A Biological Survey of Mount Willoughby Indigenous Protected Area

Total Page:16

File Type:pdf, Size:1020Kb

A Biological Survey of Mount Willoughby Indigenous Protected Area 21941.05 - Willoughby Cover 17/5/05 1:40 PM Page 1 A Biological Survey of Mount Willoughby Indigenous Protected Area South Australia www.environment.sa.gov.au A BIOLOGICAL SURVEY OF THE MT WILLOUGHBY INDIGENOUS PROTECTED AREA, SOUTH AUSTRALIA OCTOBER 2003 by R. Brandle, B. Sparrow, J. N. Foulkes and A. C. Robinson Biological Survey and Monitoring Section Science and Conservation Directorate Department for Environment and Heritage South Australia 2005 i Mt Willoughby I. P. A. Biological Survey The Biological Survey of the Mt Willoughby I. P. A. South Australia was carried out as a consultancy to the Tjirilia Foundation with funds from the Indigenous Protected Areas Fund of the Commonwealth of Australia The views and opinions expressed in this report are those of the authors and do not necessarily represent the views or policies of Environment Australia or the State Government of South Australia. The report may be cited as: R. Brandle, B. Sparrow, J. N. Foulkes and A. C. Robinson (2005). A Biological Survey of the Mt Willoughby Indigenous Protected Area, South Australia - October 2003. (Department for Environment and Heritage, South Australia). Limited hard copies of the report were prepared, but it can also be accessed from the Internet on: http://www.environment.sa.gov.au/biodiversity/biosurveys AUTHORS R. Brandle, B. Sparrow, J. N. Foulkes and A. C. Robinson, Biological Survey and Monitoring, Science and Conservation Directorate, Department for Environment and Heritage. PO Box 1047 Adelaide 5001 CARTOGRAPHY AND DESIGN Science and Conservation Directorate, Department for Environment and Heritage. © Department for Environment and Heritage 2005 Cover Photograph View SW across breakaway hills from above survey site BRU00501 on the Mt Willoughby I. P. A. Photo AC Robinson ii Mt Willoughby I. P. A. Biological Survey PREFACE A Biological Survey of the Mt Willoughby Indigenous Protected Area, South Australia is a further product of the Biological Survey of South Australia. The program of systematic biological surveys to cover the whole of South Australia arose out of a realisation that an effort was needed to increase our knowledge of the remaining vascular plants and vertebrate fauna of South Australia and to encourage its conservation. Over the last 21 years, there has been a strong commitment to the Biological Survey by Government and an impressive dedication from hundreds of volunteer biologists. By 2015, it is anticipated that the Biological Survey will achieve complete statewide coverage. The Biological Survey of South Australia will be an achievement for which we can be very proud. We will have substantially improved our knowledge of the biodiversity of South Australia to enable biologists in the future to measure the direction of long-term ecological change. This will greatly enhance our ability to adequately manage nature conservation into the future. JOHN HILL MINISTER FOR ENVIRONMENT AND CONSERVATION iii Mt Willoughby I. P. A. Biological Survey ABSTRACT Mt Willoughby Indigenous Protected Area (IPA) has a diverse suite of landforms and related physical characteristics. It lies across two biogeographical regions of Australia, the Stony Plains and the Great Victoria Desert. The area is predominantly native vegetation having been modified to various extents by sheep and cattle grazing during its former landuse as a Pastoral Station. The aims of this biological survey were to identify and sample the habitats and associated plants and animals for the Tjirilia Aboriginal Corporation to assist the management of the area for biodiversity. A vegetation map of the area was produced to enhance the interpretation of this information and assist with management planning. Twenty-eight quadrats were selected from across the study area to sample the maximum variety of habitat types. A further 221 sites were sampled for dominant vegetation to assist with the mapping which was done using supervised classification of satellite imagery data. Each quadrat was sampled for vegetation, birds, reptiles, mammals and invertebrates using the standard methods adopted for the Biological Survey of South Australia. Extra methods were used to opportunistically sample bats and also to search for signs of Marsupial Moles. Sites sampled ranged from swamps and drainage lines to breakaway hills and sand dunes. These supported a variety of grasslands, shrublands and low woodlands. Fourteen vegetation types were described and these were mapped into nine mapping classes. Mt Willoughby IPA is now known to support at least 225 plant taxa (3 introduced) from 29 Families. No species with national or South Australian conservation status ratings were recorded at quadrats, however a number of endemic species were recorded or would be expected to occur in the breakaway habitats given suitable rainfall events. Twelve native and 6 introduced mammal species were recorded during the survey, none are currently rated as rare or threatened. Seventy-four bird species were recorded at the 28 survey quadrats with a further twelve being observed away from sites. Six species with current conservation significance ratings were recorded at quadrats including a rediscovery of the northern population of Slender-billed Thornbill. Forty-five reptile species were recorded during the survey and 47 are now known to inhabit the IPA. The Bronze-back Legless Lizard, the only reptile with an Australian conservation status rating, was recorded at one site. One species of frog was detected after a shower of rain. Invertebrates from 79 Families in 22 Orders were collected during the survey. As the Mt Willoughby IPA represents the only area of the breakaways region managed with biodiversity protection as an objective, the bulk of cattle should be removed to enable regeneration of the vegetation and fauna communities in this area. Because of the dry conditions during the survey, further surveys targetting specific species are needed to establish the areas’ conservation value for some of the rarer and endemic species known to occur in the region. iv Figure 1. Residual hills E of Brumby Creek, Mt Willoughby I. P. A. Photo: AC Robinson. Figure 2. The spectacular wolf spider Lycosa bicolor from the mulga sand plains of the Mt Willoughby I. P. A. Photo AC Robinson. v vi Mt Willoughby I. P. A. Biological Survey CONTENTS Page PREFACE....................................................................................................................................................................... III ABSTRACT.................................................................................................................................................................... IV CONTENTS...................................................................................................................................................................VII FIGURES..................................................................................................................................................................... VIII TABLES.......................................................................................................................................................................... XI APPENDICES ...............................................................................................................................................................XII ACKNOWLEDGEMENTS........................................................................................................................................ XIII INTRODUCTION.............................................................................................................................................................1 Physical Characteristics...............................................................................................................................................1 Climate........................................................................................................................................................................4 Previous Biological Surveys .......................................................................................................................................6 METHODS ........................................................................................................................................................................7 RESULTS ........................................................................................................................................................................10 VEGETATION .............................................................................................................................................................10 Significant Species ....................................................................................................................................................14 Vegetation Mapping..................................................................................................................................................20 Stony plains bioregion...............................................................................................................................................22 Great Victoria Desert Bioregion................................................................................................................................46 FAUNA.........................................................................................................................................................................55
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Synthesizing Ecosystem Implications of Mistletoe Infection
    Environmental Research Letters LETTER • OPEN ACCESS Related content - Networks on Networks: Water transport in Mistletoe, friend and foe: synthesizing ecosystem plants A G Hunt and S Manzoni implications of mistletoe infection - Networks on Networks: Edaphic constraints: the role of the soil in vegetation growth To cite this article: Anne Griebel et al 2017 Environ. Res. Lett. 12 115012 A G Hunt and S Manzoni - Impact of mountain pine beetle induced mortality on forest carbon and water fluxes David E Reed, Brent E Ewers and Elise Pendall View the article online for updates and enhancements. This content was downloaded from IP address 137.154.212.215 on 17/12/2017 at 21:57 Environ. Res. Lett. 12 (2017) 115012 https://doi.org/10.1088/1748-9326/aa8fff LETTER Mistletoe, friend and foe: synthesizing ecosystem OPEN ACCESS implications of mistletoe infection RECEIVED 28 June 2017 Anne Griebel1,3 ,DavidWatson2 and Elise Pendall1 REVISED 1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia 12 September 2017 2 Institute for Land, Water and Society, Charles Sturt University, PO box 789, Albury, NSW, Australia ACCEPTED FOR PUBLICATION 3 Author to whom any correspondence should be addressed. 29 September 2017 PUBLISHED E-mail: [email protected] 16 November 2017 Keywords: mistletoe, climate change, biodiversity, parasitic plants, tree mortality, forest disturbance Original content from this work may be used Abstract under the terms of the Creative Commons Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is Attribution 3.0 licence. contributing to increasing rates of tree mortality globally.
    [Show full text]
  • Museum Occurrence Data Predict Genetic Diversity in a Species-Rich Clade of Australian Lizards Supplementary Online Material
    Museum occurrence data predict genetic diversity in a species-rich clade of Australian lizards Supplementary Online Material Sonal Singhal, Huateng Huang, Pascal O. Title, Stephen C. Donnellan, Iris Holmes, Daniel L. Rabosky March 9, 2017 Contents 1 Materials and Methods 2 1.1 Sampling . .2 1.2 Library Preparation and Sequencing . .2 1.3 Testing Methods for ddRAD data assembly . .2 1.4 Species Delimitation . .3 1.5 Measures of Genetic Diversity . .4 1.5.1 Generating Pseudo-reference Genomes . .4 1.5.2 Within-population p ......................................4 1.5.3 Species-wide p .........................................5 1.5.4 mtDNA p ............................................5 1.5.5 Calculating diversity . .5 1.6 Demographic Analyses . .5 1.6.1 Running ADMIXTURE . .5 1.6.2 Running ANGSD . .5 1.6.3 Running LAMARC . .6 1.7 Species Tree . .6 1.8 Collecting data on possible drivers of genetic diversity . .7 1.8.1 Proxies for census population size . .7 1.8.2 Environmental hetereogeneity . .9 1.8.3 Historical demography . .9 1.8.4 Possible confounders . .9 1.9 Model-Testing . 10 2 Figures and Tables 10 2.1 Tables . 10 2.2 Figures . 13 1 1 Materials and Methods 1.1 Sampling This study takes advantage of the numerous tissue samples accessioned in natural history museums across the United States and Australia. In this study, we sampled tissues from 8 museums: Australian Museum, Cornell University Museum of Vertebrates, Australian Biological Tissue Collection, Northern Territory Mu- seum, Queensland Museum, South Australian Museum, University of Michigan Museum of Zoology, and Western Australian Museum. Species boundaries in the genus Ctenotus have been subject to sufficient revi- sion (1), and, like many squamate species, many Ctenotus species contain multiple, cryptic species.
    [Show full text]
  • A Biological Survey of the Southern Mount Lofty Ranges
    Southern Mount Lofty Ranges Biological Survey APPENDIX I DESCRIPTION OF ENVIRONMENTAL ASSOCIATIONS OCCURRING IN SURVEY REGION BOUNDARY. Part 1. Environmental associations in study area occurring within FLEURIEU IBRA sub-region Environmental Total % of Description Association Area vegetation (ha) remaining 3.2.1 Mt. Rapid 12,763 3.9 Hills and ridges on interbedded shale and arkose, locally overlain by tillite. Relict fans form broad flat surfaces near Cape Jervis where some coastal cliffs occur. Open parkland with sown pasture is used for livestock grazing. The scenery of the coastline is dominated by tall cliffs that vary in form and steepness, the amount of rock outcrop and vegetative cover. 3.2.2 Deep Creek 12,984 30.2 A long dissected ridge of phyllite and greywacke with cliffs, or beaches and dunes along the coastline. The cover is predominantly open parkland over sown pasture with widespread remnants of woodland and forest. Inland views tend to be middle-ground panoramic, featuring grassy ridge crests and valley floors with bracken and reed or remnant forest vegetation. 3.2.3 Fleurieu 30,389 15.6 An undulating to hilly dissected tableland on lateritized sandstone. There is a mixed cover of open parkland, forest plantation and woodland. 3.2.4 Inman 37,130 4.4 A series of low dissected ridges and spurs on tillite and arkose, with dunes and beaches or Valley cliffs along the coast. The cover is open parkland over sown pastures and cereal crops. 3.2.5 Bob Tiers 15,761 21.3 Ridges on schist and gneiss with dissected slopes and remnantsof laterite-capped tableland.
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Background Detailed Flora and Vegetation Assessment
    Our ref: EEN18041.003 Level 2, 27-31 Troode Street West Perth WA 6005 T +61 8 9211 1111 Date: 04 June 2019 Tanya McColgan Bellevue Gold Limited Suite 3, Level 3, 24 Outram Street WEST PERTH WA 6008 Dear Tanya, Flora and vegetation values identified within PoW 79431 In response to your request for the preliminary results of the detailed flora and vegetation assessment undertaken over the Bellevue Gold Project area, RPS Australia West Pty Ltd (RPS) herein provides a summary of the key results and outcomes of the assessment in lieu of the final report which is due in July. Background Bellevue Gold Ltd (Bellevue Gold) is currently undertaking an exploration drilling program within mining tenement M3625 for the Bellevue Gold Project (the Project). The Project is located in the north-eastern Goldfields; approximately 40 km north of the township of Leinster in the Shire of Leonora. The Project is situated on and surrounded by pastoral lands and is located on Yakabindie cattle station. RPS was commissioned by Bellevue Gold to undertake a detailed flora and vegetation assessment over M3625 and part of M3624 to encompass the area where exploration drilling is currently underway and including the potential mining and associated infrastructure footprint (the proposed development area). The survey area, the proposed development area and the PoW 79431 area are shown in Figure A. RPS understands that the Department of Mines, Industry Regulation and Safety (DMIRS) and the Department of Biodiversity Conservation and Attractions (DBCA) have requested additional information regarding the natural values of the PoW area, where in-fill drilling is proposed, in order to adequately assess the PoW application.
    [Show full text]
  • Enabling the Market: Incentives for Biodiversity in the Rangelands
    Enabling the Market: Incentives for Biodiversity in the Rangelands: Report to the Australian Government Department of the Environment and Water Resources by the Desert Knowledge Cooperative Research Centre Anita Smyth Anthea Coggan Famiza Yunus Russell Gorddard Stuart Whitten Jocelyn Davies Nic Gambold Jo Maloney Rodney Edwards Rob Brandle Mike Fleming John Read June 2007 Copyright and Disclaimers © Commonwealth of Australia 2007 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Water Resources. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Australian Government does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Contributing author information Anita Smyth: CSIRO Sustainable Ecosystems Anthea Coggan: CSIRO Sustainable Ecosystems Famiza Yunus: CSIRO Sustainable Ecosystems Russell Gorddard: CSIRO Sustainable Ecosystems Stuart Whitten: CSIRO Sustainable Ecosystems Jocelyn Davies: CSIRO Sustainable Ecosystems Nic Gambold: Central Land Council Jo Maloney Rodney Edwards: Ngaanyatjarra Council Rob Brandle: South Austalia Department for Environment and Heritage Mike Fleming: South Australia Department of Water, Land and Biodiversity Conservation John Read: BHP Billiton Desert Knowledge CRC Report Number 18 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgement of the source.
    [Show full text]
  • For Peer Review Journal: Biological Journal of the Linnean Society
    Biological Journal of the Linnean Society The evolution of Australasian agamid lizards based on nuclear and mitochondrial genes, and the affinities of the thorny devil (Moloch horridus). For Peer Review Journal: Biological Journal of the Linnean Society Manuscript ID: BJLS-0023 Manuscript Type: Original Manuscript Date Submitted by the 26-Jun-2006 Author: Complete List of Authors: Hugall, Andrew; University of Adelaide, Earth and Environmental Sciences Foster, Ralph; South Australian Museum Lee, Michael; South Australian Museum Hutchinson, Mark; South Australian Museum agamidae, phylogeny, partition support, congruence, convergence, Keywords: molecular clock, aridification Biological Journal of the Linnean Society Page 1 of 33 Biological Journal of the Linnean Society 1 2 3 4 The evolution of Australasian agamid lizards based on nuclear and 5 mitochondrial genes, and the affinities of the thorny devil (Moloch 6 horridus). 7 8 9 A.F. Hugall1*, R. Foster2, M. Hutchinson2 and M.S.Y. Lee1,2 10 11 12 13 1 School of Earth and Environmental Sciences, University of Adelaide, SA 5005 14 2 15 Natural Sciences Building, South Australian Museum, Adelaide, SA 5000, Australia 16 17 *Corresponding Author, E-mail [email protected], Fax +61 8 8303 4364 18 19 20 For Peer Review 21 Running title: Austral Agamid Phylogeny 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 2 of 33 Austral Agamid Phylogeny 2 1 2 3 ABSTRACT 4 5 6 7 Recent mtDNA phylogenies of Australasian agamid lizards are highly incongruent with 8 existing morphological views.
    [Show full text]
  • Witchelina Expedition II – Biological Survey 2016 Data Report for The
    Witchelina Expedition II – Biological Survey 2016 Data Report for the Nature Foundation Darren Niejalke Expedition Science Coordinator Scientific Expedition Group on behalf of the Nature Foundation of South Australia Mon 12th– Friday 23rd September 2016 Biological Survey of SA Survey No. – 1028 Site Survey Code prefix – WIT Report Date JULY 2018 1 Table of Contents Contents 1 Introduction .................................................................................................................................... 3 1.1 Background ............................................................................................................................. 3 1.2 Objectives................................................................................................................................ 3 1.3 Scope of this report ................................................................................................................. 3 2 Method ........................................................................................................................................... 4 2.1 BSSA Survey Sites ................................................................................................................. 4 2.2 Fauna Survey ........................................................................................................................... 4 2.3 Flora Condition (Jessup) survey .............................................................................................. 5 3 Results and Discussion ...................................................................................................................
    [Show full text]
  • The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers
    The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers Dissertation To Fulfil the Requirements for the Degree of “Doctor of Philosophy” (PhD) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena by Bachelor of Science, Master of Science, Abhijeet Shah born on 7th November 1984, Hyderabad, India 1 Academic reviewers: 1. Prof. Holger Schielzeth, Friedrich Schiller University Jena 2. Prof. Manja Marz, Friedrich Schiller University Jena 3. Prof. Rolf Beutel, Friedrich Schiller University Jena 4. Prof. Frieder Mayer, Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin 5. Prof. Steve Hoffmann, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena 6. Prof. Aletta Bonn, Friedrich Schiller University Jena Date of oral defense: 24.02.2020 2 Table of Contents Abstract ........................................................................................................................... 5 Zusammenfassung............................................................................................................ 7 Introduction ..................................................................................................................... 9 Genetic polymorphism ............................................................................................................. 9 Lewontin’s paradox ....................................................................................................................................... 9 The evolution
    [Show full text]
  • The Cytology of Tasmanian Short-Horned Grasshoppers ( Orthoptera: Acridoidea)
    PAP. & PROC. ROY. Soc. TASMANIA. VOL. 86. (15TH SEPTEMBER. 1952.) The Cytology of Tasmanian Short-Horned Grasshoppers ( Orthoptera: Acridoidea) By G. B. SHARMAN Department of Botany, University of Tasmania* WITH 1 PLATE AND 57 TEXT FIGURES SUMMARY The cytology of twenty-six of the twenty-nine species of short-horned grass­ hoppers (superfamily Acridoidea) recorded from Tasmania is described. Intra­ specific cytological polymorphism is described in some species. Cytological evidence of phylogenetic relationships has been indicated where possible. INTRODUCTION Mainly because of their large size, and general suitability for cyto­ logical study the chromosomes of the short-horned grasshoppers (super­ family Acridoidea) have been the subject of wide research. In the largest and most widely studied family, the Acrididae, early workers (McClung, 1905; Davis, 1908) reported the male number as being uniformly twenty­ three rod-shaped chromosomes, but Granata (1910) showed that Pam­ phagus possessed nineteen rod-shaped chromosomes. With few exceptions an XO sex chromosome sy~tem is found. Later work has shown that one group of subfamilies of the Acrididae is characterised by the male diploid number of· nineteen rod-shaped chromosomes, whilst another and larger group is characterised by the male diploid number of twenty-three. These are usually called the ten and twelve chromosome groups, and correspond to the Chasmosacci and Cryptosacci groups of subfamilies (Roberts, 1941). Cytologically the Chasmosacci is a very uniform group as has been shown by Rao (1937) and Powers (1942). The twelve chromosome group, how­ ever, has some cytological variability. In more than forty genera the characteristic male diploid chromosome number of twenty-three is found (White, 1945) ; but" centric fusions" (White, 1945) have been responsible for lowering the chromosome number of some species, although the characteristic twenty-three arms are still found.
    [Show full text]