Cold Acclimation Conditions Constrain Plastic Responses for Resistance to Cold and Starvation in Drosophila Immigrans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thomas Lewinsohn with Paulo Inácio Prado USP Mário Almeida Neto UFG Adriana Almeida UFRN Leonardo Ré Jorge Unicamp ______Laboratório Interações Insetos-Plantas Depto
Phytophagous insects on flower heads of Neotropical Compositae Thomas Lewinsohn with Paulo Inácio Prado USP Mário Almeida Neto UFG Adriana Almeida UFRN Leonardo Ré Jorge Unicamp _________________________ Laboratório Interações Insetos-Plantas Depto. Biologia Animal, Inst. Biologia Unicamp – University of Campinas herbivores+plants: the multicellular majority Terry Erwin, 1982: “... as many as 30 million insects” Terry Erwin who’s who among the herbivorous insects beetles moths, butterflies flies, midges sawflies bugs, aphids grasshoppers thrips walking sticks data sources: taxonomic studies taxonomy based on adults - what do larvae do? no host records unreliable host identification data sources: biocontrol surveys Carduus nutans with Rhynocyllus conicus (Curculionidae) data sources: community diversity studies • Plant samples (plots, individual trees) and • insect mass samples (net sweep, suction samples, fogging, light traps) Murdoch, Evans & Peterson 1972 adult insects on plants: herbivores or tourists? Insects and Compositae as ecological study systems A model system for herbivore evolution Solidago – Eurosta – parasitoids/predators A model system for population dynamics ragwort, Senecio jacobaea - cinnabar moth, Tyria jacobaeae Longitarsus Chromatomyia Melanagromyza metacommunity dynamics a field experiment From biocontrol surveys to ecological insights Biocontrol prospecting in South America Baccharis Daniel Gandolfo Gutierrezia Chromolaena odorata > Campuloclinium macrocephalum basic study design a suitable plant-herbivore system -
University of Mysore
Biodata of Dr. N. B. RAMACHANDRA Ph.D, FASc PROFESSOR, AND PRINCIPAL INVESTIGATOR Chairman - Department of Studies in Genetics and Genomics Chairman- Board of Studies in Genetics and Genomics Deputy Coordinator for UGC-SAP (CAS-1), DOS in Zoology Director- University of Mysore Genome Centre (Local Secretary - 103rd Indian Science Congress 2016 Former Chairman-Board of Studies in Zoology (UG&PG) & BOS in Clinical Research & Clinical Data Management) University of Mysore, Manasagangotri, Mysuru – 570 006, INDIA [email protected] / [email protected] http://scholar.google.co.in/citations?user=CBqZv1oAAAAJ http://www.ramachandralab.com/ Phone: 0821-2419781/888 (O) ; Mobile: 09880033687 1. Date of Birth: 31.05.1958 2. Educational Qualification: 1982-88: Ph.D. in Zoology, Department of Zoology, University of Mysore, INDIA. Thesis title: "Contributions to population cytogenetics of Drosophila: Studies on interracial hybridization and B-chromosomes". 1980-82: M.Sc. in Zoology, 1st Class with 2nd Rank, University of Mysore, Mysore. 1977-80: B.Sc. (Chemistry, Botany, and Zoology), 1st class, Cauvery College, Gonicoppal, University of Mysore, INDIA. 3. Area of Specialization: 1) Drosophila Genetics and Evolution 2) Human Genetic Diseases and Genomics 4. Awards/ Recognitions: Sl.No. Year Recognition Institution “Best boy of the college” Cauvary College, Gonicoppal, Univ. 1 1980 award of Mysore. 2 1982 II Rank in M.Sc DOS in Zoology, Univ. of Mysore. Government of India Nehru Department of Biological sciences, 3 1990 Centenary British Fellowship Warwick University, Coventry, United (common wealth) Award Kingdom (not availed). 1990 - McMaster University, Department of 4. 1992 Post Doctoral Fellow Award Biochemistry, Canada University of California, Department of 1999- Senior Research Associate 5 Cell Molecular and Developmental 2000 II award Biology, Los Angeles, USA VISITING PROFESSOR- to Dept. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Phylogeny and Ecological Evolution of Gall-Inducing Sawflies (Hymenoptera: Tenthredinidae)
University of Joensuu, PhD Dissertations in Biology No:6 Phylogeny and ecological evolution of gall-inducing sawflies (Hymenoptera: Tenthredinidae) by Tommi Nyman Joensuu 2000 Nyman, Tommi Phylogeny and ecological evolution of gall-inducing sawflies (Hymenoptera: Tenthredini- dae). – University of Joensuu, 2000, 92 pp. University of Joensuu, PhD Dissertations in Biology, n:o 6. ISSN 1457-2486 ISBN 951-708-962-7 Key words: coevolution, convergent evolution, extended phenotypes, gall morphology, gradualism, insect-plant interactions, Nematinae, phylogeny, Salix, sawfly, speciation The nematine sawflies (Hymenoptera: Tenthredinidae) that induce galls on willows (Salix spp.) form one of the most abundant and speciose herbivore groups in the Holarctic region. The purpose of this thesis was to study the evolutionary history of the nematine gallers. The three main questions addressed were: (1) what is the sequence in which different gall types have evolved in the nematines; (2) how has the utilization of host plants evolved in the group; and (3) why has gall induction evolved in the nematines? The first question was studied by reconstructing the phylogeny of representative nema- tine species by using enzyme electrophoresis and DNA sequencing. According to the results, species that induce true closed galls evolved from species that induce leaf folds or rolls. Thereafter, several different gall types evolved gradually, and the evolution of each gall type was followed by a radiation to new host species. The phylogenies show that gall morphology is mainly determined by the insects, i.e., the gall represents an extended phenotype of the galler. The two phylogenies were also used to study the second question. -
THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles. -
Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected. -
Richard Herbert Foote (1918-2002) Richard H. Foote, a Longtime Member and Former President of the Entomological Society of Washi
31 March 2003 PROC. ENTOMOL. SOC. WASH. 105(2), 2003, pp. 508-516 OBITUARY Richard Herbert Foote (1918-2002) Richard H. Foote, a longtime member old-fashioned way to bring up children in a and former President of the Entomological family. We were raised according to Chris- Society of Washington, died on February 9, tian tradition, and both of us were always 2002. Known fondly as "Dick" to his confident of our parents' love as long as many friends and colleagues, he passed they lived." away suddenly, at the age of 83, of com- Dick's interest in biology had its roots in plications following a broken hip. Among his father's work as a sanitary and civil en- the highlights and accomplishments of his gineer. Herb Foote worked for the State of long career, Dick became a world recog- Montana from 1923, when he assumed the nized specialist on the taxonomy of fruit position of Director of the Water and Sew- flies, served as leader of the Systematic En- age Division of the Montana State Board of tomology Laboratory, ARS, USD A, and Health, until his retirement in the 1950's. was an early advocate for the use of com- He led the successful efforts to rid Montana puters for information storage and retrieval of typhoid fever through his work on the in entomology. drinking water systems of the state and re- Richard Herbert Foote was born on May ceived an honorary doctorate for his work 2, 1918 in Bozeman, Montana, by eight in parasitology from the University of Mon- years the elder of the two children of Her- tana. -
Commentary Plasticity in Arthropod Cryotypes T
2585 The Journal of Experimental Biology 210, 2585-2592 Published by The Company of Biologists 2007 doi:10.1242/jeb.002618 Commentary Plasticity in arthropod cryotypes T. C. Hawes and J. S. Bale* School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK *Author for correspondence (e-mail: [email protected]) Accepted 12 March 2007 Summary Low-temperature acclimation and acclimatization history and organism is proposed, descending, respectively, produce phenotypic changes in arthropods at multiple from what we define as ‘cryotype’ (class of cryoprotective levels of biological organization from the molecular to the strategy) to genotype and, ultimately, phenotype. behavioural. The role and function of plasticity – where a Alternative (and sometimes complementary) strategies to constitutive, reversible change occurs in the phenotype in plasticity include specialization, generalization, bet- response to low temperature – may be partitioned hedging, cross-resistance and convergence. The transition hierarchically at evolutionary scales according to of cryotypes from basal to derived states is a continuum of cryoprotective strategy, at macrophysiological scales trait optimization, involving the fixation of plasticity and/or according to climatic variability, and at meso- and micro- its alternatives. scales according to ecological niche and exposure. In correspondence with these scales (which are interdependent rather than mutually exclusive), a Key words: arthropod, cold tolerance, cryotype, cryoprotection, hierarchical typology of interaction between thermal acclimation, acclimatization, phenotype. Introduction elasticity depends on the type of rubber band and the stimulus Animal physiology in the real world is dynamic – it must it is given, so the plasticity of an arthropod’s response varies in respond to variability at multiple temporal and spatial scales. -
Halona2021r.Pdf
Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups. -
Chemical Ecology of Pollination in Deceptive Ceropegia
Chemical Ecology of Pollination in Deceptive Ceropegia CHEMICAL ECOLOGY OF POLLINATION IN DECEPTIVE CEROPEGIA DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Annemarie Heiduk Bayreuth, Januar 2017 Die vorliegende Arbeit wurde in der Zeit von Februar 2012 bis Dezember 2016 in Bayreuth am Lehrstuhl Pflanzensystematik unter der Betreuung von Herrn Univ.-Prof. Dr. Stefan Dötterl (Erst-Mentor) und Herrn PD Dr. Ulrich Meve (Zweit-Mentor) angefertigt. Gefördert wurde die Arbeit von Februar bis April 2012 durch den ‛Feuerwehrfond’ zur Doktorandenförderung der Universität Bayreuth, von Mai 2012 bis April 2015 durch ein Stipendium nach dem Bayerischen Eliteförderungsgesetzt (BayEFG), und von Mai bis Juli 2015 durch ein Stipendium des Bayerischen Programms zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre. Vollständiger Abdruck der von der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 02.02.2017 Zulassung durch das Leitungsgremium: 10.02.2017 Wissenschaftliches Kolloquium: 31.05.2017 Amtierender Direktor: Prof. Dr. Stephan Kümmel Prüfungsausschuss: Prof. Dr. Stefan Dötterl (Erstgutachter) Prof. Dr. Konrad Dettner (Zweitgutachter) Prof. Dr. Heike Feldhaar (Vorsitz) Prof. Dr. Bettina Engelbrecht Declaration of self-contribution This dissertation is submitted as a “Cumulative Thesis“ and contains a general synopsis (Part I) and three manuscripts (Part II) about the chemical ecology and pollination biology of Ceropegia . The major part of the research presented here was accomplished by myself under supervision of Univ.-Prof. Dr. Stefan Dötterl (Universities of Bayreuth and Salzburg) and PD Dr. -
Cognitive Mechanisms Underlying Responses to Sperm Competition in Drosophila Melanogaster
Cognitive mechanisms underlying responses to sperm competition in Drosophila melanogaster James Luke Rouse Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology November 2016 The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Jointly authored publications Rouse, J. Bretman, A. (2016) Exposure time to rivals and sensory cues affect how quickly males respond to changes in sperm competition threat, Animal Behaviour, 122, 1-8 All experimental work was carried out by the author of this thesis; manuscript preparation was jointly shared between the authors This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2016 The University of Leeds and James Luke Rouse ii Acknowledgments I doubt many people will read this Thesis too closely, but from personal experience I know the acknowledgments are scrutinised, so I better make them good. First and foremost, I would like to thank my supervisor Amanda for providing me with the opportunity to perform this work. From helping me understand statistics as a baby-faced undergraduate she has encouraged and cajoled me to the baby-faced 24 year old I am today. -
FRUIT FLY GENERA SOUTH of the UNITED STATES (Diptera: Tephritidae)
1.0 1/11/2.5 2.2 1.1 1.1 111111.25 11111 1.4 111111.6 11111 1.25 111111.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A NATIDNAL BUREAU OF STANDAROS-1963-A i 6~~ ~_. - (; ~> I' \, ," '" <> Q -i'. .D « 0" ',' '" p P 'J -:. y~.' /'.',,": :$, ,/ -l,; .C ~ r;;;:. ';. ,~ .., .. , {~ 0 , FRUIT FLY GENERA SOLJTH OF TH E UNITED STATES (Diptera: Tephritidae) by RICHARD H. FOOTE F\ UNITED STATES TECHNICAL PREPARED BY I\U.~), DEPARTMENT OF BULLETIN SCIENCE AND ~ AGRICULTURE NUMBER 1600 EDUCATION ADMINISTRATION ABSTRACT Foote, Richard H. 1980. Fruit fly genera south of the United States. U.S. Department of Agriculture, Technical Bulletin 1600,79 pp. The 88 genera of fruit flies in Mexico, Central America, the West Indies, and South America are discussed. Keys to all genera are pre sented, and a synonymy, diagnosis, and discussion of each genus follow. Included for each genus is information about its distribution, its rela tionship to other genera, its composition in terms of the species belong ingto it, aids to its recognition, and references for identifying its species. Several diagnostic characteristics and the wing of at least one species in almost every genus have been illustrated. Four genera, previously re garded as valid, have been synonymized with others, and three addi tional genera, long recorded from the region, are shown not to occur in the New World or to belong to other fly families. Fruit flies comprise the most economically important family of plant-inhabiting Diptera, consid ering the potential for agricultu"'al damage by species of such genera as Anast-repha, Ceratitis, Dacu.s, andRhagoletis.