I. INTRODUCTION A. Classification of Composites: The word ―composite‖ means two or more distinct parts The commonly accepted classification of composites is: physically bounded together‖. Thus, a material having phases 1. fibrous composites, or two more distinct constituent materials may be considered 2. laminated composites, a composite material. Fiber-reinforced composite materials 3. Particulate composites. consist of fiber with high strength and modulus embedded in or bonded to a matrix with distinct interfaces (boundary) 1. The fibrous composite:The fibrous composites are formed between them. In this form, both fiber and matrix retain their by embedding and binding together of fibbers by a continuous physical and chemical identities, yet they produce a matrix. According to the definition fibre is a material in an combination of properties but they cannot be achieved with elongated form such that it has a minimum length to a either of the constituents acting alone. In general, fiber are the maximum average transverse dimension of 10:1, a maximum principal load-carrying members, while the surrounding cross-sectional area of 5.2 x 10 –4 cm 2 and a maximum matrix keeps them in the desired orientation and location, acts transverse dimension of 0.0254 cm. A fiber is inherently as a load transfer medium between them, and protects them much stiffer and stronger than the same material in bulk form, from environmental damages due to elevated temperatures because of its perfect structure. Commercially available fibres and humidity etc. The properties that can be improved by are of glass, boron, Kevlar and graphite. The matrix is meant forming a composite material include strength, stiffness, for bonding the fibrous so that they act in concert. The corrosion resistance, wear resistance, attractiveness, weight, purpose of the matrix is manifold, namely to support, to fatigue life, temperature-dependent behavior, thermal protect and to transfer stress among the fibers. The matrix is insulation, thermal conductivity, acoustical insulation and usually of much lower strength, stiffness and density and is electrical insulation. Naturally, neither all of the properties are tougher than the fibres. It would not withstand itself high improved at the same time nor is there usually any stresses. Resins are widely used as matrix materials. The requirement to do so. Composite materials have a long history composite, resulting from the combination of fibers and of usage. Their beginnings are unknown, but all recorded matrix, possesses higher specific stiffness and specific history contains references to some form of composite strength, and is lighter than conventional engineering material. For example, straw was used by the Israelites to materials. strengthen mud bricks. Plywood was used by the ancient Egyptians when they realized that wood could be rearranged 2. Laminated Composites: Bonding layers of different to achievesuperior strength and resistance to thermal materials or same materials makes laminated composites. In expansion as well as to swelling owing to the presence of this class of composites, discontinuous matrix or mechanical moisture. More recently, fiber reinforced resin composites fasteners are used at times to keep the layers together. that have high strength-to-weight and stiffness-to- weight Depending upon the ways of fabrication, behavior, or ratios have become important in weight-sensitive applications constituent materials of laminates, laminated composites are such as aircraft and space vehicles. commonly called as bimetal, clad-metals, laminated or safety Copyright @ 2015 IJSETR. All rights reserved. K. RUTHU RANI, SK. BAZANI glass, plastic based laminates, laminated fibrous or hybrid percent, by volume, of a composite material. In addition to composites and sandwiches. maintaining the shape of the composite structure, aligning the reinforcements, and acting as a stress transfer medium, the 3. Particulate composites: Suspending particles of one or matrix protects the fibers from abrasion and corrosion. More more materials in a matrix of another material produces importantly, the limitation of a composite may well be a particulate composites. The particles and matrix can be either function of matrix properties. The two basic classes of resins metallic or non-metallic. The commonly used particulate are thermo sets and thermoplastics. The difference between composites are concrete, solid rocket propellants, carbides the two arises from their unique behavior when heated. etc. Thermo sets undergo an irreversible chemical change when they are cured. They chemically cross-link and develop a B. Natural Fibres network structure that sets them in shape. If they are heated The science of fiber crops studies the importance, after they have been cured, they do not melt. They will retain distribution, origin, botany, ecological conditions, agronomy, their shape until they begin to thermally decompose at high harvest method, quality determination, and processing of temperatures. On the other hand, thermoplastics reversibly different species of fibers. Secondary only food producing melt when heated and solidify when cooled. Once they have plants, fiber-producing plants play a significant role in early been initially melted to form the composite, heating above a and modern civilization. Fiber is an anatomical structure lower forming temperature can reshape them. Thus, obtained from stems, leaves, roots, fruits, and seeds. It is thermoplastic composites have the unique ability to be derived from meristematic tissue of primary or secondary repaired once they have been placed into service. origin depending on the species. Vegetable fibers consist of cellulose, lignocelluloses, pectin, and hemicelluloses Thermosetting resins are the most common types of matrix depending on the vegetable species. Worldwide, despite the system for composite materials. They have become popular availability of modern synthetic fibers, vegetable fibers for a number of reasons, including low melt viscosity, good remain in great demand and compete with wool, silk, and fiber impregnation, and fairly low processing temperatures. synthetics for quality resistance, durability, color, and luster. They are also lower in cost compared to thermoplastic resins. Due to the intense competition between natural and industrial Another class of thermosetting polymers, addition-polyamide fibers, a need exists for analysis of the growth and resins, is primarily used in high-temperature application. productivity of those fiber crops most important worldwide. Their development has given polymer composites new Farmers and researchers in the field of fiber crops face opportunities for applications requiring moderately high varying problems in their thrust to increase fibber service temperatures. A fiber reinforced resin system is a productivity, not the least of which are restrictions due to composite material consisting of a network of reinforcing uncontrollable edaphically and agro climatic factors and fibers embedded in a matrix of thermosetting or thermoplastic economic constraints at grassroots levels. The place of cotton resin. Other materials such as fillers and pigments may also as a fiber crop has already been well documented; therefore, be present, although they are not an essential part of the this work concentrates mainly on vegetable fibbers that are composite. In general, the resin used consists of a syrupy long, called long vegetable fibers. Probably linen was the first liquid which, when combined with a suitable catalyst or prepared fiber of prehistoric times, because it has been found hardener, can be cross-linked into a hard infusible solid. By in the remains of many primitive people. It is so ancient that impregnating the fibrous material, frequently in the form of a in Egypt, where flax had been used since about 6000B.C, it cloth or mat, with the catalyzed resin and allowing the resin to was considered to be the first thing created by gods for the cure, the composite material or laminate is formed. This people of land. The species of flax plant utilized by the process is carried out in a mould, which may be open or Egyptians so long ago appears to identical with the flax plant closed. The resultant product is fully cured moldings which cultivated today. may me
Recommended publications
  • Natural Materials for the Textile Industry Alain Stout
    English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ...................................................................................................................
    [Show full text]
  • Dimensional Characteristics Ofjute and Jute-Rayon Blended Fabrics
    :r'"' . ! Indian Journal of Textile Research Vol. 14. December 1989, Pp, 164-168 Dimensional characteristics of jute and jute-rayon blended fabrics crosslinked with DMDHEU r-N'C~~m &tA KtMukherjee Applied Chemistry Division, Indian Jute Industries' Research Association,Calcutta 700 OXS;~" ~ , Received 24 July 1989; accepted 4 September 1989 Jute and jute-rayon blended fabrics were crosslinked with 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) using metal salt catalysts [MgClz, ZnClz and Zn(NOJ}21, acid catalysts (HCl and CH3COOH) and mixed catalysts (MgCl/HCl and MgCl/CHJCOOH) by the usual pad-dry-cure method and their dimensional characteristics assessed. The crosslinking treatment reduced the % area shrinkage, i.e. improved the dimensional stability of jute and jute-rayon blended fabrics signifi- cantly. The improved dimensional behaviour of treated fabrics has been attributed to the reduction in the elastic property of amorphous regions of cellulose structure. Crosslinking makes such regions behave like orderly oriented regions. t t ~ ; '.j Keywords: Crosslinking, Dif!1_ensional characteristics, Jute, Jute-rayon blended fabric, Dimethyloldi- hydroxyethylene ure'a" ' . I Introduction properties of jute fabrics modified by crosslinking The dimensional stability, i.e. resistance to with few resins in presence of catalyst, it was con- shrinkage or extension on washing, has always sidered worthwhile to study the dimensional behav- been considered important for textile fabrics. It iour of jute and jute-rayon blended fabrics after cross- has become much critical in recent years with the linking them with DMDHEU in presence of different increasing demand for dimensionally stable fa- types of catalyst. Hence, the present study.
    [Show full text]
  • Tensile Properties of Bamboo, Jute and Kenaf Mat-Reinforced Composite
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 56 ( 2014 ) 72 – 79 11th Eco-Energy and Materials Science and Engineering (11th EMSES) Tensile Properties of Bamboo, Jute and Kenaf Mat-Reinforced Composite Toshihiko HOJOa,Zhilan XUb, Yuqiu YANGb*, Hiroyuki HAMADAa aKyoto Institute of Technology,Matsugasaki,Sakyo-ku, Kyoto, 6068585,Japan b Donghua University,Songjiang District,Shanghai, 201620,China Abstract Natural fibers, characterized by sustainability, have gained a considerable attention in recent years, due to their advantages of environmental acceptability and commercial viability. In this paper, several kinds of composites with natural fiber mat as reinforcement and unsaturated polyester(UP) as matrix, including jute/UP, kenaf/UP and bamboo/UP, were fabricated by hand lay-up and compression molding methods. Their tensile properties were tested and discussed, as well as the low cycle fatigue(LCF) behavior of three composites, which was compared with glass/UP. After the test, the fracture cross sectional observations were carried out on the selected test specimens using a scanning electron microscope(SEM),with a focus on the fracture morphologies. © 2014 Elsevier The Authors. Ltd. This Published is an open by access Elsevier article Ltd. under the CC BY-NC-ND license Peer-review(http://creativecommons.org/licenses/by-nc-nd/3.0/ under responsibility of COE of Sustainalble). Energy System, Rajamangala University of Technology Thanyaburi (RMUTT).Peer-review under responsibility of COE of Sustainalble Energy System, Rajamangala University of Technology Thanyaburi (RMUTT) Keywords: tensile property ; natural fiber mat; composites 1. Introduction Over the past few decades, there has been a growing interest in the use of natural fibers [1].
    [Show full text]
  • Fabric-Evoked Prickle of Fabrics Made from Single Fibres Using Axial Fibre-Compression-Bending Analyzer
    Indian Journal of Fibre & Textile Research Vol. 41, December 2016, pp. 385-393 Fabric-evoked prickle of fabrics made from single fibres using axial fibre-compression-bending analyzer Rabie Ahmed Mohammed Asad1, 2, Weidong Yu1, 3, a, Yong-hong Zheng4 & Yong He4 1Key Laboratory of Textile Science & Technology, Donghua University, Shanghai 201 620, P R China 2Department of Textile Engineering and Technology, Faculty of Textiles, University of Gezira, Wad-Medani, P O Box 20, Sudan 3TextileMaterials and Technology Laboratory, Donghua University, Shanghai 201 620, P R China 4Chongqing Fibre Inspection Bureau, Beibu New District, Chongqing, China Received 12 June 2014; revised received and accepted 18 December 2014 Fabrics made from cotton, cashmere, flax, hemp, ramie, jute, and wool fibres, have been used to investigate and analyze the prickle comfort properties of fabrics worn as garments. Physical properties include single-fibre critical load, compression and bending modules, which greatly affect the fabric physiological comfort. The fibres are tested using a ‘fibre axial compression-bending analyzer’. The behavior mechanisms of single-needle fibre are also analyzed, evaluated, and explained using fibres critical load, fineness, and protruding length. Physical and neuro-physiological basis for prickle sensation force from single-needle fibre depends on its bending modulus and axial compressive behavior. This experimental work shows that the bending modulus of ramie, jute, and wool fibre is significantly high as compared to other fibres. Thus, high prickle values of ramie, jute and wool fibres make them more uncomfortable due to the cross-section parameters and bending modulus of the single fibre needle. It is observed that the prickle feeling comes from the axial-compressive behavior and the number of effective fibre needles protruding from worn fabric surface.
    [Show full text]
  • Non-Wood Plants As Raw Material for Pulp and Paper
    AGRICULTURAL AND FOOD SCIENCE IN FINLAND Vol. 10 (2001): Supplement 1. Non-wood plants as raw material for pulp and paper Katri Saijonkari-Pahkala MTT Agrifood Research Finland, Plant Production Research FIN-31600 Jokioinen, Finland, e-mail: [email protected] ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Agriculture and Forestry, University of Helsinki, for public criticism at Infokeskus Korona, Auditorium 1, on November 30, 2001, at 12 o’clock. 1 Supervisors: Professor Pirjo Peltonen-Sainio Plant Production Research MTT Agrifood Research Finland Jokioinen, Finland Professor Timo Mela Plant Production Research MTT Agrifood Research Finland Jokioinen, Finland Reviewers: Dr. Staffan Landström Swedish University of Agricultural Sciences Umeå, Sweden Professor Bruno Lönnberg Laboratory of Pulping Technology Åbo Akademi University Turku, Finland Opponent: Dr. Iris Lewandowski Department of Science, Technology and Society Utrecht University Utrecht, the Netherlands Custos: Professor Pirjo Mäkelä Department of Applied Biology University of Helsinki Helsinki, Finland AGRICULTURAL AND FOOD SCIENCE IN FINLAND Vol. 10 (2001): Supplement 1. KSP 2001 “A new fiber crop must fit the technical requirements for processing into pulp of acceptable quality in high yield and must also be adaptable to practical agricul- tural methods and economically produce high yield of usable dry matter per acre”. Nieschlag et al. (1960) 3 AGRICULTURAL AND FOOD SCIENCE IN FINLAND Vol. 10 (2001): Supplement 1. Preface The present study was carried out at the MTT Agrifood Research Finland between 1990 and 2000. I wish to extend my gratitude to the Directors of the Crop Science Department, Professor Emeritus Timo Mela and his successor Professor Pirjo Peltonen-Sainio for offering me the financial and insti- tutional framework in which to do this research.
    [Show full text]
  • Investigation of the Mechanical Properties of Flax Cell Walls During Plant Development: the Relation Between Performance and Cell Wall Structure
    fibers Communication Investigation of the Mechanical Properties of Flax Cell Walls during Plant Development: The Relation between Performance and Cell Wall Structure Camille Goudenhooft 1,* ID , David Siniscalco 1, Olivier Arnould 2 ID , Alain Bourmaud 1, Olivier Sire 3, Tatyana Gorshkova 4 ID and Christophe Baley 1 1 Institut de Recherche Dupuy de Lôme (IRDL), Université Européenne Bretagne, CNRS FRE 3744, 56321 Lorient, France; [email protected] (D.S.); [email protected] (A.B.); [email protected] (C.B.) 2 Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS UMR 5508, 34095 Montpellier, France; [email protected] 3 Institut de Recherche Dupuy de Lôme (IRDL), Université Européenne Bretagne, CNRS FRE 3744, 56017 Vannes, France; [email protected] 4 Kazan Institute of Biochemistry and Biophysics (KIBB), Kazan Scientific Centre, Russian Academy of Sciences, 420111 Kazan, Russia; [email protected] * Correspondence: [email protected]; Tel.: +33-297-874-518 Received: 22 December 2017; Accepted: 11 January 2018; Published: 17 January 2018 Abstract: The development of flax (Linum usitatissimum L.) fibers was studied to obtain better insight on the progression of their high mechanical performances during plant growth. Fibers at two steps of plant development were studied, namely the end of the fast growth period and at plant maturity, each time at three plant heights. The indentation modulus of the fiber cell wall was characterized by atomic force microscopy (AFM) using peak-force quantitative nano-mechanical property mapping (PF-QNM). Changes in the cell wall modulus with the cell wall thickening were highlighted.
    [Show full text]
  • Growing Hemp for Fiber Or Grain
    Growing Hemp for Fiber or Grain Presented by: Dr. Craig Schluttenhofer Research Assistant Professor of Natural Products Agriculture Research Development Program Fiber and Grain Hemp ▪ Can fit into existing grain/forage crop production models ▪ The major limitation is finding a processor that will purchase these crops Hemp: A Bast Fiber Planting a Fiber Crop ▪ Use a fiber or dual-purpose (fiber and grain) variety directly seeded into the field ▪ Plant mid-May to late-May ▪ Planted ¼ to ½ deep with a grain drill ▪ High plant density (30-35 live seed/ft2), ~60 lbs./A ▪ Use 7-8” between rows for quick canopy closure and weed suppression Growing Hemp for Fiber ▪ Plant should reach 10-15+ ft - the taller the better - long slender stems ▪ Best estimates for fertility - N: 50-100 lbs./acre - P: 45-60 lbs./acre - K: 35-100 lbs./acre Fiber Crop Maturity ▪ When male plants are at starting to flower ▪ Usually this will be mid-August for Ohio ▪ Cut with a sickle-bar or disc mower ▪ Leave to ret Retting ▪ Retting is a controlled rotting process that loosens the fibers from the hurd ▪ Cut green stalks are left in the field 2-6 weeks to “ret” ▪ Relies on fungi and bacteria to degrade pectin binding fibers to the hurd ▪ Turns brown to gray color, some charcoal covered spots “Bowstring” Test ▪ Natural separation of the fiber from the hurd during the retting process ▪ Indication the stalks are properly retted ▪ Further retting leads to decline in fiber quality and quantity Baling ▪ 1-ton round or square bales ▪ Moisture content – 16% or below to avoid molding, <10% may result in brittleness and impact fiber quality ▪ Avoid contaminating weeds in bales ▪ Avoid getting any plastic or debris in bales ▪ Do not bale up stones as they will cause damage to farm and factory equipment.
    [Show full text]
  • Industrial Hemp in the United States: Status and Market Potential
    Industrial Hemp in the United States: Status and Market Potential Abstract Industrial hemp has been the focus of official interest in several States. However, hemp and marijuana are different varieties of Cannabis sativa, which is classified as a con- trolled substance in the United States. With Canada now allowing hemp production, questions have been raised about the demand for hemp products. U.S. markets for hemp fiber (specialty textiles, paper, and composites) and seed (in food or crushed for oil) are, and will likely remain, small, thin markets. Uncertainty about longrun demand for hemp products and the potential for oversupply discounts the prospects for hemp as an eco- nomically viable alternative crop for American farmers. Keywords: industrial hemp, markets, bast fiber, hurds, seed, oil. The use of commercial or trade names does not imply approval or constitute endorse- ment by USDA. Washington, DC January 2000 Contents Executive Summary . .iv Introduction . .1 Identification: Industrial Hemp or Marijuana? . .2 History . .3 Industrial Hemp in Canada . .3 Plant Characteristics and Growing Requirements . .4 Harvesting, Retting, and Fiber Separation . .5 Harvesting . .5 Retting . .5 Fiber Separation . .5 U.S. Hemp Fiber and Fabric Imports . .9 Fiber Markets . .10 Specialty Textiles . .10 Paper and Composites . .13 Other Potential Uses . .13 Hemp Hurds . .14 Seed Markets . .15 Potential U.S. Production and Processing . .17 Possible Yields . .17 Processing . .17 Estimated Costs and Returns . .18 U.S. Experience With Kenaf and Flax . .23 State Study Findings . .24 Conclusions . .25 References . .27 Appendix I: Health Canada—Commercial Production of Industrial Hemp . .29 Appendix II: Oversupply of Small, Thin Markets .
    [Show full text]
  • US EPA, Pesticide Product Label, SYSSTEM-K BLUE,06/02/2017
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION June 2, 2017 Jamie Guillory Consultant Agro-K Corporation c/o Spring Trading Company 203 Dogwood Trail Magnolia, TX 77354 Subject: Non-PRIA (Pesticide Registration Improvement Act) Labeling Amendment – Acceptable Revision to the Directions for Use, and Addition of Required First Aid and Chemigation Language Product Name: Sysstem-K Blue EPA Registration Number: 48222-10 Application Date: 05/08/2017 OPP Decision Number: 529455 Dear Ms. Guillory: The amended labeling referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended, is acceptable. This approval does not affect any terms or conditions that were previously imposed on this registration. You continue to be subject to existing terms or conditions on your registration and any deadlines connected with them. A stamped copy of your labeling is enclosed for your records. This labeling supersedes all previously accepted labeling. You must submit one (1) copy of the final printed labeling before you release this product for shipment with the new labeling. In accordance with 40 CFR § 152.130(c), you may distribute or sell this product under the previously approved labeling for 18 months from the date of this letter. After 18 months, you may only distribute or sell this product if it bears this new revised labeling or subsequently approved labeling. “To distribute or sell” is defined under FIFRA section 2(gg) and its implementing regulation at 40 CFR § 152.3. Should you wish to add/retain a reference to your company’s website on your label, then please be aware that the website becomes labeling under FIFRA and is subject to review by the U.S.
    [Show full text]
  • Natural Fibers and Fiber-Based Materials in Biorefineries
    Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom.
    [Show full text]
  • Jute and Kenaf Chapter 7
    7 Jute and Kenaf Roger M. Rowell and Harry P. Stout CONTENTS 7.1 Introduction......................................................................................................................406 7.2 Formation of Fiber .......................................................................................................407 7.3 Separation of Blast Fiber from Core ............................................................................408 7.4 Fiber Structure................................................................................................................ 409 7.5 Chemical Composition..................................................................................................................411 7.6 Acetyl Content ................................................................................................................412 7.7 Changes in Chemical and Fiber Properties during the Growing Season ................. 414 7.8 Fine Structure ...............................................................................................................419 7.9 Physical Properties ..........................................................................................................420 7.10 Grading and Classification............................................................................................421 7.11 Fiber and Yarn Quality..................................................................................................................... 423 7.12 Chemical Modification for Property Improvement.......................................................424
    [Show full text]
  • Elementary Level
    Grades: K - 5 ELEMENTARY LEVEL CURRICULUM GUIDE Permission to distribute any part or the whole of this material via e-mail or individual copies is automatically granted on the condition it will be used for non- commercial purposes and will not be sold. To reproduce the Elementary Curriculum Guide in any other format, including Internet websites, written permission is needed from the Women of the National Agricultural Aviation Association [WNAAA]. AGRICULTURAL AVIATION: Critical Assist for the World’s Food Supply Elementary Education Curriculum Guide Presentation Outline I. The intent and purpose of the elementary agricultural aviation curriculum guide. A. To introduce the service industry of agricultural aviation to educators and students. 1. The history of agricultural aviation. a. The development/need for the service in agriculture. b. The evolution of the industry. 2. The agricultural aviation industry as it exists today. a. The people involved in agricultural aviation. b. The importance of the industry of agricultural (forestry, disease control) 3. The future of agricultural aviation. a. The role it plays in the continued production of food and fiber. B. To provide insight into the usefulness and importance of agricultural aviation. 1. Agricultural aviation assists the growers of food and fiber. a. Agricultural aviation impacts the lives of people through the food they eat and the clothes they wear. 2. Agricultural aviation provides service to Federal, State and Local Governments. a. The industry assists in protecting the forests, therefore affecting the shelter of many people. b. When called upon, the agricultural aviation industry assists in controlling insects considered health threats. C.
    [Show full text]