Process Skills Review Warm-Up C

Total Page:16

File Type:pdf, Size:1020Kb

Process Skills Review Warm-Up C Process Skills Review Warm-Up C. • Define function • Match the following 1. Puts out fire 2. Curved line of liquid in a graduated cylinder 3. Used to observe insects A. B. Which of the following describes the correct way to handle chemicals in a laboratory? A. It is safe to combine unknown chemicals as long as only small amounts are used. B. Return all chemicals to their original containers. C. Always pour extra amounts of the chemicals called for the experiment. D. To test for odors, always use a wafting motion. Which of the following describes the correct way to handle chemicals in a laboratory? A. It is safe to combine unknown chemicals as long as only small amounts are used. B. Return all chemicals to their original containers. C. Always pour extra amounts of the chemicals called for the experiment. D. To test for odors, always use a wafting motion. What task is being performed in the picture? A. measuring mass with a graduated cylinder B. measuring length with a triple beam balance C. measuring mass with a triple beam balance D. measuring length with a metric ruler What task is being performed in the picture? A. measuring mass with a graduated cylinder B. measuring length with a triple beam balance C. measuring mass with a triple beam balance D. measuring length with a metric ruler John and Lisa are conducting an experiment in their 7th grade science class in which they are handling potentially dangerous chemicals. As John is pouring a chemical from a beaker to a graduated cylinder, he splashes some of the chemical into his eyes. Determine what John should do first. A. Finish the lab B. Wipe John’s eyes with his lab apron C. Tell the teacher immediately D. Call the nurse John and Lisa are conducting an experiment in their 7th grade science class in which they are handling potentially dangerous chemicals. As John is pouring a chemical from a beaker to a graduated cylinder, he splashes some of the chemical into his eyes. Determine what John should do first. A. Finish the lab B. Wipe John’s eyes with his lab apron C. Tell the teacher immediately D. Call the nurse Mrs. Brown was completing an inventory of the science supplies available to her students. Which column includes safety equipment? A B C D Meter Stick Hand Lens Fire Hot Plate Blanket Triple Beam Microscope Gloves Spring Balance Scale Graduated Thermometer Apron Test Tube Cylinder Mrs. Brown was completing an inventory of the science supplies available to her students. Which column includes safety equipment? A B C D Meter Stick Hand Lens Fire Hot Plate Blanket Triple Beam Microscope Gloves Spring Balance Scale Graduated Thermometer Apron Test Tube Cylinder Match picture & function A. 1. Used to measure D. force 2. Used to test the quality of water B. 3.Used as an eye wash station for our class 4.Used to protect your eyes C. Match picture & function A. 4.Used to protect your 1. Used to eyes measure force D. B. 2. Used to test the quality of water 3.Used as an eye wash station for our class C. During Jack’s laboratory investigation, he had to use a candle and matches. Which lab rule would be most important during this lab experiment? A. Keep chemicals away from the eyes and skin. B. Move electrical equipment away from the water. C. Wash hands thoroughly with soap and water. D. Tie back any loose hair and oversized clothing. During Jack’s laboratory investigation, he had to use a candle and matches. Which lab rule would be most important during this lab experiment? A. Keep chemicals away from the eyes and skin. B. Move electrical equipment away from the water. C. Wash hands thoroughly with soap and water. D. Tie back any loose hair and oversized clothing. The following piece of equipment is a ______. A. graduated cylinder B. beaker C. forceps D. test tube The following piece of equipment is a ______. A. graduated cylinder B. beaker C. forceps D. test tube When cleaning up after a lab, if there are left over chemicals they should be – A. put in the trash B. put in the teacher assigned disposal container C. put back in the original container D. washed down the sink with plenty of water When cleaning up after a lab, if there are left over chemicals they should be – A. put in the trash B. put in the teacher assigned disposal container C. put back in the original container D. washed down the sink with plenty of water What is the temperature of the solution? A. 30.15°C B. 38.5°C C. 31.5°C D. 31.0°C What is the temperature of the solution? A. 30.15°C B. 38.5°C C. 31.5°C D. 31.0°C What is the first thing you should do when you get a lab assignment? What is the first thing you should do when you get a lab assignment? Read all directions/procedures carefully What is the most precise at measuring liquids? A. B. What is the most precise at measuring liquids? A. B. Match picture & function A. 1. Used to measure E. length or distance 2. Used to measure time B. 3.Used to observe cells 4.Used to hold liquids 5. Used to measure temperature D. C. 1. Used to measure A. length or distance 2. Used to E. measure time B. 4.Used to hold liquids 3.Used to observe cells D. C. 5. Used to measure temperature What is the reading on the balance? A. 47.02g B. 47.7g C. 47.52g D. 47.2g What is the reading on the balance? A. 47.02g B. 47.7g C. 47.52g D. 47.2g What does a balance measure? What units should you use? What does a balance measure? What units should you use? What does a balance measure? mass What units should you use? Grams (g) While working in the lab, Shelia masses 20 g of sodium hydroxide on the triple beam balance, then masses 20 g of sodium bicarbonate. Both are white powders but react to other chemicals in very different ways. Shelia is not certain which white powder is the sodium hydroxide. What should she do? A. Place both powders in the trash and start over B. Place a drop of water on a small amount of each powder and observe C. Proceed with the experiment D. Check with her teacher for guidance While working in the lab, Shelia masses 20 g of sodium hydroxide on the triple beam balance, then masses 20 g of sodium bicarbonate. Both are white powders but react to other chemicals in very different ways. Shelia is not certain which white powder is the sodium hydroxide. What should she do? A. Place both powders in the trash and start over B. Place a drop of water on a small amount of each powder and observe C. Proceed with the experiment D. Check with her teacher for guidance In which of these activities would a graduated cylinder be MOST useful? A. Determining the nesting areas of bird species living near the school B. Measuring the volume of an unknown rock sample C. Observing the heat flow that occurs when too liquids are mixed D. Comparing the different wing shapes of several flying insects In which of these activities would a graduated cylinder be MOST useful? A. Determining the nesting areas of bird species living near the school B. Measuring the volume of an unknown rock sample C. Observing the heat flow that occurs when too liquids are mixed D. Comparing the different wing shapes of several flying insects What instrument measures volume? A. Petri dish B. Beaker C. Triple Beam Balance D. Graduated Cylinder What instrument measures volume? A. Petri dish B. Beaker C. Triple Beam Balance D. Graduated Cylinder Which is the volume of the irregular solid in the beaker shown above? A. 125 mL B. 150 mL C. 275 mL D. 425 mL 275 150 Which is the volume of the irregular solid in the beaker shown above? A. 125 mL B. 150 mL C. 275 mL D. 425 mL Material State Speed (m/sec) Air Gas 346 Water Liquid 1493 Pyrex glass Solid 5640 Iron Solid 5130 A student measured the speed of sound in different materials at 25 oC. The data is shown in the table. Which tools were necessary for the students to carry out this experiment? A. Petri dishes, meter sticks and thermometers B. Calculator, petri dish, and timing devices C. Meter stick, timing devices, and a thermometer D. Petri dish, calculator and hot plates. Material State Speed (m/sec) Air Gas 346 Water Liquid 1493 Pyrex glass Solid 5640 Iron Solid 5130 A student measured the speed of sound in different materials at 25 oC. The data is shown in the table. Which tools were necessary for the students to carry out this experiment? A. Petri dishes, meter sticks and thermometers B. Calculator, petri dish, and timing devices C. Meter stick, timing devices, and a thermometer D. Petri dish, calculator and hot plates. .
Recommended publications
  • Experiment 5: Molar Volume of a Gas (Mg + Hcl)
    1 CHEM 30A EXPERIMENT 5: MOLAR VOLUME OF A GAS (MG + HCL) Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate a single replacement reaction. 2) Calculate the molar volume of a gas at STP using experimental data. 3) Calculate the molar mass of a metal using experimental data. Introduction Metals that are above hydrogen in the activity series will displace hydrogen from an acid and produce hydrogen gas. Magnesium is an example of a metal that is more active than hydrogen in the activity series. The reaction between magnesium metal and aqueous hydrochloric acid is an example of a single replacement reaction (a type of redox reaction). The chemical equation for this reaction is shown below: Mg(s) + 2HCl(aq) è MgCl2(aq) + H2(g) Equation 1 When the reaction between the metal and the acid is conducted in a eudiometer, the volume of the hydrogen gas produced can be easily determined. In the experiment described below magnesium metal will be reacted with an excess of hydrochloric acid and the volume of hydrogen gas produced at the experimental conditions will be determined. According to Avogadro’s law, the volume of one mole of any gas at Standard Temperature and Pressure (STP = 273 K and 1 atm) is 22.4 L. Two important Gas Laws are required in order to convert the experimentally determined volume of hydrogen gas to that at STP. 1. Dalton’s law of partial pressures. 2. Combined gas law. Dalton’s Law of Partial Pressures According to Dalton’s law of partial pressures in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.
    [Show full text]
  • Use of Laboratory Equipement
    USE OF LABORATORY EQUIPEMENT C. Laboratory Thermometers Most thermometers are based upon the principle that liquids expand when heated. Most common thermometers use mercury or colored alcohol as the liquid. These thermometers are constructed as that a uniform-diameter capillary tube surmounts a liquid reservoir. To calibrate a thermometer, one defines two reference points, normally the freezing point of water (0°C, 32°F) and the boiling point of water (100°C, 212°F) at 1 tam of pressure (1 tam = 760 mm Hg). Once these points are marked on the capillary, its length is then subdivided into uniform divisions called degrees. There are 100° between these two points on the Celsius (°C, or centigrade) scale and 180° between those two points on the Fahrenheit (°F) scale. °F = 1.8 °C + 32 The Thermometer and Its Calibration This section describes the proper technique for checking the accuracy of your thermometer. These measurements will show how measured temperatures (read from thermometer) compare with true temperatures (the boiling and freezing points of water). The freezing point of water is 0°C; the boiling point depends upon atmospheric pressure but at sea level it is 100°C. Option 1: Place approximately 50 mL of ice in a 250-mL beaker and cover the ice with distilled water. Allow about 15 min for the mixture to come to equilibrium and then measure and record the temperature of the mixture. Theoretically, this temperature is 0°C. Option 2: Set up a 250-mL beaker on a wire gauze and iron ring. Fill the beaker about half full with distilled water.
    [Show full text]
  • VACUUM RECOVERY of ASPHALT EMULSION RESIDUE (An Arizona Method)
    ARIZ 504 July 1980 (3 Pages) VACUUM RECOVERY OF ASPHALT EMULSION RESIDUE (An Arizona Method) Scope (d) No. 10 sieve conforming to AASHTO designation M 92. I. This method describes a low temperature vacuum procedure for recovery of the asphalt residue (e) Vacuum recovery apparatus as shown from asphalt emulsions. It is is not suitable for assembled in Fig. I. quantitative recovery of solvents from emulsions I) Vacuum source capable of producing an containing low boiling range distillates. absolute vacuum within the system of approximately 710 mm (28 in.) mercury. Apparatus 2) Thermometer - shall have a range of _5° to 1. The apparatus shall consist of the following: +200°C (23°F to 392°F). The overall length (a) Brass stirring rod. shall be 600 mm (24 in.) and the distance from the bottom of the bulb to the zero point (b) 8 oz. ointment can. shall be 300 mm (12 in.) (c) 100 ml. stainless steel beaker. 3) Stirrer hot plate. VACUUM RECOVERY APPARATUS 300 mm Allihn condenser H20 Out / Thermometer Vacuum Release Pinch Clamp 500 m. 1,000 ml. Filtration Flask Filtration Flask Teflon Stirring Bar H20 In 500 ml. Filtration Flask Portable Heat Gun FIGURE I ARIZ 504 July 1980 4) Teflon covered stirring bar. (g) Insert the stoppered themometer (positioned 5) 1000 ml. and two 500 ml. filtering flasks with in the stopper at an angle to prevent contact with tubulation. stirring bar) into the flask and set on hot plate at a medium high heat setting (#4). The bulb of the 6) 300 mm Allihn condensor.
    [Show full text]
  • Microbiology Laboratory Exercises Third Edition 2020
    MICROBIOLOGY Laboratory Exercises Third Edition Keddis & Rauschenbach 2020 Photo Credits (in order of contribution): Diane Davis, Ines Rauschenbach & Ramaydalis Keddis Acknowledgements: Many thanks to those in the Department of Biochemistry and Microbiology, Rutgers University, who have through the years inspired our enthusiasm for the science and teaching of microbiology, with special thanks to Diane Davis, Douglas Eveleigh and Max Häggblom. Safety: The experiments included in this manual have been deemed safe by the authors when all necessary safety precautions are met. The authors recommend maintaining biosafety level 2 in the laboratory setting and using risk level 1 organisms for all exercises. License: This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Microbiology Laboratory Exercises Third Edition 2020 Ramaydalis Keddis, Ph.D. Ines Rauschenbach, Ph.D. Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey CONTENTS PAGE Introduction Schedule ii Best Laboratory Practices Iii Working in a Microbiology Laboratory iv Exercises Preparation of a Culture Medium 1 Culturing and Handling Microorganisms 3 Isolation of a Pure Culture 5 Counting Bacterial Populations 8 Controlling Microorganisms 10 Disinfectants 10 Antimicrobial Agents: Susceptibility Testing 12 Hand Washing 14 The Lethal Effects of Ultraviolet Light 15 Selection of Fungi from Air 17 Microscopy 21 Morphology and Staining of Bacteria 26 Microbial Metabolism 30 Enzyme Assay 32 Metabolic
    [Show full text]
  • Page 1 of 27 the Diagram Shows Two Thermometers. the Bulb of Each
    Q1. The diagram shows two thermometers. The bulb of each thermometer is covered with a piece of wet cotton wool. One of the thermometers is placed in the draught from a fan. The graph shows how the temperature of each thermometer changes with time. (a) Which of the graph lines, A or B, shows the temperature of the thermometer placed in the draught? Write the correct answer in the box. Page 1 of 27 Explain, in terms of evaporation, the reason for your answer. ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ (3) (b) A wet towel spread out and hung outside on a day without wind dries faster than an identical wet towel left rolled up in a plastic bag. Explain why. ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ (2) (Total 5 marks) Q2. The picture shows a person taking a hot shower. (a) When a person uses the shower the mirror gets misty. Why? ___________________________________________________________________ ___________________________________________________________________
    [Show full text]
  • Ear and Forehead Thermometer
    Ear and Forehead Thermometer INSTRUCTION MANUAL Item No. 91807 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28. Juli 2014 14:37:38 USAD TABLE OF CONTENTS No. Topic Page 1.0 Definition of symbols 5 2.0 Application and functionality 6 2.1 Intended use 6 2.2 Field of application 7 3.0 Safety instructions 7 3.1 General safety instructions 7 3.3 Environment for which the DSO 364 device is not suited 9 3.4 Usage by children and adolescents 10 3.5 Information on the application of the device 10 4.0 Questions concerning body temperature 13 4.1 What is body temperature? 13 4.2 Advantages of measuring the body tempera- ture in the ear 14 4.3 Information on measuring the body tempera- ture in the ear 15 5.0 Scope of delivery / contents 16 6.0 Designation of device parts 17 7.0 LCD display 18 8.0 Basic functions 19 8.1 Commissioning of the device 19 8.2 Warning indicator if the body temperature is 21 too high 2 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28. Juli 2014 14:37:38 TABLE OF CONTENTS USA No. Topic Page 8.3 Backlighting / torch function 21 8.4 Energy saving mode 22 8.5 Setting °Celsius / °Fahrenheit 22 9.0 Display / setting time and date 23 9.1 Display of time and date 23 9.2 Setting time and date 23 10.0 Memory mode 26 11.0 Measuring the temperature in the ear 28 12.0 Measuring the temperature on the forehead 30 13.0 Object temperature measurement 32 14.0 Disposal of the device 33 15.0 Battery change and information concerning batteries 33 16.0 Cleaning and care 36 17.0 “Cleaning” warning indicator 37 18.0 Calibration 38 19.0 Malfunctions 39 20.0 Technical specification 41 21.0 Warranty 44 3 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28.
    [Show full text]
  • Pouring Plates from Prepared Bottled Media
    Pouring Plates from Prepared Bottled Media Primary Hazard Warning Never purchase living specimens without having a disposition strategy in place. When pouring bottles, agar is HOT! Burning can occur. Always handle hot agar bottles with heat-protective gloves. For added protection wear latex or nitrile gloves when working with bacteria, and always wash hands before and after with hot water and soap. Availability Agar is available for purchase year round. Information • Storage: Bottled agar can be stored at room temperature for about six months unless otherwise specified. Never put agar in the freezer. It will cause the agar to breakdown and become unusable. To prevent contamination keep all bottles and Petri dishes sealed until ready to use. • Pouring Plates • Materials Needed: • Draft-free enclosure or Laminar flow hood • 70% isopropyl alcohol • Petri dishes • Microwave or hot water bath or autoclave 1. Melt the agar using one of the following methods: a) Autoclave: Loosen the cap on the agar bottle and autoclave the bottle at 15 psi for five minutes. While wearing heat-protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. This takes approximately 15 minutes. b)Water Bath: Loosen the cap on the agar bottle and place it into a water bath. Water temperature should remain at around 100°C. Leave it in the water bath until the agar is completely melted. While wearing heat- protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. c) Microwave: Loosen the cap on the agar bottle before microwaving.
    [Show full text]
  • METHODS & STANDARD OPERATING PROCEDURES (Sops)
    METHODS & STANDARD OPERATING PROCEDURES (SOPs) OF EMISSION TESTING IN HAZARDOUS WASTE INCINERATOR FOREWARD COVR PAGE TEAM CHAPTER TITLE PAGE NO Chapter - 1 Stack Monitoring – Material And Methodology For Isokinetic Sampling 1-28 Chapter - 2 Standard Operating Procedure (SOP) For Particulate Matter Determination 29-38 Chapter - 3 Determination Of Hydrogen Halides (Hx) And Halogens From Source Emission 39-54 Chapter - 4 Standard Operating Procedure For The Sampling Of Hydrogen Halides And Halogens From Source Emission 55-61 Determination Of Metals And Non Metals Emissions From Chapter - 5 Stationarysources 62-79 Standard Operating Procedure (Sop) For Sampling Of Metals And Non Chapter - 6 Metals & 80-97 Standard Operating Procedure (Sop) Of Sample Preparation For Analysis Of Metals And Non Metals Chapter - 7 Determination Of Polychlorinated Dibenzo-P-Dioxins And 98-127 Polychlorinated Dibenzofurans Standard Operating Procedure For Sampling Of Polychlorinated Chapter - 8 Dibenzo-P-Dioxins And Polychlorinated Dibenzofurans & 128-156 Standard Operating Procedure For Analysis Of Polychlorinated Dibenzo- P-Dioxins And Polychlorinated Dibenzofurans Project Team 1. Dr. B. Sengupta, Member Secretary - Overall supervision 2. Dr. S.D. Makhijani, Director - Report Editing 3. Sh. N.K. Verma, Ex Additional Director - Project co-ordination 4. Sh. P.M. Ansari, Additional Director - Report Finalisation 5. Dr. D.D. Basu, Senior Scientist - Guidance and supervision 6. Sh. Paritosh Kumar, Sr. Env. Engineer - Report processing 7. Sh. Dinabandhu Gouda, Env. Engineer - Data compilation, analysis and preparation of final report 8. Sh. G. Thirumurthy, AEE - - do - 9. Sh. Abhijit Pathak, SSA - - do - 10. Ms. Trapti Dubey, Jr. Professional (Scientist) - - do - 11. Er. Purushotham, Jr. Professional (Engineer) - - do - 12.
    [Show full text]
  • Microlab® STAR™
    Microlab ® STAR™ Microlab ® STAR ™ AUTOMATED WORKFLOW SOLUTIONS CENTERED AROUND YOUR ASSAY The STAR combines Hamilton's patented pipetting technology including precise lock-and-key tip attachment, unrivaled liquid level detection, and comprehensive volume ranges to create flexible liquid handling workstations. Available in three base platform sizes, the STAR portfolio incorporates countless options to automate your workflows. Hamilton Robotics has also partnered with top leaders in the biotechnology industry to provide Standard Solutions based on commonly automated applications. Offering ready-to-start protocols for a variety of applications such as NGS, ELISA, and forensic assays, our Standard Solutions provide a faster way to automate your processes. 2 1 PATENTED TECHNOLOGY The STAR utilizes Hamilton’s proprietary Compressed O-Ring Expansion (CO-RE®) technology. CO-RE minimizes the production of aerosols and allows disposable tips or washable, steel needles to be used on channels in the same run. 2 MULTI-FUNCTIONAL ARM Our technology offers high pipetting accuracy and precision, from sub-microliter to large volumes, using Independent Channels and/or the Multi-Probe Head (MPH). Labware transportation is possible with the iSWAP® or CO-RE Grippers. The STAR can incorporate a camera, tube transportation, and other channel tools on a single arm. Comprehensive pipetting range: ■■■0.5 μL to 1 mL using the 1 mL Independent Channel ■■■50 μL to 5 mL using the 5 mL Independent Channel ■■■1 μL to 1 mL using the CO-RE 96 MPH ■■■0.1 μL to 50 μL using the CO-RE 384 MPH 3 FLEXIBLE SETUP The high-capacity deck is customized specific to your workflow, accommodating a wide range of labware and automated devices that can easily be exchanged to support multiple assays on one platform.
    [Show full text]
  • Catching up with Runaway Hot Plates
    Catching up with Runaway Hot Plates Kimberly Brown1, Mark Mathews2, Joseph Pickel3 1‐ Office of Environmental Health and Radiation Safety University of Pennsylvania, Philadelphia, PA 2‐ Environmental Safety and Health Directorate, Oak Ridge National Laboratory, Oak Ridge TN 3‐ Physical Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge TN Recent Events with Malfunctioning Abstract Cause of Fire identified as Runaway Hot Plates Hotplate Several research institutions report safety events involving hotplates that have been In recent years, there have been numerous reports of runaway hot plates — hot left on and unattended or that have heated uncontrollably, sometimes resulting in plates that heat uncontrolled despite the setting or the fact that the controls are in significant damage in the process. Some of the known events are listed below: the off position. Some of these events have resulted in damage to research • June 29, 2005: Lawrence Berkeley National Laboratory — A laboratory hot plate’s facilities. The Division of Chemical Health and Safety has investigated this issue power switch failed, resulting in a fire in the fume hood. Although the switch using all available information and soliciting additional information viaasurvey position, switch detent, and indicator light demonstrated that the power was off, conducted in April 2017 to determine the cause of these issues and to develop Valid NRTL listing electrical power continued to flow to the heating elements. strategies to prevent future “runaways‘’. Results of this survey and best practices (http://www2.lbl.gov/ehs/Lessons/pdf/FinalHotPlateLL.pdf) are described herein. • April 2007: University of California — Following a March 2007 report of a malfunctioning hot plate that heats while in the ‘off’ position, UC EHS personnel send out a system wide message concerning the issue citing “several explosions or Survey Information fire events involving defective hot plates that resulted in injuries to laboratory employees or damage to laboratories” over the previous five years.
    [Show full text]
  • Science Safety
    2010 Mississippi Science Framework Science Safety The guides that are cited below were developed by the Council of State Science Supervisors (CSSS) with support from the Eisenhower National Clearinghouse for Mathematics and Science Education, the National Aeronautics and Space Administration, Dupont Corporation, Intel Corporation, Americal Chemical Society, and the National Institutes of Health. Science Safety Booklets may be printed for use by educators. • Science Safety Booklets • Science and Safety: It's Elementary (PDF) - A Elementary Safety Guide • Science and Safety, Making the Connection (PDF) - A Secondary Safety Guide . Approved July 25, 2008 1 2010 Mississippi Science Framework A SUGGESTED PATTERN FOR CHEMICAL STORAGE The alphabetical method for storing chemicals presents hazards because chemicals, which can react violently with each other, may be stored in close proximity. Schools may wish to devise a simple color-coding scheme to address this problem. The code shown below, reproduced with permission from School Science Laboratories-A Guide to Some Hazardous Substances by the Council of State Science Supervisors, includes both solid and striped colors which are used to designate specific hazards as follows: Red - Flammability hazard: Store in a flammable chemical storage area. Red Stripe - Flammability hazard: Do not store in the same area as other flammable substances. Yellow - Reactivity hazard: Store separately from other chemicals. Yellow Stripe - Reactivity hazard: Do not store with other yellow coded chemicals; store separately. White - Contact hazard: Store separately in a corrosion-proof container. White Stripe - Contact hazard: Not compatible with chemicals in solid white category. Blue - Health hazard: Store in a secure poison area. Orange - Not suitably characterized by any of the foregoing categories.
    [Show full text]
  • Infrared Forehead Thermometer (4DET-306) Quick Start Guide
    Infrared Forehead Thermometer (4DET-306) Quick Start Guide To take a forehead temperature: 1” (2-3cm) 1 Press the power button , wait for 2 beeps. 2 Aim the thermometer at the center of the forehead about 1 inch (2-3 cm) from the skin and press the start button S T A R T . 2 START If the body temperature is below 100°F (38.7°C) you will hear one short beep and a 1 happy face will appear on the display. If the body temperature is above 100°F (38.7°C) you will hear one long beep followed by three short beeps and a sad face will appear on the display. Detailed instructions are included in the packaging Temperature Taking Hints and Tips • All body site temperatures are not the same. The • Temporal artery temperature changes faster than a temperature taken at different sites on the body will vary temperature taken rectally, orally or under the arm. A significantly. A forehead (temporal) temperature, for difference of 1°F (.6°C) is normal. Body temperature can example, is usually 0.5°F (0.3°C) to 1.0°F (0.6°C) lower change throughout the day. than an oral temperature. • Consistently low temperature readings may be caused by a • Make certain the thermometer is in FOREHEAD MODE. dirty instrument window. Use an alcohol wipe or a cotton • Non-contact infrared thermometers measure surface swab moistened with alcohol (70% isopropyl) to clean the temperature. Hold the device approximately 1 inch (2-3 instrument window and housing. Gently wipe and let air dry.
    [Show full text]