Field Book for Describing and Sampling Soils Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NRCS Keys to Soil Taxonomy
United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories ................. -
Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane. -
Soil Taxonomy" in Particular ,
1. CONTROL NUMBER 2. SUBECT CLASSIFICATION (695) BIBLIOGRAPItlC DATA SHEET IN-AAJ-558 AF26-0000-0000 3. TITLE ANt) SUBTITLE (240) Experimental designs for predicting crop productivity with environmental and economic inputs for al rotcchnology transfer 4. PERSON.\I. AUTHORS (10P) Silva, J. A. 5. CORPORATE AUTHORS (101) Hawaii Univ. College of Tropical Agriculture 6. IDOCUMEN2< DATE (110)7. NUMBER OF PAGES (120) 8.ARC NUMBER [7 1981 13n631.5.S586b __ 9. R FRENCE ORGANIZATION (130) Hawaii 10. SUPI'PLEMENTARY NOTES (500) (In Departmental paper 49) 11. ABSTRACT (950) 12. DESCRIPTORS (920) 13. PROJECT NUMBER (150) Agricultural production Agricultural technology 931582C00 Technology transferi!Techoloy tansferYieldY e d14. CONTRACT NO.(I It)) 15. CONTRACT Soil fertility Experimentation TYPE (140) Tropics Productivity AID/ta-C-1108 Forecasting 16. TYPE OF DOCUMENT (160) AM 590-7 (10-79) Departmental Paper 49 Experimental Designs for Predicting Crop Productivity with Environmental and Economic Inputs for Agrotechnology Transfer Edited by James A. Silva ...... ,..,... *** .......... ....* ...... .... .. 00400O 00€€€€*00 .. ...* Y Y*b***S4....... ~~~.eeeeeoeeeeeU ........ o .. *.4.............*e............ :0 ooee............. ........... ....... nae of T c.e Haw i. ns..ut. CollegeofTrpclgr.cut a UnversityoHa B....EMAR.SO University of Hawaiio~ee BENCHMAR SO I Le~eSPoJECTU/ADCotac o.t-C1 14.. C4 '4 t 10 wte IA:A 77 d E/ Adt , I 26Esi ',. ,~ )~'I *3-! * Ire ~ -I ~ 0 1 N Koel4 'I M M Experimental Designs for Predicting Crop Productivity with Environmental and Economic Inputs for Agrotechnology Transfer Edited by James A. Silva Benchmark Soils Project UH/AiD Contract No. to-C-1108 The Author James A. Silva is Soil Scientist and Principal Investigator, Benchmark Soils Project/Hawaii, Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
USGS Professional Paper 1739-A
Studies by the U.S. Geological Survey in Alaska, 2006 U.S. Geological Survey Professional Paper 1739–A Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula By Wes Hildreth, Judy Fierstein, and Andrew T. Calvert Abstract pal nearby town) and 15 to 20 km behind (northwest of) the volcanic-front chain, which is locally defined by Kejulik and Behind the single-file chain of stratovolcanoes on the Peulik stratovolcanoes (fig. 1). The Gas Rocks form a knobby Alaska Peninsula, independent rear-arc vents for mafic mag- peninsula at the south shore of Becharof Lake, and Blue mas are uncommon, and for silicic magmas rarer still. We Mountain is a group of rounded hills a few kilometers west of report here the characteristics, compositions, and ages of two Upper Ugashik Lake (fig. 2). Both dome clusters rise abruptly andesite-dacite dome clusters and of several nearby basaltic above a nearly flat (virtually treeless and roadless) plain of units, all near Becharof Lake and 15 to 20 km behind the late Pleistocene glacial deposits (Detterman and others, 1987a, volcanic front. Blue Mountain consists of 13 domes (58–68 b), consisting largely of till and outwash, supplemented by the bog and lacustrine deposits of hundreds of ponds and by weight percent SiO2) and The Gas Rocks of three domes (62–64.5 weight percent SiO ) and a mafic cone (52 weight beach and terrace deposits along the lakeshores. The enor- 2 mous moraine-dammed lakes (fig. 2) are generally shallower percent SiO2). All 16 domes are amphibole-biotite-plagio- clase felsite, and nearly all are phenocryst rich and quartz than 5 m, and their surfaces are barely 10 m above sea level. -
Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R
ARCTK: VOL. 34, NO. 1 (MARCH 1981), P. 43-47 Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R. LINDBERG’ ABSTRACT. Seven species of land mollusk (2 slugs, 5 snails) were collected on Attu in July 1979. Three are circumboreal species, two are amphi-arctic (Palearctic and Nearctic but not circumboreal), and two are Nearctic. Barring chance survival of mollusks in local refugia, the fauna was assembled overwater since deglaciation, perhaps within the last 10 OOO years. Mollusk faunas from Kamchatka to southeastern Alaska all have a Holarctic component. A Palearctic component present on Kamchatka and the Commander Islands is absent from the Aleutians, which have a Nearctic component that diminishes westward. This pattern is similar to that of other soil-dwelling invertebrate groups. RESUM& Sept espbces de mollusques terrestres (2 limaces et 5 escargots) furent prklevkes sur I’ile d’Attu en juillet 1979. Trois sont des espbces circomborkales, deux amphi-arctiques (Palkarctiques et Nkarctiques mais non circomborkales), et deux Nkarctiques. Si I’on excepte la survivance de mollusques due auhasard dans des refuges locaux, cette faune s’est retrouvke de part et d’autre des eauxdepuis la dkglaciation, peut-&re depuis les derniers 10 OOO ans. Les faunes de mollusques de la pkninsule de Kamchatkajusqu’au sud-est de 1’Alaska on toutes une composante Holarctique. Une composante Palkarctique prksente sur leKamchatka et les iles Commandeur ne se retrouve pas aux Alkoutiennes, oil la composante Nkarctique diminue vers I’ouest. Ce patron est similaire il celui de d’autres groupes d’invertkbrks terrestres . Traduit par Jean-Guy Brossard, Laboratoire d’ArchCologie de I’Universitk du Qukbec il Montrkal. -
Characteristics and Formation of So-Called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia)
Characteristics and Formation of so-called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) J.P, Andriesse Characteristics and Formation of so-called Red-Yellw Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) This thesis will also be published as Communication nr. 66 of the Royal Tropical Institute, Amsterdam Characteristics and Formation of so-called Red^ellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) Proefschrift ter verkrijging van de graad van doctor in de Wiskunde en Natuur- wetenschappen aan de Rijksuniversiteit te Utrecht, op gezag van de Rector Magnificus Prof. Dr. Sj. Groenman, volgens besluit van het College van Dekanen in het openbaar te verdedigen op 8 decem- ber 1975 des namiddags te 4.15 uur door Jacobus Pieter Andriesse geboren op 28 maart 1929 te Middelburg Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use' Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the .Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. Promotores: Prof.Dr.Ir. L.J. Pons, Landbouwhogeschool, Wageningen Prof.Dr. R.D. Schuiling Dit proefschrift kwam in zijn volledigheid tot stand onder leiding van Prof.Dr.Ir. F.A. van Baren f Preface Sarawak - a geography of life 'Extensive, almost inaccessible swamps, stretching along the coast, must be passed to reach the hills which in their monotonous repetition of heights and valleys wear down the traveller, but from where the lofty mountains beyond beckon to carry on' I dedicate this thesis to the memory of my late parents who through their efforts enabled me to receive the basic education which opened the door for my professional career, but who through their premature decease could not witness the results of their labour. -
United States Department of the Interior Geological
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY AGE AND TECTONIC SIGNIFICANCE OF VOLCANIC ROCKS ON ST. MATTHEW ISLAND, BERING SEA, ALASKA BY William W. Patton, Jr., Marvin A. Lanphere, Thomas P. Miller, and Richard A. Scott Menlo Park, Calif., Anchorage, Alaska, Denver, Colo. Open-file report 75-150 1975 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards AGE AND TECTONIC SIGNIFICANCE OF VOLCANIC ROCKS ON ST. MATTHEW ISLAND, BERING SEA, ALASKA By WILLIAM W. PATTON, JR., MARVIN A. LANPHERE, THOMAS P. MILLER, and RICHARD A. SCOTT Menlo Park, Calif., Anchorage, Alaska, Denver, Colo. Abstract.-- 'Reconnaissance investigations of the heretofore little known volcanic assemblage on St. Matthew Island provide significant information on the tectonic history of the Bering Sea shelf. St. Matfhew Island is made up of approximately 500 m of subaerial calc-alkaline volcanic rocks ranging in composition from high-alumina basalt to rhyolite. Four K-Ar analyses of samples from this volcanic sequence give Late Cretaceous ages of 65-77 m.y., and intercalated carbonaceous tuff layers yield Cretaceous pollen assemblages. Along the northeast coast of St. Matthew Island the volcanic rocks are intruded by granodiorite that gives an early Tertiary K-Ar age of 61 m.y. Correlations with on-land geology in northeast Siberia and marine geophysical data from the western Bering Sea strongly suggest that St. Matthew Island represents a southeastward extension of the Okhotsk- Chukotsk belt, a Late Cretaceous and early Tertiary volcanic arc that borders the Pacific margin of Siberia for 3,000 km. -
U.S. Geological Survey Circular 1249
��� � Geothermal Energy—Clean Power From the Earth’s Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey Geothermal Energy—Clean Power From the Earth’s Heat By Wendell A. Duffield and John H. Sass C1249 U.S. Department of the Interior U.S. Geological Survey ii iii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2003 Available from U.S. Geological Survey Information Services� Box 25286, Denver Federal Center� Denver, CO 80225� This report and any updates to it are available at� http://geopubs.wr.usgs.gov/circular/c1249/� Additional USGS publications can be found at� http://geology.usgs.gov/products.html� For more information about the USGS and its products;� Telephone: 1-888-ASK-USGS� World Wide Web: http://www.usgs.gov/� Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply� endorsement of the U.S. Government.� Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission� to reproduce those items must be secured from the individual copyright owners.� Published in the Western Region, Menlo Park, California� Manuscript approved for publication March 20, 2003� Text and illustrations edited by James W. Hendley II and Carolyn Donlin� Cataloging-in-publication data are on file with the Library of Congress (http://www.loc.gov/). Cover—Coso geothermal plant, Navy One, at Naval Air Weapons Station China Lake in southern California (U.S. -
Geology of Pavlof Volcano and Vicinity Alaska
Geology of Pavlof Volcano and Vicinity Alaska By GEORGE C. KENNEDY and HOWARD H. R7ALDRON INVESTIGATIONS OF ALASKAN VOLCANOES GEOLOGICAL SURVEY BULLETIN 1028-A Prepared in cooperation with the Ofice, Chief of Enpiseers, U,S. Army - UNITED STATES GOVERNMENT PRLNTING OFFICE, WASHINGTON : 1955 UNITED STATE$ DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY W. E. Wmther, -for PREFACE fn October 1345 the War Department (now Department of the Army) requested the Geological Survey to undertake a program of volcano investigations in the Aleutian I~lan&Alaska Peninaula araa, The fist field studies, under general direction of Q. D. Robbn, were begun as soon as weather permitted in the spring of 1948. The results of the first year's field, laboratory, and library work were ambled hastily as two administrative reporta Part of the data was published in 1950 in Gmlogid Survey BulIetin 97443, Volcanic activity in the Aleutian arc, by Rabert B. Coats. The remainder of Badata have been revised for publication in Bulletin 10B. The geologic and geophysical investigations covered ky this mprt were reconnaissance, The factual information presented is believed to be accurate, but many of the tentative interpretations afld conclu- &ion8will bB modified as the investigations continue and knowledge growa. The investigations of 1946 were support~dalmost entirely by the Military Intelligence Division of the Office, Chief of Engineers, U. S. &my. The Geological Survey is indebtad to the Office, Chief of Engin- for its early recognition of tho value of geologic studies -
Land Resource Regions and Major Land Resource Areas of Alaska
United States Department of Agriculture Land Resource Natural Resources Regions and Major Conservation Service Land Resource October 2004 Areas of Alaska Land Resource Regions and Major Land Resource Areas of Alaska October 2004 USDA—NRCS Alaska 800 W. Evergreen Avenue, Suite 100 Palmer, Alaska 99645-6539 This document is available on the NRCS Alaska Web site: http://www.ak.nrcs.usda.gov/technical/lrr.html Edited by: Darrell R. Kautz, Vegetation Ecologist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Pam Taber, Editorial Assistant, NRCS, Alaska MLRA Region 17, Palmer, Alaska Contributors: Joseph P. Moore, State Soil Scientist/MLRA Office Leader, NRCS, Palmer, Alaska Dennis Moore, Soil Data Quality Specialist, Alaska MLRA Region 17, Palmer, Alaska Mark Clark, Soil Scientist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Darrell R. Kautz, Vegetation Ecologist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Dennis Mulligan, Soil Scientist, NRCS, Alaska MLRA Region 17, Fairbanks, Alaska Michael Mungoven, Soil Scientist, NRCS, Alaska MLRA Region 17, Homer, Alaska David K. Swanson, Soil Scientist, NRCS, Alaska Douglas Van Patten, Soil Scientist, NRCS, Alaska Cover Looking north along the Toklat River in Denali National Park with the Wyoming Hills in the background. This area is within the Interior Alaska Mountains Major Land Resource Area (228), a part of the Interior Alaska Major Land Resource Region (X1). The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).