Diagnostic and Management Guide Xanthomonas Wilt of Bananas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Document for Bacteriophages of Xanthomonas Campestris Pv. Vesicatoria Also Referred to As a BRAD
US Environmental Protection Agency Office of Pesticide Programs BIOPESTICIDES REGISTRATION ACTION DOCUMENT (Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages ) (Chemical PC Codes 006449 and 006521) Xanthomonas campestris pv. vesicatoria and Pseduomonas syringae pv. tomato specific bacteriophages •••••••••••••••••••••••• BIOPESTICIDES REGISTRATION ACTION DOCUMENT (Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages ) (Chemical PC Codes 006449 and 006521) U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division Xanthomonas campestris pv. vesicatoria and Pseduomonas syringae pv. tomato specific bacteriophages TABLE OF CONTENTS I. EXECUTIVE SUMMARY .............................................................................................Page3 II. OVERVIEW............................................................................................................................4 A. Use Profile.....................................................................................................................4 B. Regulatory History ......................................................................................................4 III. SCIENCE ASSESSMENT ....................................................................................................4 A. Physical and Chemical Properties Assessment .........................................................4 1. Product Identity and Mode -
Advancing Banana and Plantain R & D in Asia and the Pacific
Advancing banana and plantain R & D in Asia and the Pacific Proceedings of the 9th INIBAP-ASPNET Regional Advisory Committee meeting held at South China Agricultural University, Guangzhou, China - 2-5 November 1999 A. B. Molina and V. N. Roa, editors The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: · To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. · To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. · To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. · To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI). The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRIs mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRIs headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). -
Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management G
Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management G. Blomme, M. Dita, K. S. Jacobsen, L. P. Vicente, A. Molina, W. Ocimati, Stéphane Poussier, Philippe Prior To cite this version: G. Blomme, M. Dita, K. S. Jacobsen, L. P. Vicente, A. Molina, et al.. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management. Frontiers in Plant Science, Frontiers, 2017, 8, pp.1-25. 10.3389/fpls.2017.01290. hal-01608050 HAL Id: hal-01608050 https://hal.archives-ouvertes.fr/hal-01608050 Submitted on 28 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fpls-08-01290 July 22, 2017 Time: 11:6 # 1 REVIEW published: 20 July 2017 doi: 10.3389/fpls.2017.01290 Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management Guy Blomme1*, Miguel Dita2, Kim Sarah Jacobsen3, Luis Pérez Vicente4, Agustin -
Evaluation of Enset Clones Against Enset Bacterial Wilt
African Crop Science Journal, Vol. 16, No. 1, pp. 89 - 95 ISSN 1021-9730/2008 $4.00 Printed in Uganda. All rights reserved ©2008, African Crop Science Society EVALUATION OF ENSET CLONES AGAINST ENSET BACTERIAL WILT G. WELDE-MICHAEL, K. BOBOSHA1, G. BLOMME2, T. ADDIS, T. MENGESHA and S. MEKONNEN Southern Agricultural Research Institute (SARI), Awassa Research Center, P.O. Box 06, Awassa, Ethiopia 1Armauer Hansen Research Institute. P.O. Box. 1005, Addis Ababa, Ethiopia 2Bioversity International Uganda Office, P.O. Box 24384, Kampala, Uganda ABSTRACT Enset (Ensete ventricosum Welw. Cheesman) is an important food crop for over 20% of the Ethiopian population living in the southern and southwestern parts of the country. Enset farmers commonly grow combinations of clones in fields, but each clone is grown for its specific use. A large number of enset clones collected from the Sidama, Gurage, Kembata Tembaro and Hadyia zones were assessed for resistance/tolerance to enset bacterial wilt, Xanthomonas campestris pv. musacearum (Xcm) at the Awassa Agricultural Research Center, Awassa in Ethiopia, during the period 1994 to 2000. In addition, some enset clones that were reported by farmers and researchers as tolerant to Xcm were evaluated during the same period. The objective of the study was to screen field-grown enset clones collected from different zones of southern Ethiopia, for reaction against the wilt. All Xcm inoculated enset clones in each of the experiments developed disease symptoms to various intensity levels during the first 45 days after inoculation. However, several enset clones showed relative tolerance to the disease. The enset clones ‘Astara’, ‘Buffare’, ‘Geziwet 2’, ‘Gulumo’ and ‘Kullo’ showed 100% disease symptoms at 30 days after inoculation and could, hence, be used as susceptible checks in future screening trials. -
Networking Banana and Plantain
Networking Banana and Plantain Annual Report 2000 The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI’s mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI’s headquarters is based in Rome, Italy, with offices in another 19 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources -
Xanthomonas Leaf Spot of Roses
EPLP-026 7/18 Xanthomonas Leaf Spot of Roses Madalyn Shires, Extension Graduate Student, Department of Plant Pathology and Microbiology Kevin Ong, Professor and Extension Plant Pathologist* Bacterial leaf spots occur worldwide and are usually caused by the bacteria Pseudomonas syringe and Xan- thomonas campestris, which can infect a wide range of host plants. Many plants in the Rosacea family, such as strawberry, Indian hawthorn, and peaches, are affected by bacterial leaf spots. Xanthomonas leaf spot of roses is a relatively new disease, first observed in Florida and Texas between 2004 and 2010. It has the potential to cause significant economic losses in commercial rose production. Cause The bacteria that cause the disease, members of the genus Xanthomonas, are tiny microorganisms that can move short distances in water with the help of a single Figure 2. As the infection worsens, the spots merge, causing necrosis flagellum, a hair-like structure that acts as a propeller. (death) on the leaf. A water-soaked appearance on infected leaves is also common. Source: Kevin Ong, Texas A&M AgriLife Extension Service Symptoms Xanthomonas leaf spot may look different form on the stems. In roses, chlorotic (yellowed) halos in various host plants, (Fig. 1) typically surround the small, brown, angular to but some of the most circular spots on the leaves. As the disease progresses common symptoms and the bacteria grows, the spots enlarge (Fig. 2). include the formation of spots between leaf veins Disease Movement (the centers of which The pathogen’s primary mode of transmission is may become necrotic splashing water, which allows it to spread to and infect and fall out) and a new leaves. -
TAL Effectors Are Remote Controls for Gene Activation Heidi Scholze and Jens Boch
Available online at www.sciencedirect.com TAL effectors are remote controls for gene activation Heidi Scholze and Jens Boch TAL (transcription activator-like) effectors constitute a novel typically 34 amino acids (aa) long, but also repeat types of class of DNA-binding proteins with predictable specificity. They 30–42 aa can be found ([2], Figure 2). The last repeat is are employed by Gram-negative plant-pathogenic bacteria of only a half repeat. Repeat-to-repeat variations are limited the genus Xanthomonas which translocate a cocktail of to a few aa positions including two hypervariable residues different effector proteins via a type III secretion system (T3SS) at positions 12 and 13 per repeat. Typically, TALs differ into plant cells where they serve as virulence determinants. in their number of repeats while most contain 15.5–19.5 Inside the plant cell, TALs localize to the nucleus, bind to target repeats [2]. The repeat domain determines the specificity promoters, and induce expression of plant genes. DNA-binding of TALs which is mediated by selective DNA binding specificity of TALs is determined by a central domain of tandem [7,8]. TAL repeats constitute a novel type of DNA- repeats. Each repeat confers recognition of one base pair (bp) binding domain [7] distinct from classical zinc finger, in the DNA. Rearrangement of repeat modules allows design of helix–turn–helix, and leucine zipper motifs. proteins with desired DNA-binding specificities. Here, we summarize how TAL specificity is encoded, first structural data The recent understanding of the DNA-recognition speci- and first data on site-specific TAL nucleases. -
Molecular Basis of Disease Resistance in Banana Progenitor Musa Balbisiana Against Received: 25 September 2018 Accepted: 23 April 2019 Xanthomonas Campestris Pv
www.nature.com/scientificreports OPEN Molecular Basis of Disease Resistance in Banana Progenitor Musa balbisiana against Received: 25 September 2018 Accepted: 23 April 2019 Xanthomonas campestris pv. Published: xx xx xxxx musacearum Leena Tripathi 1, Jaindra Nath Tripathi1, Trushar Shah1, Kariuki Samwel Muiruri1 & Manpreet Katari2 Banana Xanthomonas wilt disease, caused by Xanthomonas campestris pv. musacearum (Xcm), is a major threat to banana production in east Africa. All cultivated varieties of banana are susceptible to Xcm and only the progenitor species Musa balbisiana was found to be resistant. The molecular basis of susceptibility and resistance of banana genotypes to Xcm is currently unknown. Transcriptome analysis of disease resistant genotype Musa balbisiana and highly susceptible banana cultivar Pisang Awak challenged with Xcm was performed to understand the disease response. The number of diferentially expressed genes (DEGs) was higher in Musa balbisiana in comparison to Pisang Awak. Genes associated with response to biotic stress were up-regulated in Musa balbisiana. The DEGs were further mapped to the biotic stress pathways. Our results suggested activation of both PAMP-triggered basal defense and disease resistance (R) protein-mediated defense in Musa balbisiana as early response to Xcm infection. This study reports the frst comparative transcriptome profle of the susceptible and resistant genotype of banana during early infection with Xcm and provide insights on the defense mechanism in Musa balbisiana, which can be used for genetic improvement of commonly cultivated banana varieties. Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is one of the most devastating disease endangering the livelihood of millions of farmers in east Africa, which is the largest banana-producing and -consuming region in Africa1. -
A Single Plant Resistance Gene Promoter Engineered to Recognize Multiple TAL Effectors from Disparate Pathogens
A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens Patrick Ro¨ mer, Sabine Recht, and Thomas Lahaye1 Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany Edited by Jeffery L. Dangl, University of North Carolina, Chapel Hill, NC, and approved October 2, 2009 (received for review August 6, 2009) Plant pathogenic bacteria of the genus Xanthomonas inject tran- factor UPA20, which induces hypertrophy (i.e., enlargement) of scription-activator like (TAL) effector proteins that manipulate the mesophyll cells, as well as to the promoters of other host genes hosts’ transcriptome to promote disease. However, in some cases that appear to contribute to susceptibility (14). In addition, plants take advantage of this mechanism to trigger defense re- AvrBs3 triggers a programmed cell death response, referred to sponses. For example, transcription of the pepper Bs3 and rice Xa27 as the hypersensitive response (HR), in pepper plants that resistance (R) genes are specifically activated by the respective TAL contain the cognate R gene Bs3 (15, 16). Certain pepper lines effectors AvrBs3 from Xanthomonas campestris pv. vesicatoria have an allele of Bs3 known as Bs3-E, which confers resistance (Xcv), and AvrXa27 from X. oryzae pv. oryzae (Xoo). Recognition of to strains carrying the AvrBs3 derivative AvrBs3⌬rep16 that has AvrBs3 was shown to be mediated by interaction with the corre- a deletion of repeat units 11–14 (15, 17). AvrBs3 and sponding UPT (UPregulated by TAL effectors) box UPTAvrBs3 present AvrBs3⌬rep16 were found to interact specifically with distinct in the promoter R gene Bs3 from the dicot pepper. -
Xanthomonas Campestris
Journal of Agricultural Science December, 2009 Lettucenin A and Its Role against Xanthomonas Campestris Hong Chia Yean School of Science and Technology, Universiti Malaysia Sabah Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia Markus Atong School of Sustainable Agriculture, Universiti Malaysia Sabah Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia Tel: 6088-320-306 E-mail: [email protected] Khim Phin Chong (Corresponding author) School of Sustainable Agriculture, Universiti Malaysia Sabah Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia Tel: 6088-320-000 x5655 E-mail: [email protected] Abstract Lettucenin A is the major phytoalexin produced in lettuce after being elicited by biotic or abiotic elicitors. The production of lettucenin A in leaf can be induced by 5% of CuSO4 and 1% of AgNO3. A clear inhibition zone where the fungi Aspergillus niger failed to develop on TLC plates dipped in hexane: ethyl acetate (1:1, v/v) at Rf 0.45 was observed. Lettucenin A was detected at a retention time of approximately 5.3 min after being injected into the HPLC run with isocratic solvent system containing water: acetonitrile ratio 60:40, (v/v). In vitro antibacterial study with Xanthomonas campestris results showed this pathogen has different sensitivity to all tested concentrations of lettucenin A. The bacteria was more sensitive to higher concentration of lettucenin A (333, 533 and 667 g ml-1), compare to lower concentrations such as 67 g ml-1. Thus, the relationship between the bacteria growth rate and lettucenin A concentration was negatively correlated. However, the bacteria growth rate continues to increase after two hours of incubation. -
Morphological and Molecular Characterization of Banana in Kerala, India
Journal of Open Science Publications Plant Science & Research Volume 6, Issue 2 - 2019 © Anu A, et al. 2019 www.opensciencepublications.com Morphological and Molecular Characterization of Banana in Kerala, India Research Article Anu A1, Geethalakshmi S1* and Vazhackarickal,PJ2 1Department of Biotechnology, Sree Narayana Guru College, India 2Department of Biotechnology, Mar Augusthinose College, India *Corresponding author: Geethalakshmi S, Department of Biotechnology, Sree Narayana Guru College, Coimbatore, 641105 Tamil Nadu, India; E-mail: [email protected] Copyright: © Anu A, et al. 2019. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Article Information: Submission: 23/10/2019; Accepted: 25/11/2019; Published: 27/11/2019 Abstract Banana is one of the most important food crops all over the world. There are around 365 varieties of bananas available throughout the world. Banana is a traditional medicine for diabetes, cancer, diarrhea and also highly nutritional food crop. In this study, commonly used varieties of banana are taken for characterization by morphology and genotype which is based on International Plant Genetic Resources Institute, 1984 (Descriptors for banana (Musa sp.,) and RAPD analysis. Five varieties were morphologically similar in parameters such as leaf habit, pseudo stem appearance and peel color. RAPD analysis proved that these varieties of banana are closely related which coincides with the morphological characterization. Keywords: RAPD analysis; Morphological characters; Genotype Introduction Differentiating varieties of banana based on their morphology has some limitations in the accurate identification because limited traits Banana is naturally packed with nutrients, fibers, protein are available for characterization [3]. -
(Cabbage, Louisiana). Muhammad Machmud Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1982 Xanthomonas Campestris Pv. Armoraciae the Causal Agent of Xanthomonas Leaf Spot of Crucifers (Cabbage, Louisiana). Muhammad Machmud Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Machmud, Muhammad, "Xanthomonas Campestris Pv. Armoraciae the Causal Agent of Xanthomonas Leaf Spot of Crucifers (Cabbage, Louisiana)." (1982). LSU Historical Dissertations and Theses. 3812. https://digitalcommons.lsu.edu/gradschool_disstheses/3812 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation o f techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “ target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication o f either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.