IBM 709 MANUFACTU RER IBM 709 Data Processing System International Business Machines Corporation

Total Page:16

File Type:pdf, Size:1020Kb

IBM 709 MANUFACTU RER IBM 709 Data Processing System International Business Machines Corporation IBM 709 MANUFACTU RER IBM 709 Data Processing System International Business Machines Corporation Photo by International Business Machines Corporation at Point Mugu, California and one at Point Arguello, APPLICATIONS California. Land Air is the lessee, and our major Manufacturer committment is for missile test flight data reduction. This is a general purpose computer doing both scien­ In addition, we provide computing facilities for the tific computing and commercial work. The system is entire installation at Mugu (general scientific and scientifically oriented with fast internal speeds. engineering research and data processing). USA Ballistic Missile Agency Redstone Arsenal U.S.N. Pacific Missile Range Ft. Mugu Located at Computation Laboratory, Redstone Arsenal, Operated by Land Air, Inc. ALabama, the system is used for scientific and commer­ Located at the Naval Missile Faculty, Point Arguello, cial applications. California, the system is used on the main problem U. S. Army Electronic Proving Ground of range safety impact predicition in real time using Located in Greely Hall, Fort Huachuca, Arizona, sys­ FPS-l6 Radar and Cubic COTAR data. System is also tem is used in support of the tactical field army used for post flight trajectory reduction of FPS-l6 and the technical program of the departments of the radar data and for trajectory integration and analysis, U. S. Army Electronic Proving Ground. etc. U.S.N. Pacific Missile Range Ft. Mugu USN OTS China Lake, California Operated by Land Air, Inc. Located at the Data Computation Branch, Assessment Located at the Pacific Missile Range, Point Mugu, the DiVision, Test Department, the computer is used for system is used for the processing of missile test data reduction and scientific computation as related data (radar, optical, and telemetry), for real time to Naval Ordnance, Test, Development & Research applications, and for the solution of general mathe­ (l5% of computer time devoted to management data pro­ m.atical problems. cessing) . Land Air, Inc. operates two 709 1 s for the Navy, one IBM 709 500 CONSOLE PRINTER I ICARD READER I ICARD PUNCH LIGHTS AND SWITCHES ~ 1/XTERNAL SI~AL SOURCE ~ CHANNEL ~ 1--------1--..----­A CHANNEL --------.. 709 CENTRAL PROCESSING lATA NO.1 UNIT AND S~NCRO~'lER MAGNETIC CORE MEMORY MAGNETIC TAPE DRI VES CHANNEL 8 on each TCU and 0 S ~EXTERNAL C SIGNAL SOURCE CHANNEL D Each OS can have the same Input M Output devices as DATA SYNCRONI ~ER shown for OS No. I MAGNETIC DRUM CATHODE RAY TUBE OUTPUT CHANNEL STORAGE RECORDER E AND DISPLAY CHANNEL UNIT F DATA SYNCRONllER NO.3 SCHEMATIC SHOWING DATA FLOW FOR INPUTM OUTPUT FOR IBM 709 DATA PROCESSING SYSTEM Chart by International Business Machines Corporation National Aviation Facilities Experimental ponent design computations, computer system simula­ Station (FAA) tion, miscellaneous scientific and engineering com­ Located at Atlantic City, New Jersey, the syst~m is putations, data reduction of experimental and flight used for fast time simulation of air traffic control test data, and payroll, inventory control, and ~is­ systems, data reduction on data collected in various cellaneous business applications. areas of air traffic control, data analysis, real Hughes Aircraft Company time simulation, statistical analYSis, and probabil­ Located at Florence Avenue & Teale Streets, Building i ty problems. 6, Room Fl022, Culver City, California, the system C E I R, Inc. is used for all forms of numerical computation, in­ Located at 1200 Jefferson Davis Highway, Arlington cluding differential equations, numerical integra­ 2, Virginia, the system is used for linear program­ tion, parameter studies, solution of simultaneous ming, multiple regression, business data processing, equations, matrix manipulations, polynomial equations, and flight simulation, plus applications of our integral equations, simulations of various systems clients who rent time from us. (computers, mass raid attacks, fire control systems) Douglas Aircraft Company (2) partial differential equations, harmonic analysis, Located at A-250, and A-26o, Santa Monica, both sys­ auto correlation and power spectrum analysis, statis­ tems are used for strength analysis, trajectories, tical computations, Monte Carlo evaluations of various aerodynamic stability, aerodynamic performance, dy­ problems, network analysis, research in computer sys­ namic response, weight control, and propulsion anal­ tems (assemblers, compilers), design studies, and ysiS. development of problem oriented languages. Ford MOtor Company IBM Space Computing Center Located at the Central Services Building, Ford Road, Located at 615 Pennsylvania Avenue, N.W., Washington, Newport Beach, California, the system is used for D. C., the system is used for orbital calculations computation of missile trajectories within the earth's for space vehicles, including formulation, testing atmosphere, computation of orbits (in light atmos­ and production, test center applications for Federal phere or free space), computation of rocket motor Systems Division of IBM, and customer test center for performance, hydrodynamic computations, missile com- local 709 users who have ordered machines. 501 IBM 709 Photo by Internatjonal Business Machines Corporation Lockheed Aircraft Corporation-Burbank utilized for scientific calculations in engineering Located at Burbank, California, the system is used deSign, parts and assembly control, production and to solve all scientific and engineering problems sub­ updating of engineering parts lists, and special m.i:tted by the Engineering Division. reports emanating from complete files of system parts Lockheed Sunnyvale and components. The computing installation consists of two IBM 709 1 s MCDonnell Aircraft Corporation and peripheral equipment. It is used for scientific Located on the 1st level of Bldg. 33, Engineering calculations involving matrix inversion, partial Campus, the system is used for flutter analysis, differential equations, trajectories, solutions for trajectory studies, probability studies, stress and simultaneous equations, etc. The systems are also loads analYSiS, aerodynamic performance, thermody­ used for flight data reduction involving the prepara­ namic problems, numerical control of milling machines, tion of labels and plotting tapes, data reduction and flight test and wind tunnel data reduction, operations computation of calibration. Admisistrative applica­ analysis, and engine performance. tions include the solution of financial, material, Northern States Power Company and statistical problems. Located at 1925 Sather Street, St. Paul 13, Minnesota, The Martin Company-Baltimore the system is used for customers' billing and account­ Located at the Missile Weapons Systems Division, Bal­ ing, load flow studies, generator outage probabilities, timore, Md., the system is used for missile design, plant life actuarial analyses, substation and feeder vibrations analysis, nuclear shielding, reactor deSign, load record, and transformer loading and forecasting. e:lectronic deSign, ini'ormation retrieval, trajectory Phillips Petroleum Company an.alysis, compilers, aerodynamic research, circuit Located in the Adams Building at Bartlesville, Okla­ analYSiS, master lines automation, numerically con­ homa, the system is used" for the solution of engineer­ trolled tools, data reduction, weight calculation ing, technical and research problems and business automation, statistical analysis, structural analysis, accounting. and molecular research. RCA Missile & Surface Radar Division The :r.il.rtin Company-Orlando Located in Bldg. 116-1 M::lorestown, N. J., the system Located at the Engineering Division, the system is is used for the real-time control of BMEWS (Ballistic IBM 709 502 Photo by USAF AMR Cape Canaveral Missile Early Warning System), for engineering model System Development Corporation tracking radar, for engineering calculations associa­ Located at 1923 Centinella Avenue, West Los Angeles, ted with design of BMEWS sites, and for data reduc­ California, the system is used for data processing tion for the Down Range Anti-Ballistic Missile Pro­ applications for the development of a system t~aining gram (DAMP). program. RCA Service Company, Patrick AFB M. I. T. Lincoln Laboratory Located in the Technical Laboratory, Bldg. 989, Located at the M. I. T. Lincoln Laboratory, LeXington, Patrick Air Force Base, Florida, the system is used Massachusetts, the computer is used for real t~e primarily to determine missile trajectory informa­ systems studiesj evaluation, simulation, and ~lysis, tion (time, position, velocity, and acceleration) physical data processing, and programming rese~ch. from observed observations, azimuth, elevation and University of California LRL slant range (where available). Data sources are Located at Livermore, California, the system is used Azusa, FPS-16, Mod II radar, ballistic camera, fixed for the solution of differential equations. camera, cine-theodolite, and DOVAP. Also digitizing University of California, Los Angeles and linearization of telemetry is performed. Located at the University of California, Los Angeles RCA Service Company, Cape Canaveral campus, the system is used for research and edubation Located at Bldg. 2-1655, Cape Canaveral, Florida, in all university disciplines, with special emphasis the system is'used for real time impact prediction on business management problems, operations research, computing during ballistic missile launches, ground gaming, and computer systems development. instrumentation check outs, near
Recommended publications
  • Weeel for the IBM 704 Data Processing System Reference Manual
    aC sicru titi Wane: T| weeel for the IBM 704 Data Processing System Reference Manual FORTRAN II for the IBM 704 Data Processing System © 1958 by International Business Machines Corporation MINOR REVISION This edition, C28-6000-2, is a minor revision of the previous edition, C28-6000-1, but does not obsolete it or C28-6000. The principal change is the substitution of a new discussion of the COMMONstatement. TABLE OF CONTENTS Page General Introduction... ee 1 Note on Associated Publications Le 6 PART |. THE FORTRAN If LANGUAGE , 7 Chapter 1. General Properties of a FORTRAN II Source Program . 9 Types of Statements. 1... 1. ee ee ee we 9 Types of Source Programs. .......... ~ ee 9 Preparation of Input to FORTRAN I Translatorcee es 9 Classification of the New FORTRAN II Statements. 9 Chapter 2. Arithmetic Statements Involving Functions. ....... 10 Arithmetic Statements. .. 1... 2... ew eee . 10 Types of Functions . il Function Names. ..... 12 Additional Examples . 13 Chapter 3. The New FORTRAN II Statements ......... 2 16 CALL .. 16 SUBROUTINE. 2... 6 ee ee te ew eh ee es 17 FUNCTION. 2... 1 ee ee ww ew ew ww ew ew ee 18 COMMON ...... 2. ee se ee eee wee . 20 RETURN. 2... 1 1 ew ee te ee we wt wt wh wt 22 END... «4... ee we ee ce ew oe te tw . 22 PART Il, PRIMER ON THE NEW FORTRAN II FACILITIES . .....0+2«~W~ 25 Chapter 1. FORTRAN II Function Subprograms. 0... eee 27 Purpose of Function Subprograms. .....445... 27 Example 1: Function of an Array. ....... 2 + 6 27 Dummy Variables.
    [Show full text]
  • The PORTHOS Executive System for the IBM 7094
    A § 1 " * '& I m I ^ ;/ 1 ^ # **W : : : The Porthos Executive System for the IBM 7O9I+ User ' s Manual Table of Contents Title Sheet Preface Table of Contents 1. The 709^-1^01 Computer Installation 1.1. Description 1.1.1. General 1.1.2. Organization 1.1.3* Equipment 1.2. Programming Services 1.2.1. System Consulting 1.2.2. System Development 1.2.3- Associated Programmers 1.3« Library Services 1.3* 1' Program Documentation 1.3*2. Subroutines I.3. 3« Reference Publications 1.3.1+. The Mailing List 1.3' 5* Information Bulletins Date 5/1/65 Section Contents Page: 1 Change 2 Porthos Manual Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/porthosexecutivesyOOuniv : s 2. Use of the Computing Facility 2.1. Conditions of Use 2.1.1. Policy for Charging for Computer Use 2.1.2. Refunding of IBM 7094 Time Due to System or Machine Failures 2.1.2.1. In-System Jobs 2.1.2.2. Relinquish Jobs 2.2. Application for Use of Equipment 2.2.1. The Form 2.2.2. Submission and Approval 2.2.3. Entries on the Problem Specification Form 2.2.4. Changes in the Problem Specification 2.2.5. Problem Abstracts 2.3- Logging and Control of Computer Time 2.3«1« Accounting for Computer Time 2.3.2. Notices to Users Concerning Lapsing Time 2.3.3. Department Reports 2.3'3-l« Internal Reports 2. 3- 3* 2. The Technical Progress Report 2.
    [Show full text]
  • Data Processing with Unit Record Equipment in Iceland
    Data Processing with Unit Record Equipment in Iceland Óttar Kjartansson (Retired) Manager of Data Processing Department at Skýrr, Iceland [email protected] Abstract. This paper presents an overview of the usage of unit record equipment and punched cards in Iceland and introduces some of the pioneers. The usage of punched cards as a media in file processing started 1949 and became the dominant machine readable media in Iceland until 1968. After that punched cards were still used as data entry media for a while but went completely out of use in 1982. Keywords: Data processing, unit record, punched card, Iceland. 1 Hagstofa Íslands Hagstofa Íslands (Statistical Bureau of Iceland) initiated the use of 80 column punched cards and unit record equipment in Iceland in the year 1949. The first ma- chinery consisted of tabulating machine of the type IBM 285 (handled numbers only), the associated key punch machines, verifiers, and a card sorter. See Figures 1 and 2. This equipment was primarily used to account for the import and export for Iceland. Skýrr (Skýrsluvélar ríkisins og Reykjavíkurborgar - The Icelandic State and Munici- pal Data Center) was established three years later by an initiative from Hagstofa Íslands, Rafmagnsveita Reykjavíkur (Reykjavík Electric Power Utility), and the Medical Director of Health of Iceland as was described in an earlier article [3]. Fig. 1. IBM 285 Electric Accounting Machine at Hagstofa Íslands year 1949 J. Impagliazzo, T. Järvi, and P. Paju (Eds.): HiNC 2, IFIP AICT 303, pp. 225–229, 2009. © IFIP International Federation for Information Processing 2009 226 Ó. Kjartansson Fig. 2. Early form of the data registration using a punched card.
    [Show full text]
  • Oct. 5Th IBM 1401
    episode “Whither Canada?” The IBM 1403 series would run for forty-five Oct. 5th Oct. 5, 1959 episodes over four series. It was conceived, written, and The IBM 1403 line printer was performed Graham Chapman, IBM 1401 introduced at the same time as John Cleese, Terry Gilliam, Eric the IBM 1401 [previous entry]. Idle, Terry Jones, and Michael Oct. 5, 1959 The original could print 600 Palin. lines per minute, but the Model The term “spam” in reference to The IBM 1401 was the first 3 could manage a blazingly fast bulk, unsolicited email [March machine in the highly successful 1400 lines per minute. IBM 1400 series. IBM was 31] is derived from the show’s pleasantly surprised (perhaps It was the first printer to offer a “Spam” sketch which premiered even shocked) to receive 5,200 width of 132 columns, which on Dec. 15, 1970. “Spam” is orders in just five weeks after its was subsequently adapted by uttered at least 132 times. announcement – more than had many others devices, such as the The Python language [Feb 20] is been predicted for the entire Centronics 101 (1970), the named after the troupe, and lifetime of the device. Indeed, DECwriter II ([Sept 24]1975), Monty Python references are the number of installed and the Epson MX-80 ([Oct 00] often found in sample code. For machines peaked at over 10,000 1980). One historian believes instance, many Python coders in the mid-1960s, and accounted this unusual number of columns like to use spam, ham, and eggs for nearly half of all the derives from the spacing used by as variables, instead of the more computer systems in the world IBM’s pre-1928 punch cards traditional foo [March 10], bar, at the time.
    [Show full text]
  • IBM 1401 System Summary
    File No. 1401-00 Form A24-1401-1 Systems Reference Library IBM 1401 System Summary This reference publication contains brief descriptions of the machine features, components, configurations, and special features. Also included is a section on pro­ grams and programming systems. Publications providing detailed information on sub­ jects discussed in this summary are listed in IB~I 1401 and 1460 Bibliography, Form A24-1495. Major Revision (September 1964) This publication, Form A24-1401-1, is a major revision of and obsoletes Form A24-1401-0. Significant changes have been made throughout the publication. Reprinted April 1966 Copies of this and other IBM publications can be obtained through IBM Branch Offices. Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764. Contents IBM 1401 System Summary . ........... 5 System Concepts . ................ 6 Card-Oriented System .... ......... 11 Physical Features. 11 Interleaving. .. .................................... 14 Data Flow.... ... ... ... ... .. ... ... .. ................... 14 Checking ................................................... 15 Word Mark.. ... ... ... ... ... ... .. ... ... ... ........... 15 Stored-Program Instructions. .................. 15 Operation Codes . .. 18 Editing. .. ............ 18 IBM 1401 Console ............................................ 19 IBM 1406 Storage Unit. ........................... 20 Magnetic-Tape-Oriented System . ........................... 22 Data Flow .................................................
    [Show full text]
  • Computing Science Technical Report No. 99 a History of Computing Research* at Bell Laboratories (1937-1975)
    Computing Science Technical Report No. 99 A History of Computing Research* at Bell Laboratories (1937-1975) Bernard D. Holbrook W. Stanley Brown 1. INTRODUCTION Basically there are two varieties of modern electrical computers, analog and digital, corresponding respectively to the much older slide rule and abacus. Analog computers deal with continuous information, such as real numbers and waveforms, while digital computers handle discrete information, such as letters and digits. An analog computer is limited to the approximate solution of mathematical problems for which a physical analog can be found, while a digital computer can carry out any precisely specified logical proce- dure on any symbolic information, and can, in principle, obtain numerical results to any desired accuracy. For these reasons, digital computers have become the focal point of modern computer science, although analog computing facilities remain of great importance, particularly for specialized applications. It is no accident that Bell Labs was deeply involved with the origins of both analog and digital com- puters, since it was fundamentally concerned with the principles and processes of electrical communication. Electrical analog computation is based on the classic technology of telephone transmission, and digital computation on that of telephone switching. Moreover, Bell Labs found itself, by the early 1930s, with a rapidly growing load of design calculations. These calculations were performed in part with slide rules and, mainly, with desk calculators. The magnitude of this load of very tedious routine computation and the necessity of carefully checking it indicated a need for new methods. The result of this need was a request in 1928 from a design department, heavily burdened with calculations on complex numbers, to the Mathe- matical Research Department for suggestions as to possible improvements in computational methods.
    [Show full text]
  • MTS on Wikipedia Snapshot Taken 9 January 2011
    MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors
    [Show full text]
  • 0-Go6769 (COMP E CN E (Acessio°/,Yer)
    II UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER eC)C COLLEGE PARX, MARYLAND .. TRSIN_N?0-go6769 _(COMP E CN E (AcEssio°/,yER). ,T7U) / , (.PAbES" -­ COE(CAEGORY) NATIONAL TECHN S---ingfiod, Va. 22151 N70-36769 AN IOCS ALGORITHM FOR MICROPROGRAMMING Jeffry W. Yeh University of Maryland College Park, Maryland July 1970 0; .. o ¥ :-S -." NATIONAL TECHNICAL INFORMATION SERVICE SS/0. U.S.NDEEAVMEE C •9-:4. • 0* oc OS.0* e This document has been approved for public release and sale. TGhnicalReport-70-124 July 1970 'R-21-002-206 An lOCS Algorithm for Microprogramming by -Jeffry W. Yeh This research was supported in part by Singer-Link Research Assistant Scholarship in Computer Science and by Grant NGR-21-002-206 from the National Aeronautics and Space.Administration. Abstract An Input-output Control System (IOCS) initiates and controls the input and output processes of an operating system, thereby making it unnecessary for the user to recode any of these processes. Input-Output Control Systems usually,perform the following functions: (l)'file and buffer handling for the creation and maintenance of the file, the -" buffering of the input-output data, and the blocking or deblocking of the records; (2) input-output scheduling for the examination of the result of an I/O activity and the determination of the next I/O activity; (3) generation of the actual I/O programs, including #e channel programs. This report presents a tree-structure design of an IOCS, using double-buffers. The design includes a set of macro instructions and a set of algorithms. There are three levels in the tree-structure: the first level deals with file handling and buffering; the second level with I/O scheduling; and the third level with the device drivers.
    [Show full text]
  • Museum Monthly Reports
    .J LI j' .. ... ' .J t / . oJ , EXHIBITS AND AR~HJVES D::::PhRTIV1Et\'Y' -- OCTOBER '83 REPORT STAFFING: "'1eredith Stelling, Cooro i na tor Gregory Welch, Operations Manager/Research Bill Wisheart , Registr~r/Photo and Video Archives Beth Par kh urst, Re search RECENT ARTIFACT AC0UISITIONS (since October 1, 1983): X239. 83 Monr oe High Speed Adding Calculator, gift of Lee Swanson. X240.83 Vari-typer, gift of Lee Swanson. X241.83 HP-65 Programmable Calculator, gift of Stephen and Barbara Gross. X241.83 BIAX memory cores, gift of G.B. Westrom. X243.83 - X259.83 The University of Illinios Department of Computer Science Collection of Drawing Instruments, Slide Rules, Calculators and Circuit Boards. X243.83 Smith's Im proved Protactor. 7 X246.83 ILLIAC III Ci rcuit Boards. /o X2~7. 83 ILLIAC II Ci r cuit Board. /0 X250.e3 Keuffel & Esser Cylind rical Slide Rule. ? X260.83 - X274.83 The SAGE AN/SFQ-7 computer. Gi ft of The National 1'1useum of Science and Technology, Ontario. X2r,r . 83 1/2 naste r console ~ C5l5U X2f,} . [;3 "· ,o.onet j c Dr U':l Uni t. 5. (f(5D ~ I X2',2 . P3 IRM 7J8 printer. /C1t7 X2 G ~ . 83.1':>, - E 5 RAda r Operato r's Consoles. ~~ 107.J7.J X7r.t. £'3.Z>. - E 5 Auxiliary Consoles. -------6?:!O/02J7..) X2C,S . 83?l, - E 5 Operator's Chairs. 50 I X7 :- F. f' 3 I RIv! 2 G Car d Pu n c h . / CJ7) X767 . S3 IB"'1 723 Ca rd Recorne r.
    [Show full text]
  • Systems Reference Library
    File No. 1620-36 Form C26-5774-0 Pages Revised 5/22/64 Systems Reference Library IBM 1620 Monitor II System Reference Manual This publication describes the 1620 Monitor II System, a combined operating and programming system. This system includes a Supervisor Program, a Disk Utility Program, an sps II-D Assembler, and a FORTRAN II-D Compiler. The latter three programs operate under control of the Supervisor Program to provide continuous operation. Also described is the 1620-1443 Monitor II System. This sys­ tem is designed to use the IBM 1443 Printer as an integral Iunit in the processing of source programs. Form C26-5774-0 Page Revised 5/22/64 By TNL N26-0080 Reader Survey Form A reader survey form is included at the back of this manual. We would appreciate your evaluation of this manual to assist us with future revisions and to guide us in planning other manuals. Thank you for your cooperation. The following pages have been revised by Technical News·· letter: TNL Number Pages Dated N26-0057 ii, 4, 18, 21, 25, 26, 30, 37, 50, 1/20/64 54, 56, 88, 108, 1l0, 114, 117, 123, 124, 125, 127, 128, 131. N26-0064 ii, iii, 5, 93, 101, 102.1, 117, 2/20/64 118, 119, 120, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 135, 143, 154. I N26-0080 ii, iii, 135.1, 135.2, 135.3, 135.4, 5/22/64 135.5. Technical Newsletter N26-0080 supersedes the following publication: IBM 1620-1443 Monitor II System Specifications, Form C26-5858-0.
    [Show full text]
  • CERN LIBRARIES, GENEVA CERN/SPC/220 28 February, 1966
    CERN LIBRARIES, GENEVA CERN/SPC/220 28 February, 1966 CM-P00095068 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH SCIENTIFIC POLICY COMMITTEE Thirty-eighth Meeting 8 March, 1966 EXTENSIONS TO THE CERN COMPUTING FACILITIES by Dr. M.G.N. Hine The attached paper contains a review of CERN's needs from its central computing facilities, both in the near future and as far as 1969-1970. It describes possible ways in which these needs might be met within the budget forecasts, and suggests an optimum way to proceed. The scientific policy is to be discussed at the Scientific Policy Committee meeting on 8th March. If the policy line is cleared at that meeting, the Finance Committee could start discussion of the contractual implications at its meeting on 10th March. The Finance Committee would not be pressed to give final decisions at that meeting about contract adjudications, but those decisions will be needed in the near future. 66/348/5 CERN/SPC/220 EXTENSIONS TO THE CERN COMPUTING FACILITIES 1. Introduction The need to continue the development of computing facilities at CERN in order to keep pace with the rapidly growing use of com• puting and digital techniques in high-energy physics has been ex• plained on several occasions to the Scientific Policy Committee and the Finance Committee, and money has been reserved in the future budget forecasts for this purpose. A review of our needs has been made recently in the light of a year's experience of use of the CDC 6600 and associated equipment, and this paper describes the conclusions and the policy we propose to follow.
    [Show full text]
  • A History of the Personal Computer Index/11
    A History of the Personal Computer 6100 CPU. See Intersil Index 6501 and 6502 microprocessor. See MOS Legend: Chap.#/Page# of Chap. 6502 BASIC. See Microsoft/Prog. Languages -- Numerals -- 7000 copier. See Xerox/Misc. 3 E-Z Pieces software, 13/20 8000 microprocessors. See 3-Plus-1 software. See Intel/Microprocessors Commodore 8010 “Star” Information 3Com Corporation, 12/15, System. See Xerox/Comp. 12/27, 16/17, 17/18, 17/20 8080 and 8086 BASIC. See 3M company, 17/5, 17/22 Microsoft/Prog. Languages 3P+S board. See Processor 8514/A standard, 20/6 Technology 9700 laser printing system. 4K BASIC. See Microsoft/Prog. See Xerox/Misc. Languages 16032 and 32032 micro/p. See 4th Dimension. See ACI National Semiconductor 8/16 magazine, 18/5 65802 and 65816 micro/p. See 8/16-Central, 18/5 Western Design Center 8K BASIC. See Microsoft/Prog. 68000 series of micro/p. See Languages Motorola 20SC hard drive. See Apple 80000 series of micro/p. See Computer/Accessories Intel/Microprocessors 64 computer. See Commodore 88000 micro/p. See Motorola 80 Microcomputing magazine, 18/4 --A-- 80-103A modem. See Hayes A Programming lang. See APL 86-DOS. See Seattle Computer A+ magazine, 18/5 128EX/2 computer. See Video A.P.P.L.E. (Apple Pugetsound Technology Program Library Exchange) 386i personal computer. See user group, 18/4, 19/17 Sun Microsystems Call-A.P.P.L.E. magazine, 432 microprocessor. See 18/4 Intel/Microprocessors A2-Central newsletter, 18/5 603/4 Electronic Multiplier. Abacus magazine, 18/8 See IBM/Computer (mainframe) ABC (Atanasoff-Berry 660 computer.
    [Show full text]