Medical and Veterinary Mycology Maximum Performance Solutions Customisable MIC of Bacteria,Mycobacteriaandyeasts,Ensuringaccuratefirsttimeresults

Total Page:16

File Type:pdf, Size:1020Kb

Medical and Veterinary Mycology Maximum Performance Solutions Customisable MIC of Bacteria,Mycobacteriaandyeasts,Ensuringaccuratefirsttimeresults OFFICIALOFFICIAL JOURNAL JOURNAL OF OF THE THE AUSTRALIAN AUSTRALIAN SOCIETY SOCIETY FOR FOR MICROBIOLOGY MICROBIOLOGY INC. INCINC. VolumeVolume 3636 NumberNumber 22 MayMay 20152015 Medical and veterinary mycology customisable MIC solutions Sensititre provides the only fully customizable system (ARIS 2X, SWIN, OptiRead, AIM, Vizion) with a choice of completely automated, semi-automated, or manual equipment to cover all diagnostic testing needs in the clinical laboratory.More than 240 antimicrobials are available for susceptibility testing of bacteria, mycobacteria and yeasts, ensuring accurate first time results. maximum performance • To find out more visit www.trekds.com or call 1300-735-292 YeastOne™ plates Colorimetric alamarBlue™ agent provides reliable and consistent endpoint determination, with visual read option for yeast and filamentous fungi* *CE/IVD-marked. For research use only in the U.S. Not for use in diagnostic procedures. © 2015 Thermo Fisher Scientific Inc. All rights reserved. © 2015 Thermo Fisher Scientific Inc. All rights The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 36 Number 2 May 2015 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Guest For Microbiology Australia Editorial 42 correspondence, see address below. Medical and veterinary mycology 42 Editorial team Wieland Meyer, Laszlo Irinyi and Tania Sorrell Prof. Ian Macreadie, Mrs Jo Macreadie In Focus 44 and Mrs Hayley Macreadie DNA barcoding of human and animal pathogenic fungi: Editorial Board the ISHAM-ITS database 44 Dr Chris Burke (Chair) Dr Gary Lum Prof. Mary Barton Dr John Merlino Laszlo Irinyi and Wieland Meyer Prof. Linda Blackall Prof. Wieland Meyer Phosphate theft: a path to fungal pathogenic success 49 Prof. Sharon Chen Prof. William Rawlinson Prof. Peter Coloe Dr Paul Selleck Julianne T Djordjevic and Sophie Lev Dr Narelle Fegan Dr David Smith Candida and macrophages: a deadly affair 53 Dr Geoff Hogg Ms Helen Smith Timothy Tucey, Thomas Naderer and Ana Traven Prof.. Jonathan Iredell Dr Jack Wang Dr Ipek Kurtböke Dr Paul Young Under the Microscope 57 Subscription rates Current subscription rates are available Clinical and Translational Mycology on the southern shores: perspective from the ASM Melbourne offi ce. from the Australia and New Zealand Mycoses Interest Group 57 Monica A Slavin and Sharon C-A Chen Editorial correspondence Prof. Ian Macreadie/Mrs Jo Macreadie The Westmead Medical Mycology Collection: basis for Tel: 0402 564 308 (Ian) research and diagnosis of fungal diseases 60 Email: [email protected] Wieland Meyer, Krystyna Maszewska, Aziza Khan and Kennio Ferreira-Paim Published four times a year in print and open access online by The role of clinical mycology reference laboratories 64 Sarah Kidd, Catriona Halliday and David Ellis Australia in the global picture of the molecular epidemiology of Cryptococcus gattii molecular type VGII 67 Carolina Firacative, Kennio Ferreira-Paim, Luciana Trilles, Unipark, Building 1, Level 1 David M Engelthaler and Wieland Meyer 195 Wellington Road, Clayton, Vic. 3168 http://microbiology.publish.csiro.au On the surface of it: the role of materials science in developing Publishing enquiries antifungal therapies and diagnostics 71 Jenny Bennett Bryan R Coad Email: [email protected] Microsphaeropsis arundinis: an emerging cause Production enquiries of phaeohyphomycosis in cats and people 74 Helen Pavlatos George Reppas, Thomas Gottlieb, Mark Krockenberger, Email: [email protected] Catriona Halliday and Richard Malik Advertising enquiries Doug Walters Pneumocystis canis pneumonia in dogs 79 Tel: 03 9545 8505 Elizabeth Ralph, George Reppas, Catriona Halliday, Mobile: 0419 357 779 Mark Krockenberger and Richard Malik Email: [email protected] © 2015 The Australian Society for Microbiology Inc. Mucormycosis in the platypus and amphibians caused by Mucor amphibiorum 83 The ASM, through CSIRO Publishing, reserve all rights Joanne H Connolly to the content, artwork and photographs in Microbiology Australia. Permission to reproduce text, photos and Rethinking the targets for antifungal development 88 artwork must be sought from CSIRO Publishing. Jessica L Chitty and James A Fraser The Australian Copyright Act 1968 and subsequent amendments permit downloading and use of an article by Sporotrichosis: an Australian perspective of a global infection 90 an individual or educational institution for non- Ian Arthur, Michael Leung and Elin Westergaard commercial personal use or study. Multiple reproduction of any Microbiology Australia article in a study block is governed by rights agreement managed by Copyright You are what you secrete: extracellular proteins and virulence in Cryptococcus 93 Agency Limited and fees may apply. Leona T Campbell, Matthew P Padula, Elizabeth Harry and Dee A Carter Authors published in Microbiology Australia have the Morphogenesis and pathogenesis: control of cell identity moral right under Australian law to be acknowledged as the creator. in a dimorphic pathogen 95 ISSN 1324-4272 Hayley E Bugeja and Alex Andrianopoulos eISSN 2201-9189 Use of Caenorhabditis elegans as a non-mammalian model While reasonable effort has been made to ensure the accuracy of the content, the Australian Society for system to study Candida virulence 98 Microbiology, CSIRO, and CSIRO Publishing accept no Farkad Bantun, Sanjiveeni Dhamgaye and Anton Y Peleg responsibility for any loss or damage from the direct or indirect use of or reliance on the content. The opinions expressed in articles, letters, and advertisements in Cover image: Cryptococcus gattii india ink plus janus green mount of a CFS specimen with the cryptococci Microbiology Australia are not necessarily those of the arranged as the ‘Southern Cross’ and a montage showing microscopic morphology of Exserohilum Australian Society for Microbiology, the Editorial Board, rostrum, Aspergillus lentulus, Conidiobolus coronatus, Saksenaea vasiformis, Phialophora sp., Bipolaris CSIRO, and CSIRO Publishing. australiensis, Gliiocladium sp., Sordaria fumicola, Aspergillus fumigatus, Fusarium solani. Images courtesy of David Ellis, University of Adelaide. MICROBIOLOGY AUSTRALIA • MAY 2015 41 Guest Editorial Medical and veterinary mycology Wieland Meyer A,B, Laszlo Irinyi A,C and Tania Sorrell A,D AMolecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School–Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Westmead Millennium Institute, Westmead, NSW, Australia BEmail: [email protected] CEmail: [email protected] DEmail: [email protected] Fungi, the second most frequent eukaryotic organisms1, are re- Most fungal species that cause infections are opportunistic, with a sponsible for many diseases in plants, animals and humans. They minority considered as primary pathogens of humans or animals. cause significant problems and economic losses in agriculture, food As a result, understanding the pathogenesis of fungal infections security and the health system as well as having an impact of the is critical to improve antifungal treatment of confirmed disease. biodiversity and ecosystems2. Of the estimated 5 million fungal The application of new molecular and biochemical techniques has species1, about 600 are known to cause human or animal infections, largely contributed to the development of improved fungal identi- ranging from superficial infections of the nails and skin caused by fication and new antifungal therapies. However, development of dermatophytes, through mucocutaneous candidiasis to life-threat- better and safer antifungal drugs is still needed. ening invasive fungal infections caused by Candida, Cryptococcus Despite the growing importance of fungal infections, the number of and Aspergillus species, among others3. The number of reported fungal studies (private or public) and the available research funding infections have significantly increased over the past three decades, lag significantly behind that of bacteria and viruses. To overcome with serious impacts on public health and an increased risk of this it is important to raise public awareness of fungal infection and biodiversity loss among animal species2,4. In humans, superficial their consequences. infections affect an estimated 1.7 billion (25%) individuals world- fi wide. The majority of super cial infections are not lethal but they In May 2015, the Australian New Zealand Mycology Interest Group can cause serious discomfort. Oropharyngeal or genital mucosal (ANZMIG) of the Australian Society of Infectious Diseases (ASID) is infections are also common and can be disabling. An estimated 75% hosting the 19th Congress of the International Society of Human of the women of childbearing age suffer from vulvovaginitis, mainly and Animal Mycology (ISHAM) and will welcome medical mycolo- 5 caused by Candida species , which are the third most common gists and infectious diseases clinicians from around the globe. opportunistic fungal disease agents after Aspergillus spp., world- Discussions will include the latest findings in basic, applied and 4 wide . Invasive fungal diseases are less common but they cause clinical medical mycology. significant morbidity and mortality, killing about 1.5 million people every year worldwide4, and are associated with substantial health- Australia has an active
Recommended publications
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Natamycin, a New Postharvest Biofungicide: Toxicity to Major Decay Fungi, Efficacy, and Optimized Usage Strategies A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Pathology by Daniel Sungen Chen September 2020 Dissertation Committee: Dr. James E. Adaskaveg, Chairperson Dr. Michael E. Stanghellini Dr. Alexander I. Putman Copyright by Daniel Sungen Chen 2020 The Dissertation of Daniel Sungen Chen is approved: Committee Chairperson University of California, Riverside AKNOWLEDGEMENTS Foremost, I thank my mentor Dr. James E. Adaskaveg for accepting me into his research program and teaching me the intricacies of the field of postharvest plant pathology and preparing me for a bright career ahead. His knowledge of the field is unmatched. A special thanks goes out to Dr. Helga Förster, whose expertise and attention to detail has helped me out tremendously in my research and writings. I thank my dissertation committee members, Dr. Michael Stanghellini and Dr. Alexander Putman, for their time spent reviewing my dissertation and their guidance during the pursuit of my doctoral degree. Special thanks also go out to my lab members Dr. Rodger Belisle, Dr. Wei Hao, Dr. Kevin Nguyen, and Nathan Riley for their companionship and much appreciated help with my projects. I would also like to thank my former laboratory members, Dr. Stacey Swanson and Dr. Morgan Thai for their guidance and help during the early years of my graduate program. Thanks go out to Dr. Lingling Hou, Dr. Yong Luo, and Doug Cary for their assistance with performing experimental packingline studies at the Kearney Agricultural Research and Extension Center.
    [Show full text]
  • Molecular Taxonomy of Galactomyces Spp. and Dipodascus Capitatus
    International Journal Of Medical Science And Clinical Inventions Volume 2 issue 12 2015 page no. 1485-1489 e-ISSN: 2348-991X p-ISSN: 2454-9576 Available Online At: http://valleyinternational.net/index.php/our-jou/ijmsci Molecular Taxonomy Of Galactomyces Spp. And Dipodascus Capitatus Associate With Dairy Based On Rdna Sequence Analysis In Iraq Zaidan Khlaif Imran* and Aya Kareem Jabbar Biology Department, All Women College of Science, Babylon University, Hilla, Iraq *Corresponded author: Zaidan Khlaif Imran E.mail:[email protected] ;[email protected] Abstract: Galactomyces spp is a telomorph of Geotrichum candidum (anamorph name). is used as a culture for cheese making and in some traditional fermented milks, few studies have assessed the genetic diversity of Galactomyces spp that exist in traditional cheese making facilities. The aim of this study isolation and molecular taxonomically treated of Galactomyces spp and other Candida spp. correlated with dairy products. The results showed that most dairy samples companioned with two species of Galactomyces: G.candidum and G.geotrichum , D. capitatus and four species of Candida spp.: Candida krusei , C. kefyr, C. utilis and C.glabrata .A total of 23 fungal isolates were diagnosed based on universal primers ITS1 / ITS4 to amplify the Internal transcribed region spacer. Four doubtful G.candidum isolates showed unique sizes of products PCR ranged between 380-400 bp. other Candida PCR product ranged 420-780bp. Sequence analysis identified a doubtful G.candidum into G. candidum and G.geotrichum with 97% similarities and with D. capitatus showed 93% similarities, few intraspecific variation were observed at 312-380bp in the amplicons from the primer pair ITS1-ITS4 commonly are from 380 to 400 bp for G.
    [Show full text]
  • Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20A
    water Article Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A Margarita Contreras 1, Carlos David Grande-Tovar 1,* , William Vallejo 1 and Clemencia Chaves-López 2 1 Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia; [email protected] (M.C.); [email protected] (W.V.) 2 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +57-5-3599484 Received: 23 October 2018; Accepted: 7 January 2019; Published: 6 February 2019 Abstract: The conventional treatments used to remove dyes produced as a result of different industrial activities are not completely effective. At times, some toxic by-products are generated, affecting aquatic ecosystems. In this article, an efficient use of microorganisms is presented as a biodegradation technique that is a safe environmental alternative for the benefit of aquatic life. A strain of the yeast Galactomyces geotrichum KL20A isolated from Kumis (a Colombian natural fermented milk) was used for Methylene Blue (MB) bioremoval. Two parameters of the bioremediation process were studied at three different levels: initial dye concentration and growth temperature. The maximum time of MB exposure to the yeast was 48 h. Finally, a pseudo-first-order model was used to simulate the kinetics of the process. The removal percentages of MB, by action of G. geotrichum KL20A were greater than 70% under the best operating conditions and in addition, the kinetic simulation of the experimental results indicated that the constant rate of the process was 2.2 × 10-2 h−1 with a half time for biotransformation of 31.2 h.
    [Show full text]
  • Developing a Role for Rhizopus Oryzae in the Biobased Economy by Aiming at Ethanol and Cyanophycin Coproduction
    Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis committee Promotor Prof. Dr. J.P.M. Sanders Professor a of Organic Chemistry Wageningen University & Research Promotor Dr. R.A. Weusthuis Associated Professor, Bioprocess Engineering Wageningen University & Research Other members: Prof. Dr. B.P.H.J. Thomma, Wageningen University & Research Prof. Dr. J. Hugenholtz, Wageningen University & Research Dr. M.A. Kabel, Wageningen University & Research Prof. Dr. P.J. Punt, Leiden University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis Submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 5 September 2018 at 1:30 p.m. in the Aula Bas Johannes Meussen Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction (180 pages). PhD thesis, Wageningen University, The Netherlands (2018). With propositions and summary in English. ISBN: 978-94-6343-484-3 DOI: https://doi.org/10.18174/456662 Contents Chapter 1 General Introduction 1 Chapter 2 Metabolic engineering of Rhizopus 31 oryzae for the production of platform chemicals Chapter 3 Production of cyanophycin in 63 Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene Chapter 4 A fast and accurate UPLC method for 87 analysis of proteinogenic amino acids Chapter 5 Introduction of β-1,4-endoxylanase 116 activity in Rhizopus oryzae Chapter 6 General Discussion 135 Summary 165 Acknowledgements 161 Curriculum Vitea 165 List of Publications 167 Overview of Completed Training Activities 169 Chapter 1.
    [Show full text]
  • Understanding and Measuring the Shelf-Life of Food Related Titles from Woodhead's Food Science, Technology and Nutrition List
    Understanding and measuring the shelf-life of food Related titles from Woodhead's food science, technology and nutrition list: The stability and shelf-life of food (ISBN 1 85573 500 8) The stability and shelf-life of a food product are critical to its success in the market place, yet companies experience considerable difficulties in defining and understanding the factors that influence stability over a desired storage period. This book is the most comprehensive guide to understanding and controlling the factors that determine the shelf-life of food products. Taints and off-flavours in foods (ISBN 1 85573 449 4) Taints and off-flavours are a major problem for the food industry. Part I of this important collection reviews the major causes of taints and off-flavours, from oxidative rancidity and microbiologically-derived off-flavours, to packaging materials as a source of taints. The second part of the book discusses the range of techniques for detecting taints and off-flavours, from sensory analysis to instrumental techniques, including the development of new rapid on-line sensors. Colour in food ± Improving quality (ISBN 1 85573 590 3) The colour of a food is central to consumer perceptions of quality. This important new collection reviews key issues in controlling colour quality in food, from the chemistry of colour in food to measurement issues, improving natural colour and the use of colourings to improve colour quality. Details of these books and a complete list of Woodhead's food science, technology and nutrition titles can be obtained by: · visiting our web site at www.woodhead-publishing.com · contacting Customer Services (email: [email protected]; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext.
    [Show full text]
  • A New Species of Galactomyces and First Reports of Four Fungi on Wheat Roots in the United Kingdom
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at A new species of Galactomyces and first reports of four fungi on wheat roots in the United Kingdom H. KwasÂna1 & G. L. Bateman2 1 Department of Forest Pathology, Agricultural University, ul. Wojska Polskiego 71c, 60-625, Poznan , Poland 2 Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK KwasÂna H. & Bateman G. (2007) A new species of Galactomyces and first reports of four fungi on wheat roots in the United Kingdom. Sydowia 60 (1): 69±92. A new species, Galactomyces britannicum (IMI395371, MycoBank 511261), is described from the roots of wheat in the UK. Dendryphion penicillatum var. sclerotiale, Fusariella indica, Pseudogymnoascus appendiculatus and Volucrispora graminea are reported for the first time from roots, rhizosphere or stem bases of wheat in the UK. A microconidiogenus synanamorph is described for V. graminea and the species is epitypified to reflect this amendment. Keywords: Dendryphion penicillatum var. sclerotiale, Fusariella indica, Galactomyces britannicum, Pseudogymnoascus appendiculatus, taxonomy, Volu- crispora graminea. The introduction of synthetic low nutrient agar (SNA; Nirenberg 1976) to induce fungal sporulation in Fusarium has proved invalu- able for the assessment of fungal diversity on or in the roots and stem bases of cereal plants (Bateman & KwasÂna 1999, Dawson & Bateman 2001a, b). The medium stimulates a fungal sporulation and allows the isolation of slow-growing species. Isolation studies on SNA have led to the recovery of new speciesof fungiand fungipre- viously unknown from cereal crops. This paper describes one new species and reports four rare spe- cies isolated from the roots, rhizosphere, or stem bases at soil level, of wheat grown in the UK.
    [Show full text]
  • Optimization of Glucoamylase Production by Mucor Indicus, Mucor Hiemalis, and Rhizopus Oryzae Through Solid State Fermentation
    Turkish Journal of Biochemistry – Türk Biyokimya Dergisi; 2016; 41 (4): 250-256 Biotechnology Research Article – 78700 Sanaz Behnam*, Keikhosro Karimi, Morteza Khanahmadi, Zahra Salimian Optimization of glucoamylase production by Mucor indicus, Mucor hiemalis, and Rhizopus oryzae through solid state fermentation Mucor indicus, Mucor hiemalis, ve Rhizopus oryzae tarafından üretien glukoamilazın katı hal fermantasyonu ile optimizasyonu DOI 10.1515/tjb-2016-0036 Özet: Amaç: Glukoamilaz, çok çeşitli endüstriyel uygu- Received August 5, 2015; accepted February 12, 2016; lamaları olan bir hidrolizleme enzimidir. Glukoamilaz, published online August 1, 2016 doğal zygomycetes küflerinden olan Mucor indicus, Mucor hiemalis, and Rhizopus oryzae kullanılarak buğday kepeği Abstract: Objective: Glucoamylase is a hydrolyzing enzyme üzerinde katı hal fermentasyonu ile üretilmiştir. with several industrial applications. Glucoamylase was produced via a solid state fermentation by three naturally Metod: Enzim üretimi için kültür sıcaklığı, ortalama nem occurring zygomycetes fungi of Mucor indicus, Mucor hie- miktarı ve kültür süreleri çalışılmıştır. Deneyler, üç değiş- malis, and Rhizopus oryzae on wheat bran. ken için merkezi birleşik kompozit tasarımı üzerinde tepki yüzeyi metodolojisi (RSM) kullanılacak şekilde tasarlan- Methods: The effects of cultivation temperature, medium mıştır. moisture content, and cultivation time on the enzyme pro- duction were investigated. Experiments were designed Bulgular: Glukoamilaz üretimi için kullanılan üç küf için with an orthogonal central composite design on the three optimum sıcaklık ve ortalama nem miktarı, sırası ile, variables using response surface methodology (RSM). 26.6oC ve %71.8 olarak bulunmuştur. Optimum kültür süresi ise M. hiemalis and R. oryzae için 33.1 s, M. indicus Results: For glucoamylase production, the optimum tem- için ise 66.8 s olarak bulunmuştur.
    [Show full text]
  • Isolation of Allergic Fungal Microflora from the Aero-Spora of Khammam District, India
    Int.J.Curr.Microbiol.App.Sci (2016) 5(12): 486-492 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 12 (2016) pp. 486-492 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.512.052 Isolation of Allergic Fungal Microflora from the Aero-Spora of Khammam District, India D. Saikumari* and Neeti Saxena Mycology and Plant Pathology Lab, Department of Botany, University College For women, Koti, Osmania University, Hyderabad, India *Corresponding author ABSTRACT K e yw or ds Allergies like Asthma, contact urticarial, bronchial problems, skin problems, hay fever, and common allergies are caused by fungal spores. Allergic proteins present Fungal spores, in the fungal spores are responsible for the cause of these allergies. Isolation of fungi Allergens, was done by exposed culture plates from three selected areas viz vegetable market Aerospora , area, surrounding area of factories and Government school of Pandurangapuram Human diseases, Khammam district. village, Khammam district, Telangana, India. Isolation was done from three different areas in order to study the variation in the fungal succession. Altogether 76 species32 genera were isolated from these areas. Aspergillus, Alternaria, Pencillium, Article Info Rhizopus, Mucor, Fusarium were commonly isolated. The present study infer/ Accepted: 18 November 2016 showed that maximum fungal spores which are saprophytic, pathogenic and Available Online: toxigenic were isolated from the market area. Wood rotting fungi were isolated from 10 December 2016 the industrial area. Introduction Allergy is one form of human disease which Pasanen et al., 1992; Katz et al., 1999). effects about 20% of human population Fungi are ubiquitous air borne allergens (Sathavahan et al., 2011)).
    [Show full text]
  • Saoharit Nitayavardhana Dissertation
    PROTEIN-RICH FUNGAL BIOMASS PRODUCTION ON SUGARCANE VINASSE FOR ANIMAL FEED APPLICATIONS WITH CONCOMITANT WATER RECLAMATION A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING DECEMBER 2012 By Saoharit Nitayavardhana Dissertation Committee: Samir Kumar Khanal, Chairperson Andrew G. Hashimoto Clyde Tamaru Tao Yan Yong Li PingSun Leung ACKNOWLEDGMENTS I would like to extent my deepest gratitude to my advisor Assoc. Prof. Samir Kumar Khanal for his invaluable guidance throughout the entire process of this research. I am indebted to his support, understanding, patience, encouragement, and most importantly, his friendship during my graduate studies at the University of Hawaii at Manoa. He has broadened my vision, taught me to be independent, and provided me always the best opportunity. This research would not have been possible without his scholarly advice and discussion. I would also like to thank my committee members, Dr. Andrew Hashimoto, Dr. Clyde Tamaru, Dr. Tao Yan, Dr. Yong Li, and Dr. PingSun Leung for their advices with my research, dissertation, and especially for taking time to serve on my committee. Thanks are extended to Dr. Jon-Paul Bingham who has encouraged me throughout my graduate studies. His invaluable guidance and lively talk is highly appreciated. I am thankful to my Bioenergy Research group, especially to Mr. Pradeep Munasinghe and Mr. Surendra KC, for their support, lively discussion, and invaluable feedback. Special thanks are due to, my friend, Mr. Devin Takara, for his friendship, helps, suggestions, and encouragement throughout my stay in Hawaii.
    [Show full text]
  • A Novel Function of Galactomyces Candidum in Highly Efficient Ammonia Nitrogen
    bioRxiv preprint doi: https://doi.org/10.1101/397687; this version posted August 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A novel function of Galactomyces candidum in highly efficient ammonia nitrogen 2 removal from low C:N wastewater 3 4 Li Xiaochao1†, Liu Hui2†, Zeng Guihua, Li Hualin2†,Chen Zhinan, Liu Wenbin1*†, 5 Yang Liping2*† 6 7 1College of Life Sciences, Hunan Normal University, Changsha, Hunan 410004, 8 China. 9 2Department of Environmental Science, Changsha Environmental Protection College, 10 Changsha, Hunan 410004, China. 11 12 *For correspondence: Liu Wenbin; Yang Liping 13 †Contributed equally 14 15 16 17 18 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/397687; this version posted August 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 23 24 Abstract 25 26 A strain of bacteria that demonstrated efficient nitrogen removal potential under low 27 C:N conditions was screened from landfill leachate. The strain was identified as 28 Galactomyces candidum by ITS sequencing, and growth density and removal of 29 ammonia nitrogen were assessed after 24 h of incubation. The results showed that the 30 optimum ammonia nitrogen reduction conditions for G.
    [Show full text]
  • 7.5 X 11.5.Doubleline.P65
    Cambridge University Press 978-0-521-01483-0 - Introduction to Fungi, Third Edition John Webster and Roland Weber Table of Contents More information Contents Preface to the first edition page xiii Preface to the second edition xv Preface to the third edition xvii Acknowledgements xix Chapter 1 Introduction 1 1.1 What are fungi? 1 1.2 Physiology of the growing hypha 3 1.3 Hyphal aggregates 14 1.4 Spores of fungi 22 1.5 Taxonomy of fungi 32 Chapter 2 Protozoa: Myxomycota (slime moulds) 40 2.1 Introduction 40 2.2 Acrasiomycetes: acrasid cellular slime moulds 40 2.3 Dictyosteliomycetes: dictyostelid slime moulds 41 2.4 Protosteliomycetes: protostelid plasmodial slime moulds 45 2.5 Myxomycetes: true (plasmodial) slime moulds 47 Chapter 3 Protozoa: Plasmodiophoromycota 54 3.1 Introduction 54 3.2 Plasmodiophorales 54 3.3 Control of diseases caused by Plasmodiophorales 62 3.4 Haptoglossa (Haptoglossales) 64 Chapter 4 Straminipila: minor fungal phyla 67 4.1 Introduction 67 4.2 The straminipilous flagellum 68 4.3 Hyphochytriomycota 70 4.4 Labyrinthulomycota 71 Chapter 5 Straminipila: Oomycota 75 5.1 Introduction 75 5.2 Saprolegniales 79 5.3 Pythiales 95 5.4 Peronosporales 115 5.5 Sclerosporaceae 125 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-01483-0 - Introduction to Fungi, Third Edition John Webster and Roland Weber Table of Contents More information viii CONTENTS Chapter 6 Chytridiomycota 127 6.1 Introduction 127 6.2 Chytridiales 134 6.3 Spizellomycetales 145 6.4 Neocallimastigales (rumen fungi) 150 6.5
    [Show full text]
  • WO 2013/038197 Al 21 March 2013 (21.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/038197 Al 21 March 2013 (21.03.2013) P O P C T (51) International Patent Classification: Geir [NO/NO]; Bj0rndalen 81, N-7072 Heimdal (NO). A01N 43/16 (2006.01) A01N 43/653 (2006.01) MYRVOLD, Rolf [NO/NO]; 0vre Gjellum vei 28, N- A61K 31/734 (2006.01) A01P 3/00 (2006.01) 1389 Heggedal (NO). A01N 43/90 (2006.01) (74) Agent: DEHNS; St Bride's House, 10 Salisbury Square, (21) International Application Number: London EC4Y 8JD (GB). PCT/GB20 12/052274 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date kind of national protection available): AE, AG, AL, AM, 14 September 2012 (14.09.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) English Filing Language: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 1116010.8 15 September 201 1 (15.09.201 1) GB NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (71) Applicant (for all designated States except US): AL- RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, GIPHARMA AS [NO/NO]; Industriveien 33, N-1337 TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Sandvika (NO).
    [Show full text]