USGS Geologic Investigations Series I 2585, Pamphlet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska)
National Park Service U.S. Department of the Interior Natural Resources Program Center Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska) Natural Resource Technical Report NPS/NRWRD/NRTR—2007/372 Cover photo: Glacier emerging from the slopes of Mt Douglas toward the Katmai coastline. August 2005. Photo: S.Nagorski 2 Assessment of Coastal Water Resources and Watershed Conditions at Katmai National Park and Preserve (Alaska) Natural Resource Technical Report NPS/NRWRD/NRTR-2007/372 Sonia Nagorski Environmental Science Program University of Alaska Southeast Juneau, AK 99801 Ginny Eckert Biology Program University of Alaska Southeast Juneau, AK 99801 Eran Hood Environmental Science Program University of Alaska Southeast Juneau, AK 99801 Sanjay Pyare Environmental Science Program University of Alaska Southeast Juneau, AK 99801 This report was prepared under Task Order J9W88050014 of the Pacific Northwest Cooperative Ecosystem Studies Unit (agreement CA90880008) Water Resources Division Natural Resource Program Center 1201 Oakridge Drive, Suite 250 Fort Collins, CO 80525 June 2007 U.S. Department of Interior Washington, D.C. 3 The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the audience, and is designed and published in a professional manner. The Natural Resource Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. -
Crary-Henderson Collection, B1962.001
REFERENCE CODE: AkAMH REPOSITORY NAME: Anchorage Museum at Rasmuson Center Bob and Evangeline Atwood Alaska Resource Center 625 C Street Anchorage, AK99501 Phone: 907-929-9235 Fax: 907-929-9233 Email: [email protected] Guide prepared by: Mary Langdon, Volunteer, and Sara Piasecki, Archivist TITLE: Crary-Henderson Collection COLLECTION NUMBER: B1962.001, B1962.001A OVERVIEW OF THE COLLECTION Dates: circa 1885-1930 Extent: 19.25 linear feet Language and Scripts: The collection is in English. Name of creator(s): Will Crary; Nan Henderson; Phinney S. Hunt; Miles Bros.; Lyman; George C. Cantwell; Johnson; L. G. Robertson; Lillie N. Gordon; John E. Worden; W. A. Henderson; H. Schultz; Merl LaVoy; Guy F. Cameron; Eric A. Hegg Administrative/Biographical History: The Crary and Henderson Families lived and worked in the Valdez area during the boom times of the early 1900s. William Halbrook Crary was a prospector and newspaper man born in the 1870s (may be 1873 or 1876). William and his brother Carl N. Crary came to Valdez in 1898. Will was a member of the prospecting party of the Arctic Mining Company; Carl was the captain of the association. The Company staked the “California Placer Claim” on Slate Creek and worked outside of Valdez on the claim. Slate Creek is a tributary of the Chitina River, in the Chistochina District of the Copper River Basin. Will Crary was the first townsite trustee for Valdez. Carl later worked in the pharmaceutical field in Valdez and was also the postmaster. Will married schoolteacher Nan Fitch in Valdez in 1906. Carl died of cancer in 1927 in Portland, Oregon. -
Denali Fault System of Southern Alaska an Interior Strikeslip
TECTONICS, VOL. 12, NO. 5, PAGES 1195-1208, OCTOBER 1993 DENALl FAULT SYSTEM OF SOUTHERN 1974; Lanphere,1978; Stoutand Chase,1980]. Despitethis ALASKA: AN INTERIOR STRIKE.SLIP consensus,the tectonichistory of the DFS remainsrelatively STRUCTURE RESPONDING TO DEXTRAL unconstrained.Critical outcrops are rare, access is difficult,and AND SINISTRAL SHEAR COUPLING to this day muchof the regionis incompletelymapped at detailed scales. Grantz[1966] named or redefinedsix individualfault ThomasF. Redfieldand Paul G. Fitzgerald1 segmentscomprising the DFS. From west to eastthe Departmentof Geology,Arizona State University, segmentsare the Togiak/Tikchikfault, the Holitnafault, the Tempe Farewellfault, the Denali fault (subdividedinto the McKinley andHines Creek strands), the Shakwakfault, andthe Dalton fault (Figure 1). At its westernend, the DFS is mappednot as a singleentity but ratherappears to splayinto a complex, Abstract.The Denalifault system (DFS) extendsfor-1200 poorlyexposed set of crosscuttingfault patterns[Beikman, km, from southeastto southcentral Alaska. The DFS has 1980]. Somewhatmore orderly on its easternend, the DFS beengenerally regarded as a fight-lateralstrike-slip fault, along appearsto join forceswith the ChathamStrait fault. This which postlate Mesozoicoffsets of up to 400 km havebeen structurein turn is truncatedby the Fairweatherfault [Beikman, suggested.The offsethistory of the DFS is relatively 1980],the present-dayNorth American plate Pacific plate unconstrained,particularly at its westernend. For thisstudy boundary[Plafker -
Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
USGS Professional Paper 1739-A
Studies by the U.S. Geological Survey in Alaska, 2006 U.S. Geological Survey Professional Paper 1739–A Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula By Wes Hildreth, Judy Fierstein, and Andrew T. Calvert Abstract pal nearby town) and 15 to 20 km behind (northwest of) the volcanic-front chain, which is locally defined by Kejulik and Behind the single-file chain of stratovolcanoes on the Peulik stratovolcanoes (fig. 1). The Gas Rocks form a knobby Alaska Peninsula, independent rear-arc vents for mafic mag- peninsula at the south shore of Becharof Lake, and Blue mas are uncommon, and for silicic magmas rarer still. We Mountain is a group of rounded hills a few kilometers west of report here the characteristics, compositions, and ages of two Upper Ugashik Lake (fig. 2). Both dome clusters rise abruptly andesite-dacite dome clusters and of several nearby basaltic above a nearly flat (virtually treeless and roadless) plain of units, all near Becharof Lake and 15 to 20 km behind the late Pleistocene glacial deposits (Detterman and others, 1987a, volcanic front. Blue Mountain consists of 13 domes (58–68 b), consisting largely of till and outwash, supplemented by the bog and lacustrine deposits of hundreds of ponds and by weight percent SiO2) and The Gas Rocks of three domes (62–64.5 weight percent SiO ) and a mafic cone (52 weight beach and terrace deposits along the lakeshores. The enor- 2 mous moraine-dammed lakes (fig. 2) are generally shallower percent SiO2). All 16 domes are amphibole-biotite-plagio- clase felsite, and nearly all are phenocryst rich and quartz than 5 m, and their surfaces are barely 10 m above sea level. -
Rupture in South-Central Alaska— the Denali Fault Earthquake of 2002
REDUCING EARTHQUAKE LOSSES THROUGHOUT THE UNITED STATES Rupture in South-Central Alaska— ������� ��� The Denali Fault Earthquake of 2002 ��� �������� � � � � � � ��� ��������� �� ����� powerful magnitude 7.9 earth- ����� ����� ����� ���� �� ��� ������ quake struck Alaska on No- ����� ������������ ��� �������� ��������� A ��� ��� ���� � ���� ������ ������ � � � vember 3, 2002, rupturing the Earth’s � � �������� ��� �� ���� � � � � surface for 209 miles along the Susitna � ���������� ���� ������ ����� � � ����� � � ���������� Glacier, Denali, and Totschunda Faults. � � ����� � � � ��������� �� � � � � � Striking a sparsely populated region, � � � � � � � � � � � � � � � � it caused thousands of landslides but � � � � � � � � � � little structural damage and no deaths. � � � � � � � � � � � � � � � � Although the Denali Fault shifted about � �������� ������� � � ��� � � � � ������� � � 14 feet beneath the Trans-Alaska Oil ��������� �� � ����� � Pipeline, the pipeline did not break, � � ���� � � � � � � ������ � � � � � � � � �������� averting a major economic and envi- � � ���� � ��������� �� � ronmental disaster. This was largely � � � � � � � the result of stringent design specifica- � � � � � � � � tions based on geologic studies done ������������ ��� �������� � � � � � � � by the U.S. Geological Survey (USGS) � �� ��� ���������� � � � and others 30 years earlier. Studies of � � � � � � � � � � �� ����� � � ���������� � � � ���� the Denali Fault and the 2002 earth- � quake will provide information vital to The November 3, 2002, magnitude -
Geologic Mapping and the Trans-Alaska Pipeline Using Geologic Maps to Protect Infrastructure and the Environment
Case Study Geologic Mapping and the Trans-Alaska Pipeline Using geologic maps to protect infrastructure and the environment Overview The 800-mile-long Trans-Alaska Pipeline, which starts at examining the fault closely and analyzing its rate of Prudhoe Bay on Alaska’s North Slope, can carry 2 million movement, geologists determined that the area around barrels of oil per day south to the port of Valdez for export, the pipeline crossing—had the potential to generate a equal to roughly 10% of the daily consumption in the United very significant earthquake greater than magnitude 8. States in 2017. The pipeline crosses the Denali fault some 90 miles south of Fairbanks. A major earthquake along the fault could cause the pipeline to rupture, spilling crude oil into the surrounding environment. Denali Fault Trace In 2002, a magnitude 7.9 earthquake struck the Denali fault, one of the largest earthquakes ever recorded in North America, which caused violent shaking and large ground movement where the pipeline crossed the fault. However, the pipeline did not spill a drop of oil, and only saw a 3-day shutdown for inspections. Geologic mapping of the pipeline area prior to its construction allowed geologists and engineers to identify and plan for earthquake hazards in the pipeline design, which mitigated damage to pipeline infrastructure and helped prevent a potentially major oil spill during the 2002 earthquake. Geologic Mapping The Trans-Alaska Pipeline after the 2002 earthquake on the Denali Mapping the bedrock geology along the 1,000-mile-long fault. The fault rupture occurred between the second and third Denali fault revealed information on past movement on the beams fault and the likely direction of motion on the fault in future Image credit: Tim Dawson, U.S. -
Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R
ARCTK: VOL. 34, NO. 1 (MARCH 1981), P. 43-47 Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R. LINDBERG’ ABSTRACT. Seven species of land mollusk (2 slugs, 5 snails) were collected on Attu in July 1979. Three are circumboreal species, two are amphi-arctic (Palearctic and Nearctic but not circumboreal), and two are Nearctic. Barring chance survival of mollusks in local refugia, the fauna was assembled overwater since deglaciation, perhaps within the last 10 OOO years. Mollusk faunas from Kamchatka to southeastern Alaska all have a Holarctic component. A Palearctic component present on Kamchatka and the Commander Islands is absent from the Aleutians, which have a Nearctic component that diminishes westward. This pattern is similar to that of other soil-dwelling invertebrate groups. RESUM& Sept espbces de mollusques terrestres (2 limaces et 5 escargots) furent prklevkes sur I’ile d’Attu en juillet 1979. Trois sont des espbces circomborkales, deux amphi-arctiques (Palkarctiques et Nkarctiques mais non circomborkales), et deux Nkarctiques. Si I’on excepte la survivance de mollusques due auhasard dans des refuges locaux, cette faune s’est retrouvke de part et d’autre des eauxdepuis la dkglaciation, peut-&re depuis les derniers 10 OOO ans. Les faunes de mollusques de la pkninsule de Kamchatkajusqu’au sud-est de 1’Alaska on toutes une composante Holarctique. Une composante Palkarctique prksente sur leKamchatka et les iles Commandeur ne se retrouve pas aux Alkoutiennes, oil la composante Nkarctique diminue vers I’ouest. Ce patron est similaire il celui de d’autres groupes d’invertkbrks terrestres . Traduit par Jean-Guy Brossard, Laboratoire d’ArchCologie de I’Universitk du Qukbec il Montrkal. -
P1616 Text-Only PDF File
A Geologic Guide to Wrangell–Saint Elias National Park and Preserve, Alaska A Tectonic Collage of Northbound Terranes By Gary R. Winkler1 With contributions by Edward M. MacKevett, Jr.,2 George Plafker,3 Donald H. Richter,4 Danny S. Rosenkrans,5 and Henry R. Schmoll1 Introduction region—his explorations of Malaspina Glacier and Mt. St. Elias—characterized the vast mountains and glaciers whose realms he invaded with a sense of astonishment. His descrip Wrangell–Saint Elias National Park and Preserve (fig. tions are filled with superlatives. In the ensuing 100+ years, 6), the largest unit in the U.S. National Park System, earth scientists have learned much more about the geologic encompasses nearly 13.2 million acres of geological won evolution of the parklands, but the possibility of astonishment derments. Furthermore, its geologic makeup is shared with still is with us as we unravel the results of continuing tectonic contiguous Tetlin National Wildlife Refuge in Alaska, Kluane processes along the south-central Alaska continental margin. National Park and Game Sanctuary in the Yukon Territory, the Russell’s superlatives are justified: Wrangell–Saint Elias Alsek-Tatshenshini Provincial Park in British Columbia, the is, indeed, an awesome collage of geologic terranes. Most Cordova district of Chugach National Forest and the Yakutat wonderful has been the continuing discovery that the disparate district of Tongass National Forest, and Glacier Bay National terranes are, like us, invaders of a sort with unique trajectories Park and Preserve at the north end of Alaska’s panhan and timelines marking their northward journeys to arrive in dle—shared landscapes of awesome dimensions and classic today’s parklands. -
Glenn Highway Tok Cutoff (GJ-125 to GJ-0) to Milepost a 160
Map GLENN HIGHWAY • TOK CUTOFF Glenn Highway To Chicken and Eagle © The MILEPOST To Delta Junction (see TAYLOR HIGHWAY section) Key to mileage boxes ver (see ALASKA HIGHWAY section) Tanana Ri miles/kilometres G miles/kilometres Tanacross 5 from: la A L c A Swb T-Tok V-Valdez ia S K 2 Tok Map Location G-Glennallen ted A ® GJ-Gakona Junction A re A-Anchorage a R 2 A 1 Tetlin Junction J-Junction N HJ-Haines Junction Mount Kimball G T-0 a To Haines DJ-Delta Junction in 10,300 ft./3,139m E ch r w GJ-125/201km Junction Chisto cie G la A-328/528km (see ALASKA Principal Route Logged Key to Advertiser er HIGHWAY Services T iv DJ-108/174km C -Camping ok R section) Paved Unpaved R HJ-296/476km D -Dump Station iv ok Other Roads Logged d -Diesel er T G -Gas (reg., unld.) Tetlin I -Ice Lake Other Roads Scenic Byway L -Lodging M -Meals T Refer to Log for Visitor Facilities P -Propane Tok Cutoff ok Cu L R -Car Repair (major) na i Scale Sla R Mineral Lakes t iv t r -Car Repair (minor) e l 0 10 Miles r e S -Store (grocery) 0 10 Kilometres T -Telephone (pay) . t Cr t Bartell off (GJ-125 r Mentasta Lake e r e t T r. o v iv C i R Mentasta Lake S t ation k R Mentasta Summit n T-65/105km 2,434 ft./742m M a . i r E N d J-0 t C T A n e S I . -
R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological
COMPREHENSIVE TABLES GIVING PHYSICAL DATA AND THERMAL ENERGY ESTIMATES FOR YOUNG IGNEOUS SYSTEMS OF THE UNITED STATES by R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological Survey OPEN-FILE REPORT 78-925 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey Standards and nomenclature INTRODUCTION This report presents two tables. The first is a compre hensive table of 157 young igneous systems in the western United States, giving locations, physical data, and thermal en ergy estimates, where apropriate, for each system. The second table is a list of basaltic fields probably less than 10,000 years old in the western United States. These tables are up dated and reformatted from Smith and Shaw's article "Igneous- related geothermal systems" in Assessment of geothermal re sources of the United States 1975 (USGS Circular 726, White and Williams, eds., 1975). This Open-File Report is a compan ion to Smith and Shaw's article "Igneous-related geothermal systems" in Assessment of geothermal resources in the United States 1978 (USGS Circular 790, Muffler, ed., 1979). The ar ticle in Circular 790 contains an abridged table showing only those igneous systems for which thermal estimates were made. The article also gives an extensive discussion of hydrothermal cooling effects and an explanation of the model upon which the thermal energy estimates are based. Thermal energy is calculated for those systems listed in table 1 that are thought to contribute significant thermal en ergy to the upper crust. As discussed by Smith and Shaw (1975), silicic volcanic systems are believed to be associated nearly always with high-level (<10 km) magma chambers.