Science Apparel, Balance & Scales

Total Page:16

File Type:pdf, Size:1020Kb

Science Apparel, Balance & Scales Science Apparel, Balance & Scales APPAREL / APRONS Mass Set Attachment Used to increase balance capacity to Rubberized Aprons 2610g, consists of 2-1,000g masses Light weight, charcoal colored, acid resistant and 1-500g mass. Qualifying Standard: cloth sheeting. Protects from chemical splashes Ohaus. with cotton ties at neck and waist. Reinforced stress points. Qualifying Standard: Quincy • For use with KCDA No. 02215 and Ohaus models 750SO, Specialties, Toplab. 710, 710T, 720, 760 and 730. KCDA No. U/M KCDA No. Size U/M 02200 ...................................................................................................3/Set 44028 .............. 24”Wx30”L - Childs .........................................................Ea 02150 .............. 27”Wx36”L - Adult ...........................................................Ea Scout Pro USB Interface Translucent Plastic Aprons This interface kit is a unique solution Resistant to laboratory reagents, acids, oils, to the problem of connecting a balance alkalies and grease, tapes at waist and neck, to a computer using a Universal Serial 6 ml thickness, reinforced at points of strain, Bus (USB). Data sent from the balance individually packaged. Qualifying Standard: to a computer is in USB format. The Quincy. USB data is directed to a virtual port. KCDA No. Size U/M This port then appears as an RS232 02157 .............. 27”Wx36”L - Adult ...........................................................Ea port to the application program. Ohaus, 44029 .............. 24”Wx30”L - Childs .........................................................Ea No Substitute. • Fits KCDA Nos. 02211, 02212, 02219 and 04540. APPAREL / COATS KCDA No. Mfg. No. U/M 02240 .............. 7114737 ..........................................................................Ea Lab Coats Ohaus Pan Cover White, twill woven blend of 65% Stainless steel weighing pan cover. Ohaus, No polyester and 35% cotton, 3 single Substitute. pockets and collar. 43” long, Qualifying • Fits KCDA Nos. 02209, 02197 and 02198. Science Standard: Best. KCDA No. Mfg. No. U/M KCDA No. Size U/M 02190 .............. 80850076 ........................................................................Ea 02132 .............. 36 ....................................................................................Ea 02134 .............. 38 ....................................................................................Ea BALANCE & SCALES / ELECTRONIC 02136 .............. 40 ....................................................................................Ea Electronic Balance 02138 .............. 42 ....................................................................................Ea Top loading balance features: grams 02139 .............. 44 ....................................................................................Ea only weighing, 99g capacity, 0.001g BALANCE & SCALES / ACCESSORIES readability, over/underload indicator, 2-button operation, 3” diameter stainless steel pan, built-in hook for Balance Lock Down Cable security cable, ability to use in the weigh-below mode, automatic Qualifying Standard: Ohaus. shut-off, large LCD readout. Measures 6.75” x 2.4”. Qualifying • For use with KCDA No. 04542. Standard: Ohaus, VWR. KCDA No. U/M KCDA No. U/M 04543 .......................................................................................................Ea 04542 .......................................................................................................Ea Dust Cover for Balance Electronic Compact Balance Vinyl dust cover to protect triple beam balance. Qualifying Standard: This compact weighing scales has a Ohaus. capacity of 210g which increments by • Fits KCDA No. 02215. 0.01 grams. The weighing platform is 4.3” in diameter and includes counting, KCDA No. U/M percentage and comparator functions. 02201 .......................................................................................................Ea Backlight LCD display will help in low light places. Also features underhook weighing option, specifi c gravity function and fast 1 Mass Set second response time. 110NN weighting pan. Uses 4 AA batteries 2,000g x 1g, brass, designed to (not included) or use with AC adapter. Qualifying Standard: Benz. meet routine analytical and precision • For AA batteries see KCDA No. 50926. weighing where ultra-precise tolerances KCDA No. U/M aren’t required, manufactured to meet 04932 .......................................................................................................Ea or exceed OIML tolerance standards, lacquered brass, set is packaged in a case with cover. Qualifying Standard: Troemner. KCDA No. U/M 02203 .................................................................................................14/Set For current pricing on all products listed in the KCDA Reference Guide, please visit our website at 349 www.kcda.org. All products listed at www.kcda.or are subject to price change without notifi cation. Balance & Scales, Beakers Science Ohaus Electronic Balances Designed for use in laboratory, industrial or education applications. Easy to use 2-botton operation, visual menu prompts, high contract Pull Type Spring Scales LCD display, multiple weighing units, Pull type are easily adjusted to “0” and provide multiple application modes (parts accurate readings in any position. Qualifying counting/percentage weighing/totalization/display hold/specifi c Standard: Ohaus. gravity). Ohaus, No Substitute. KCDA No. Description U/M • USB interface available see KCDA No. 02240. 02214 .............. 250 x 10g / 9 x 1/4oz ......................................................Ea KCDA No. Capacity Mfg. No. U/M 02221 .............. 250x10g / 2.5nx.1n .........................................................Ea 04540 .............. 200g .........................................SPE202 .........................Ea 02222 .............. 500x20g / 5nx.2n ............................................................Ea 02219 .............. 400g .........................................SPE401 .........................Ea 02216 .............. 500 x 20g / 18 x 1/2oz ....................................................Ea 02211 ............... 400g .........................................SPE402 .........................Ea 02218 .............. 2000 x 50g / 72 x 2oz .....................................................Ea 02212 .............. 600g .........................................SPE601 .........................Ea 02223 .............. 2000x50g / 20x.5n ......................................................... Ea Ohaus Compact Scales Ideal when cost matters and dependable results are a must. These uniquely designed scales are useful for a variety of applications: light Spring Scales production/in the fi eld/kitchen/offi ce. Color coded spring scales, pull type, clear plastic Easy operation, long battery life, low profi le design, large high tube for viewing of spring action, calibrated as contrast display, energy-saving auto shut-off feature, operates on specifi ed. Qualifying Standard: Pacifi c Science. 3-AA batteries (included). Ohaus, No Substitute. KCDA No. Description Color U/M • For pan cover see KCDA No. 02190. 02228 .............. 500g/5n ....................................Green .............................Ea KCDA No. Capacity Mfg. No. U/M 02229 .............. 1000g/10n ................................Beige .............................Ea 02209 .............. 200g .........................................CS200 ............................Ea 02230 .............. 2000g/20n ................................Red ................................Ea 02197 .............. 5000g .......................................CS5000 ..........................Ea 02236 .............. 5000g/50n ................................Yellow ............................Ea 02198 .............. 2000g .......................................CS2000 ..........................Ea 02207 .............. 250g/2.5n .................................Blue ...............................Ea 02235 .............. 3000g/30n ................................White .............................Ea BALANCE & SCALES / MANUAL Science Ohaus School Balance Plastic lightweight, yet durable Spring Scales plastic school balance, with Sturdy plastic, calibrated in grams and pounds. a capacity of 2000g and Zero adjustment dial for accuracy. Ages 5 to 13. readings accurate to 0.5g, the Qualifying Standard: Learning Resources. interchangeable pans are easily KCDA No. Description U/M removable for pouring, cleaning and storing. This balance also 02237 .............. 2.3# / 1000g ....................................................................Ea features dual pointers for viewing results from either side of the balance. Includes mass set. Ohaus, No Substitute. BEAKERS / PLASTIC KCDA No. Mfg. No. U/M Beaker Set 02206 .............. SB1200 ...........................................................................Ea Plastic, features 3 pouring lips for each cup (triangular top lip). Set includes: Ohaus Triple Beam Balance 50, 100, 250, 400, 800, 1000 ml. Tiered notched beams, magnetic damping, with stainless steel plate, Qualifying Standard: Azlon. (6” diameter), capacity: KCDA No. U/M to 2610 grams when the 02344 ...................................................................................................6/Set optional mass weight KCDA No. 02200. Attachment set Beaker, Plastic is used. 0.1g readability. 1 liter plastic beaker. Qualifying Ohaus, No Substitute. Standard: Dynamed. KCDA No. Mfg. No.
Recommended publications
  • Oil Analysis Handbook Third Edition Copyright © 2017 Spectro Scientific
    Predictive Equipment Maintenance Oil Analysis Handbook Third Edition Copyright © 2017 Spectro Scientific. All rights reserved. FluidScan® and LaserNet Fines® are registered trademarks of Spectro Scientific Inc. While every effort is made to assure the information in this document ois accurate, Spectro Scientific does not accept liability for any errors or mistakes that may arise. Specifications are subject to change without notice. | 3 Preface Welcome to the third edition of the In-service Oil Analysis Handbook. It has been a few years since the publication of the first edition of Spectro Scientific’s In-Service Oil Analysis Handbook. Our original goal was to compile a comprehensive reference book of common in-service oil analysis techniques to help readers understand and choose the right technique and instrumentation for their needs. We had to limit the scope in the first two editions because of the amount of effort needed to cover all the topics. In-service oil analysis for condition based maintenance covers a wide array of topics. I am pleased to say that in this third edition, we are much closer to our goal. We reorganized the structure of the content for better clarity and we added articles to cover more topics and instruments associated with oil analysis. Also, we rewrote several articles including the latest developments on the market. As we learned more from our customers about their successes using on site oil analysis, we developed case studies that you can find in this edition. This work is not possible without the time and effort from the contributing authors: Patrick Henning, Daniel Walsh, Robert Yurko, Ken Caldwell, Thomas Barraclough, Maria Bartus, Randi Price, John Morgan, Aifeng Shi and Yuegang Zhao from Spectro Scientific and Ray Garvey from Emerson Process Management.
    [Show full text]
  • Gas Generator Bottle Introduction SCIENTIFIC This Gas Generator Setup Provides an Easy Way to Generate and Collect Gas
    Gas Generator Bottle Introduction SCIENTIFIC This gas generator setup provides an easy way to generate and collect gas. Specific instructions are provided for the generation of hydrogen gas using zinc and acid. Concepts • Generation of gases • Water displacement Materials Hydrochloric acid solution, HCl, 3 M Glass plates or Sulfuric acid solution, H2SO4, 3 M Glass tubing Mossy zinc, Zn, 6 g Pneumatic trough Water, tap Rubber tubing Bent glass tubing* Silicone grease packet* Gas collecting bottles or tubes, 3 or 4 Thistle tube* Gas generator bottle* Two-hole rubber stopper* *Materials included. Safety Precautions Hydrochloric acid solution is toxic by ingestion and inhalation and is severely corrosive to skin, eyes and other tissues, as is sulfuric acid solu- tion. Hydrogen gas is a highly flammable gas and a severe fire hazard. Exercise extreme caution when testing the gas and keep the gas generator away from flames. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. This activity requires the use of hazardous components and/or has the potential for hazardous reactions. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Set up the apparatus as shown in the figure to the right. Lubricate the glass tubing and thistle tube with silicone grease before inserting into the stopper. Make sure Thistle tube the water level is above the platform. Prepare bottles for collecting gas by water Two-hole rubber stopper displacement. To do this, fill each gas collecting bottle (or tube) over the brim with tap water, and then cover each with a flat glass plate.
    [Show full text]
  • Science Safety
    2010 Mississippi Science Framework Science Safety The guides that are cited below were developed by the Council of State Science Supervisors (CSSS) with support from the Eisenhower National Clearinghouse for Mathematics and Science Education, the National Aeronautics and Space Administration, Dupont Corporation, Intel Corporation, Americal Chemical Society, and the National Institutes of Health. Science Safety Booklets may be printed for use by educators. • Science Safety Booklets • Science and Safety: It's Elementary (PDF) - A Elementary Safety Guide • Science and Safety, Making the Connection (PDF) - A Secondary Safety Guide . Approved July 25, 2008 1 2010 Mississippi Science Framework A SUGGESTED PATTERN FOR CHEMICAL STORAGE The alphabetical method for storing chemicals presents hazards because chemicals, which can react violently with each other, may be stored in close proximity. Schools may wish to devise a simple color-coding scheme to address this problem. The code shown below, reproduced with permission from School Science Laboratories-A Guide to Some Hazardous Substances by the Council of State Science Supervisors, includes both solid and striped colors which are used to designate specific hazards as follows: Red - Flammability hazard: Store in a flammable chemical storage area. Red Stripe - Flammability hazard: Do not store in the same area as other flammable substances. Yellow - Reactivity hazard: Store separately from other chemicals. Yellow Stripe - Reactivity hazard: Do not store with other yellow coded chemicals; store separately. White - Contact hazard: Store separately in a corrosion-proof container. White Stripe - Contact hazard: Not compatible with chemicals in solid white category. Blue - Health hazard: Store in a secure poison area. Orange - Not suitably characterized by any of the foregoing categories.
    [Show full text]
  • K–12 Science Safety Manual
    K–12 Science Safety Manual Developed by the Innovative Teaching and Learning Unit Instructional Design and Professional Learning Division K–12 Science Department TABLE OF CONTENTS Importance of Safety 2 General Information 7 Prohibited Practices 9 Emergency Information 10 Safety on Field Trips 15 General Laboratory Safety 20 Elementary Science Safety 22 Biological Science Safety 24 Earth and Space Science Safety 28 Chemistry Science Safety 31 Physics Science Safety 35 Appendix A: Technical Safety Assistance Numbers 49 Appendix B: Safety Survey 50 Appendix C: Lab Inspection Checklist 51 Appendix D: Chemical Storage 55 Appendix E: Waste Disposal 63 Appendix F: Prohibited Chemicals 68 Appendix G: Restricted Chemicals 75 Appendix H: Animals in the Classroom 79 Appendix I: Safety Contracts and Exams 85 Appendix J: Safety Resource Websites 86 Restricted Chemical Request Form 87 Secondary Science Teacher Safety Manual Acknowledgement Form 88 IDPL-SCI-M002, Rev. B September 2009, Rev. C April 2015 0 SPECIAL ACKNOWLEDGMENTS The Clark County School District K–12 Science Safety Manual is a coordinated effort by a team of teachers, administrators, with input from the Southern Nevada Health District. Andy Cheney Environmental Health Supervisor, Southern Nevada Health District Ellen Dunne K–5 Science Project Facilitator, CCSD Instructional Design and Professional Learning Division Eileen Gilligan Elementary Science Coordinator, CCSD Instructional Design and Professional Learning Division Kim Krumland Risk and Environmental Services Department Director,
    [Show full text]
  • Chemistry 1009 Lab Manual University of Louisiana at Monroe
    Chemistry 1009 Lab Manual University of Louisiana at Monroe Department of Chemistry 2010 Version 2.0 Contents Lab Session 1: Laboratory Safety Rules and Check In .................................................. 1 Fire, Injury, Spills and Cleanliness .............................................................................. 2 Desk Assignment Sheet (Chemistry 1009) .................................................................. 4 Commonly Used Equipment (not in the desk drawer)................................................. 5 Lab Session 2, Experiment 1: Introductory Exercises ................................................... 10 Report Form 1 .............................................................................................................. 17 Lab Session 3, Experiment 2: Oxygen ........................................................................... 18 Report Form 2 .............................................................................................................. 21 Lab Session 4, Experiment 3: Preparation of Sodium Chloride .................................... 22 Report Form 3 .............................................................................................................. 25 Lab Session 5, Experiment 4: Law of Definite Proportions .......................................... 26 Report Form 4 ........................................................................................................... 30 Lab Session 6, Experiment 5: Hydrogen and the Activity Series of Metals .................
    [Show full text]
  • Construction of a Capillary Viscometer and the Study of Non-Newtonian Liquids" (1965)
    Scholars' Mine Masters Theses Student Theses and Dissertations 1965 Construction of a capillary viscometer and the study of non- Newtonian liquids Hsun Kuang Yang Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemical Engineering Commons Department: Recommended Citation Yang, Hsun Kuang, "Construction of a capillary viscometer and the study of non-Newtonian liquids" (1965). Masters Theses. 7238. https://scholarsmine.mst.edu/masters_theses/7238 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. ... ··f • CONSTRUCTION OF A CAPILLARY VISCOMETER -'"' '. ·~ i : AND THE STUDY OF NON-NEWTONIAN LIQUIDS BY HSUN KUANG YANG I fl ;/() 1\?: f A THESIS submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CHEMICAL ENGINEERING Rolla, Missouri 1965 Approved by (advisor) ii ABSTRACT A capillary tube viscometer was built for the purpose of investigating the fluid properties of non-Newtonian aqueous CMC and Carbopol solutions. The viscometer was tested with Newtonian liquids (glycerine, water and two different oils) having known viscosities to insure that the viscometer was operating correctly. The shear stress-shear rate data obtained for different concen­ trations of CMC and Carbopol solutions were correlated using the simple power law model. The power law constants were only slightly affected by saturating the solution with iodine and carbon tetrachloride.
    [Show full text]
  • Process Skills Review Warm-Up C
    Process Skills Review Warm-Up C. • Define function • Match the following 1. Puts out fire 2. Curved line of liquid in a graduated cylinder 3. Used to observe insects A. B. Which of the following describes the correct way to handle chemicals in a laboratory? A. It is safe to combine unknown chemicals as long as only small amounts are used. B. Return all chemicals to their original containers. C. Always pour extra amounts of the chemicals called for the experiment. D. To test for odors, always use a wafting motion. Which of the following describes the correct way to handle chemicals in a laboratory? A. It is safe to combine unknown chemicals as long as only small amounts are used. B. Return all chemicals to their original containers. C. Always pour extra amounts of the chemicals called for the experiment. D. To test for odors, always use a wafting motion. What task is being performed in the picture? A. measuring mass with a graduated cylinder B. measuring length with a triple beam balance C. measuring mass with a triple beam balance D. measuring length with a metric ruler What task is being performed in the picture? A. measuring mass with a graduated cylinder B. measuring length with a triple beam balance C. measuring mass with a triple beam balance D. measuring length with a metric ruler John and Lisa are conducting an experiment in their 7th grade science class in which they are handling potentially dangerous chemicals. As John is pouring a chemical from a beaker to a graduated cylinder, he splashes some of the chemical into his eyes.
    [Show full text]
  • Drying Characteristics of Buna-S Rubber; Vacuum Shelf Drying, Rotary
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1949 Drying characteristics of Buna-S rubber; Vacuum shelf drying, rotary vacuum drying, cabinet air drying, and through-circulation air drying Wilson Ross Barnes Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Barnes, Wilson Ross, "Drying characteristics of Buna-S rubber; Vacuum shelf drying, rotary vacuum drying, cabinet air drying, and through-circulation air drying " (1949). Retrospective Theses and Dissertations. 13520. https://lib.dr.iastate.edu/rtd/13520 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Brol<en or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Laboratory Equipment AP
    \ \\ , f ?7-\ Watch glass 1 Crucible and cover Evaporating dish Pneumatlo trough Beaker Safety goggles Florence Wide-mouth0 Plastic wash Dropper Funnel flask collecting bottle pipet Edenmeyer Rubber stoppers bottle flask € ....... ">. ÿ ,, Glass rod with niohrome wire Scoopula (for flame re,sting) CruoiNe tongs Rubber ubing '1 ,v .... Test-tube brush square Wire gau ÿ "\ file Burner " Tripod Florence flask: glass; common sizes are 125 mL, 250 mL, 500 .d Beaker: glass or plastic; common sizes are 50 mL, mL; maybe heated; used in making and for storing solutions. 100 mL, 250 mL, 400 mL; glass beakers maybe heated. oÿ Buret: glass; common sizes are 25 mL and 50 mL; used to Forceps: metal; used to hold or pick up small objects. Funnel: glass or plastic; common size holds 12.5-cm diameter measure volumes of solutions in titrafions. Ceramic square: used under hot apparatus or glassware. filter paper. Gas burner: constructed of metal; connected to a gas supply Clamps" the following types of clamps may be fastened to with rubber tubing; used to heat chemicals (dry or in solution) support apparatus: buret/test-tube clamp, clamp holder, double buret clamp, ring clamp, 3-pronged jaw clamp. in beakers, test tubes, and crucibles. Gas collecting tube: glass; marked in mL intervals; used to 3: Clay triangle: wire frame with porcelain supports; used to o} support a crucible. measure gas volumes. Glass rod with nichrome wire: used in flame tests. Condenser: glass; used in distillation procedures. Q. Crucible and cover: porcelain; used to heat small amounts of Graduated cylinder: glass or plastic; common sizes are 10 mL, 50 mL, 100 mL; used to measure approximate volumes; must solid substances at high temperatures.
    [Show full text]
  • BUYERS GUIDE Standards Buyers Guide
    Annex BUYERS GUIDE Standards Buyers Guide ASTM C 39 Compressive Strength of Cylindrical Concrete Specimens ASTM C 29 Select load frame of appropriate load capacity GW-135 Portable Bench Beam Balance, 131 lb CM-200 300,000 lb capacity w/ single readout Or GW-34413 Electronic Bench Scale, 200 lb CM-216 300,000 lb capacity w/ advanced readout C-353 Tamping Rod, 5/8” dia CM-400 500.000 lb capacity w/ single readout G-29202 Scoop CM-416 500,000 lb capacity w/ advanced readout G-170 Thermometer, General Purpose The above come with platens for 6 x 12 cylinders. Select appropriate Platen sets if other size cylinders Choose unit weight bucket based on aggregate size are to be tested. C-601 Unit Weight Bucket, 1/10 cu ft C-18040 Cube Platen Set, 2” specimens C-603 Unit Weight Bucket, 1/3 cu ft C-18060 Platen set for 3x6 cylinders C-605 Unit Weight Bucket, ½ cu ft C-18070 Platen Set for 4 x 8 cylinders C-609 Unit Weight Bucket, 1 cu ft C-170 Flexural Beam Test Attachment Choose Strike Off Plate 301110 Splitting Tensile Strength Bar C-61130 Strike Off Plate, 10 x 10 in (Note: On site calibration of load frames required upon C-61150 Strike Off Plate, 12 x 12 in delivery and anytime load frame is moved.) C-61190 Strike Off Plate, 16 x 16 in, ½ in thick, acrylic ASTM C 40 AASHTO T 21 ASTM C 31 Organic Impurities in Fine Aggregates for Concrete Making & Curing Concrete Test Specimens in the Field C-404 Organic Impurities Test Set Choose appropriate size molds Consist of: C-209 Lipped Concrete Mold, 6 x 12 C-405 16 oz Graduated Glass Test Bottle (6) C-20910
    [Show full text]
  • Spectrophotometric Determination of Chloride Ion. Hans Coll Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1957 Spectrophotometric Determination of Chloride Ion. Hans Coll Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Coll, Hans, "Spectrophotometric Determination of Chloride Ion." (1957). LSU Historical Dissertations and Theses. 197. https://digitalcommons.lsu.edu/gradschool_disstheses/197 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. SPECTROPHOTOMETRIC DETERMINATION OF CHLORIDE ION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Hans Coll M.S., Louisiana State University, 1955 June, 1957 ACKNOWLEDGMENT The author wishes to express his sincere appreciation and gratitude to Dr. Philip W. West under whose direction this investigation was carried o u t . He is also indebted to Dr. R. V. Nauman and Dr. J. G. Traynham for their advice in the com­ pletion of this dissertation. He further wishes to acknowledge the financial support given by the Office of Ordnance Research. ii TABLE OF CONTENTS page I. ACKNOWLEDGMENT................................ii II. LIST OF T A B L E S ................................ iv III. LIST OF F I G U R E S . v IV. ABSTRACT ....................................... vi V. CHAPTER ONE: THE QUANTITATIVE DETERMINATION OF CHLORIDE ..............
    [Show full text]
  • In Science We Must... Make Careful Observations!
    In Science we must... Make careful observations! It's Practice Time! 1 Scientific Method Overview 2 The Seven Steps of the Scientific Method 1. State the Problem: What is it that you are trying to solve? This should be in the form of a question. 2. Gather Information: Research your question. Find out as much information as you can on your question. 3. Form a Hypothesis: Take a guess at the solution to the problem. 4. Run your Experiment: Test your hypothesis. Run an experiment to see if your hypothesis is correct. This should include step by step procedures for completing the experiment 5. Record and Analyze Data: Write down your results from your experiment in an organized fashion. 6. Draw Conclusion: Based on your results, was your hypothesis correct or incorrect. How do you know? What is your proof? 7. Repeat Your Work: Repeat your work to make sure you were correct. 3 Practice Time The Seven Steps of the Scientific Method Draw Conclusion Research your question. Find out as much information as you can on your question. State the Problem Write down your results from your experiment in an organized fashion. Repeat Your Work What is it that you are trying to solve? Record and Analyze Data This should be in the form of a question. Do the experiment over Gather Information Test your hypothesis. Run an experiment to see if your hypothesis is correct. This should include step by step procedures for Form a Hypothesis completing the experiment. Take a guess at the solution to the problem.
    [Show full text]