0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System THORIUM CONCENTRATIONS : IMBRIUM and ADJACENT REGIONS

Total Page:16

File Type:pdf, Size:1020Kb

0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System THORIUM CONCENTRATIONS : IMBRIUM and ADJACENT REGIONS THORIUM CONCENTRATIONS IN THE IMBRIUM AND ADJACENT REGIONS OF THE MOON. A1 bert E. Metzger, Eldon L. Haines*, Maria I. Etchegaray-Ramirez, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91103, and B. Ray Hawke, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822. The orbital gamma-ray spectrometer deconvolution technique restores some of the inherent spatial resolution and contrast lost because of the substan- tial field of view of the instrument. The technique has previously been applied to the observed Th distributions in the Aristarchus, Apennine, and Smythii regions of the Moon overflown by Apollo (1,2). Application has now been made to the Imbrium region using that portion of the data field extending from 10°W - 42OW, over which the data coverage lies between 18ON and 30°N. The area enclosed not only fills in the interval between the Aristarchus- and Apennine-centered regions previously reported but also provides overlap regions which serve as a test of consistency. It is characterized by basalt flows of various ages, depths, and spectral proper- ties, craters of Copernican and Eratosthenian age, and probable areas of pyroclastic mantling . The Aristarchus and Apennine regions contain two of the three areas of maximum radioactivity observed along the Apollo 15 and 16 data tracks. For both regions the undeconvolved values for the 2' x 2" pixels comprising the data base, range over a factor of 3-4 with maximum values in excess of 8.5 ppm. By comparison, the Imbrium field contains a contrast of only 1.5, the values being more uniformly high, but with an upper limit of about 6.5 ppm. The substantially lower contrast makes modeling more difficult and less unambiguous. The family of acceptable Imbrium models contains areas of enhanced radioactivity at or near the craters Timocharis, Lambert, Euler and in the general vicinity of Brayley, La Hire and Delisle. The boundaries shown in the Figure may undergo some modif ication with improvements in model ing. Timochari s, a Copernican-age crater, was a1 so seen in deconvolving the Apennine region: its Th enhancement was ascribed to an ejected sub-mare crustal composition dominated by KREEP basalts (2). The Th enhancement at Lambert in the Figure lacks a pixel in which some of the crater resides and which would be expected to be included if we are modeling the ejecta blanket. Euler, when modeled as a one pixel region corresponding to its ejecta blanket, shows an enhancement comparable to that around Lambert. Euler, like Lambert, is Eratosthenian in age. On the other hand, enhancements are not seen centered around the Eratosthenian craters Delisle and Diophantus, whose ejecta blankets are comparable in size to that of Lambert and Euler (3). The Th enhancement near Brayley occurs north, east, and west of the impact structure but not at the crater itself. The region is covered to various depths with mare basalt flows. These basalt deposits are less than 0.5 km in thickness in the east where they are near the buried projection sf the outer Imbrium ring but are more than 1 Ian in thickness farther west (4). * Current address : 106 A1 berta Lane, Eugene, OR 97404 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System THORIUM CONCENTRATIONS : IMBRIUM AND ADJACENT REGIONS Metzger, A.E. et al. Spectral reflectance data suggests that the surface flows in this region are composed of Imbrium blue basalts and redder, complex, mottled material (5). The quality of fit of the Imbrium field is sensitively dependent on the shape of the Brayley feature. Matching the shape found in modeling the Aristarchus region results in a poorer fit having concentrations 20% - 30% lower for all enhanced regions. The results for the La Hire region are particularly significant. There appears to be a clear correlation between the Th enhancement in this region and the youngest of the three Eratosthenian basalt flows (Phase 111) mapped by Schaber et al. (6). These relatively young Phase I11 flows are clearly defined in fiwzun Apollo photography and are distinct in several remote sensing data sets. The correlation of the La Hire region with the Phase I11 flows suggests that the latest magma extruded in this region was rich in Th. The Th concentrations obtained for the La Hire region from these models approach those found in KREEP basalt. The Aristarchus region has been reworked following discovery of a 2" longitudinal error in the deconvolved field assignments. In the process, a family of fits superior to the best published model (1) was obtained. Major changes were found in the Th concentration of the Aristarchus crater ejecta blanket, up by 50% to values comparable to those found at Archimedes in the Apennine region, the southern part of the Aristarchus Plateau was reduced to a level indistinguishable from the mare region south and east of the plateau, and the Brayley region increased by 20%. Concentrations in the remaining areas were not affected significantly. The revised value for the Aristarchus crater and ejecta blanket requires a high concentration of KREEP basalts, and possibly a component of still higher Th concentration, such as quartz monzodiorite or granitic material (7). As indicated above, consistency in the overlap between the Imbrium and Aristarchus regions requires models whose quality of fit is outside the family of best solutions. On the east side, in the overlapping region, Timocharis, Lambert and the mare average all agree well. The Th concentration within the unenhanced mare average undergoes a decrease in the Imbrium region relative to that surrounding the Apennines, though most of the Imbrium region is consistent with that found for Imbrium in the Apennine region. This work was supported under NASA contract NAS 7-100 at the Jet Propulsion Laboratory, California Institute of Techno1 ogy. References 1 . Haines E.L., Etchegaray-Ramirez M.1 . and Metzger A.E. (1 978) &. Lunar Sci . Conf. 9th, p. 2985-3013. 2. Metzger A.E., Haines E.L., Etchegaray-Ramirez M.I. and Hawke B.R. (1979) Proc. Lunar Sci. Conf. loth, p. 1701-1718. 3. Wilhelms D.E. and McCauley J.F. (1971) U.S. Geological Survey, Map 1-703. 4. De Hon R.A. (1979) Proc. Lunar Sci. Conf. loth, p. 2935-2955. 5. Pieters C.M. (1979) Proc. Lunar Sci. Conf. loth, p. 2825-2849 and Frontispiece, Plate 1. 6. Schaber G.G., Thompson T.W. and Zisk S .H. (1 975) The Moon 13, 395-423. 7. Ryder G. (1976) Earth Planet. Sci. Lett. -29, 255-268. 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System THORIUM CONCENTRATIONS: IMBRIUM AND ADJACENT REGIONS Metzger, A.E. et a1 . Distribution of Th in the Imbrium Region after deconvolving the observed data field. Numbers within the regions are the range of Th in ppm for the best models. 0 Lunar and Planetary Institute Provided by the NASA Astrophysics Data System .
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • University Microfilms, a XEROX Company/Ann Arbor, Michigan
    1 72-4602^ FAPO, Haim Benzion, 1932- OPTIMAL SELENODETIC CONTROL. The Ohio State University, Ph.Dl, i'971‘ Geodesy University Microfilms, A X E R O X Company /Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED ! OPTIMAL SELENODETIC CONTROL DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by • Halm Benzion Papo, B.Sc., M.Sc. The Ohio State University 1971 Approved by f U l t U , /■ llU 'gsileA ^ Advisor Department of Geodetic Science To Viola ACKNOWLEDGEMENTS ' « ‘ It gives me a great pleasure to be able to extend my gratitude and appreciation to the many persons without whom this work would not have * been possible. From my parents I inherited a deep and sincere love for learning and an acute curiosity for the unknown and the unsurveyed. The Technion, Israels Institute of Technology and The Ohio State University provided me with the best education one could ask for in my field. Working in Room 231, Lord Hall on the OSU campus with other graduate students like myself has been a wonderful experience. There was an atmosphere of enthusiastic learning, of a fruitful exchange of ideas, of sharing ones excitement over finding an answer to a problem, of true friendship of people working together. The OSU Computer Center provided me generously with computer time needed for the study and through the invaluable assistance of Mr. John M. Snowden, I was able to make full use of its excellent facilities. Discussions on many conceptual and practical problems with Doctors Peter Meissl, Dean C.
    [Show full text]
  • University Microfilms, a XEROX Company, Ann Arbor, Michigan
    .72-4480 FAJEMIROKUN, Francis Afolabi, 1941- APPLICATION OF NEW OBSERVATIONAL SYSTEMS FOR SELENODETIC CONTROL. The Ohio State University, Ph.D., 1971 Geodesy University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED APPLICATION OF NEW OBSERVATIONAL SYSTEMS FOR SELENODETIC CONTROL DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Francis Afolabi Fajemirokun, B. Sc., M. Sc. The Ohio State University 1971 Approved by l/m /• A dviser Department of Geodetic Science PLEASE NOTE: Some Pages have indistinct p rin t. Filmed as received. UNIVERSITY MICROFILMS To Ijigbola, Ibeolayemi and Oladunni ACKNOW LEDGEME NTS The author wishes to express his deep gratitude to the many persons, without whom this work would not have been possible. First and foremost, the author is grateful to the Department of Geodetic Science and themembers of its staff, for the financial support and academic guidance given to him during his studies here. In particular, the author wishes to thank his adviser Professor Ivan I. Mueller, for his encouragement, patience and guidance through the various stages of this work. Professors Urho A. Uotila, Richard H. Rapp and Gerald H. Newsom served on the author’s reading committee, and offered many valuable suggestions to help clarify many points. The author has also enjoyed working with other graduate students in the department, especially with the group at 231 Lord Hall, where there was always an atmosphere of enthusiastic learning and of true friendship. The author is grateful to the various scientists outside the department, with whom he had discussions on the subject of this work, especially to the VLBI group at the Smithsonian Astrophysical Observatory in Cambridge, Ma s sachu s s etts .
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • Testing Hypotheses for the Origin of Steep Slope of Lunar Size-Frequency Distribution for Small Craters
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Earth Planets Space, 55, 39–51, 2003 Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters Noriyuki Namiki1 and Chikatoshi Honda2 1Department of Earth and Planetary Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan 2The Institute of Space and Astronautical Science, Yoshinodai 3-1-1, Sagamihara 229-8510, Japan (Received June 13, 2001; Revised June 24, 2002; Accepted January 6, 2003) The crater size-frequency distribution of lunar maria is characterized by the change in slope of the population between 0.3 and 4 km in crater diameter. The origin of the steep segment in the distribution is not well understood. Nonetheless, craters smaller than a few km in diameter are widely used to estimate the crater retention age for areas so small that the number of larger craters is statistically insufficient. Future missions to the moon, which will obtain high resolution images, will provide a new, large data set of small craters. Thus it is important to review current hypotheses for their distributions before future missions are launched. We examine previous and new arguments and data bearing on the admixture of endogenic and secondary craters, horizontal heterogeneity of the substratum, and the size-frequency distribution of the primary production function. The endogenic crater and heterogeneous substratum hypotheses are seen to have little evidence in their favor, and can be eliminated. The primary production hypothesis fails to explain a wide variation of the size-frequency distribution of Apollo panoramic photographs.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Facts & Features Lunar Surface Elevations Six Apollo Lunar
    Greek Mythology Quadrants Maria & Related Features Lunar Surface Elevations Facts & Features Selene is the Moon and 12 234 the goddess of the Moon, 32 Diameter: 2,160 miles which is 27.3% of Earth’s equatorial diameter of 7,926 miles 260 Lacus daughter of the titans 71 13 113 Mare Frigoris Mare Humboldtianum Volume: 2.03% of Earth’s volume; 49 Moons would fit inside Earth 51 103 Mortis Hyperion and Theia. Her 282 44 II I Sinus Iridum 167 125 321 Lacus Somniorum Near Side Mass: 1.62 x 1023 pounds; 1.23% of Earth’s mass sister Eos is the goddess 329 18 299 Sinus Roris Surface Area: 7.4% of Earth’s surface area of dawn and her brother 173 Mare Imbrium Mare Serenitatis 85 279 133 3 3 3 Helios is the Sun. Selene 291 Palus Mare Crisium Average Density: 3.34 gm/cm (water is 1.00 gm/cm ). Earth’s density is 5.52 gm/cm 55 270 112 is often pictured with a 156 Putredinis Color-coded elevation maps Gravity: 0.165 times the gravity of Earth 224 22 237 III IV cresent Moon on her head. 126 Mare Marginis of the Moon. The difference in 41 Mare Undarum Escape Velocity: 1.5 miles/sec; 5,369 miles/hour Selenology, the modern-day 229 Oceanus elevation from the lowest to 62 162 25 Procellarum Mare Smythii Distances from Earth (measured from the centers of both bodies): Average: 238,856 term used for the study 310 116 223 the highest point is 11 miles.
    [Show full text]
  • Baylor University Commencement May Seventh and Eighth, Two Thousand Twenty-One
    B AYLOR U NIVERSITY C OMMEN C EMENT May Seventh and Eighth, Two Thousand Twenty-one McLane Stadium . Waco, Texas Baylor University Commencement May Seventh and Eighth, Two Thousand Twenty-one Table of Contents 2 Program for Friday Morning The School of Engineering and Computer Science The School of Education The College of Arts & Sciences The Graduate School 3 List of Degrees Presented in Friday Morning Ceremony 8 Program for Friday Afternoon The School of Music The College of Arts & Sciences The Graduate School 9 List of Degrees Presented in Friday Afternoon Ceremony 14 Program for Saturday Morning The Robbins College of Health and Human Sciences The Diana R. Garland School of Social Work The Louise Herrington School of Nursing The Graduate School 15 List of Degrees Presented in Saturday Morning Ceremony 20 Program for Saturday Afternoon The Hankamer School of Business The Graduate School 21 List of Degrees Presented in Saturday Afternoon Ceremony 26 Commencement Traditions A History of Baylor Commencement Academic Regalia The Diploma Graduating with Latin Honors Baylor Interdisciplinary Core Official Baylor Ring Senior Class Gift 28 Faculty Ushers for Commencement Faculty Marshals for Commencement Ceremony Musicians 29 General Information The National Anthem Back Cover “That Good Old Baylor Line” 1 The School of Engineering and Computer Science, The School of Education, The College of Arts & Sciences, and The Graduate School Friday, May 7, 2021, Nine o’clock in the Morning – McLane Stadium Prelude Presentation of Degree Candidates Ceremonial Piece on CWM Rhondda by William Mac Davis President Livingstone The Earle of Oxford’s March by William Byrd, arranged by Assisted by Dr.
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]