Isolation of Allergic Fungal Microflora from the Aero-Spora of Khammam District, India

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Allergic Fungal Microflora from the Aero-Spora of Khammam District, India Int.J.Curr.Microbiol.App.Sci (2016) 5(12): 486-492 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 12 (2016) pp. 486-492 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.512.052 Isolation of Allergic Fungal Microflora from the Aero-Spora of Khammam District, India D. Saikumari* and Neeti Saxena Mycology and Plant Pathology Lab, Department of Botany, University College For women, Koti, Osmania University, Hyderabad, India *Corresponding author ABSTRACT K e yw or ds Allergies like Asthma, contact urticarial, bronchial problems, skin problems, hay fever, and common allergies are caused by fungal spores. Allergic proteins present Fungal spores, in the fungal spores are responsible for the cause of these allergies. Isolation of fungi Allergens, was done by exposed culture plates from three selected areas viz vegetable market Aerospora , area, surrounding area of factories and Government school of Pandurangapuram Human diseases, Khammam district. village, Khammam district, Telangana, India. Isolation was done from three different areas in order to study the variation in the fungal succession. Altogether 76 species32 genera were isolated from these areas. Aspergillus, Alternaria, Pencillium, Article Info Rhizopus, Mucor, Fusarium were commonly isolated. The present study infer/ Accepted: 18 November 2016 showed that maximum fungal spores which are saprophytic, pathogenic and Available Online: toxigenic were isolated from the market area. Wood rotting fungi were isolated from 10 December 2016 the industrial area. Introduction Allergy is one form of human disease which Pasanen et al., 1992; Katz et al., 1999). effects about 20% of human population Fungi are ubiquitous air borne allergens (Sathavahan et al., 2011)). People are cause of human diseases like allergic exposed to allergens in various environment rhinitis, conjunctivitis, bronchial asthma, both at home and at work. The concentration and allergic Broncho-pulmonary mycoses of allergens in the environment varies resulting from exposure to spores (Braun, depending on various factors including 2003). climate, vegetation and air quality. The prevalence of respiratory allergies to The outdoor allergens are predominantly fungi is estimated at 20% to 30% among constituted by plant pollens and fungal atopic individuals and up to 6% in general spores. The outdoor allergens on the other population (Hodgson et al., 1989). The most hand are represented by allergens from dust common allergic fungi are Alternaria, mites, cockroaches and pets.The indoor Cladosporium, Aspergillus, Penicillium, environments the fungus settled on the beds, Dechslera and yeast (Mezzari et al., 2002). carpets, mattresses (Meriggi et al., 1996; 486 Int.J.Curr.Microbiol.App.Sci (2016) 5(12): 486-492 Materials and Methods Curvularia lunata, Curvularia tetramera, Curvularia inequalis, Curvularia spicifera, The aero spores of fungi were collected Cunninghamella echinulata, Cunning- from the atmosphere from three locations hamella elegans, Cephalosporium a i.e. Government school premises, factory cremonium, Cephalosporium roseum, area and Market area of Pandurangapuram Cephalosporium irregularis, Cyclindro- village, Khammam district, Telangana, sporium acacia, Drechslera austrliensis, India. For the quantitative analysis of fungi Drechslera spicifera, Fusarium Potato dextrose agar (PDA) media were moniliforme, Fusarium oxysporum, used, 3 Petri dishes of agar medium were Fusarium solani, Fusarium roseum, exposed for 3 minutes at intervals of 15 Flavodon flavus, Ganoderma lucidium, days. After exposure to the air the Petri Helminthospo rium oryzae, Hymenochaete dishes were brought to the laboratory in pre- fuliginosa, Mucor globosus, Mucor sterilized polythene bags and incubated at plumbens, Mucor racemosus, Mucor 250C for 5-7days. The identification of indicus, Memnoniella levispora, Nigrospora colonies was based on their colour, size, oryzae, Nigrospora sphaerica, Neurospora shape and other morphological features crassa, Pencillium citrinum, Pencillium (Nagamani and Manohara chary, 2006) chrysogenum, Pencillium italicum, Pencillium nigricans, Pencillium oxalicum, Results and Discussion Pencillium digitatum, Pencillium notatum, Pencillium funiculosum, Phoma lingam, 73 species were reported in Market area, 60 Phoma betae, Paecilomyces varioti, species were reported in factory area, Paecilomyces fusisporus, Phellinus badicus, 41species reported in Government school Phellinus fastutus, Rhizopus nigricans, area of the Pandurangapuram village, Rhizopus stolonifer, Stemphylium solani, Khammam district. In these three locations Sporotrichum arabicum, Stachybotrysatra, more fungal species were isolated from the Trichoderma harizianum, Trichoderma market area than the factory area and viride, Trichoderma roseum, Verticillium government school premises of the glacumwere reported from the 3 areas of Pandurangapuram village, Khammam. village. Aspergillus fumigatus, Aspergillus niger, 71 species were isolated from the vegetable Aspergillus flavus, Aspergillus terreus, market area Aspergillus fumigatus, Aspergillus flaviceps, Aspergillus candidus, Aspergillus niger, Aspergillus flavus, Aspergillus ochraceus, Aspergillus sydowi, Aspergillus terreus, Aspergillus flaviceps, Aspergillus versicolor, Aspergillus tamarii, Aspergillus candidus, Aspergillus Aspergillus clavatus, Aspergillus gigantius, ochraceus, Aspergillus sydowi, Aspergillus Aspergillus granulosus, Aspergillus versicolor, Aspergillus tamarii, Aspergillus nidulans, Aspergillus oryzae, Aspergillus clavatus, Aspergillus gigantius, Aspergillus restrictus, Alternaria alternata, Alternaria granulosus, Aspergillus nidulans, brassicae, Alternaria solani, Alternaria Aspergillus oryzae, Aspergillus restrictus, tenuis, stereum versicolor, Alternaaria Alternaria alternata, Alternaria brassicae, chlamydospora, Botrytis cinera, Candida Alternaria solani, Alternaria tenuis, albicans, Cladosporium herbarum, Alternaaria chlamydospora, Botrytis cinera, Cladosporium lignicola, Cladosporium Candida albicans, Cladosporium sphaerospermum, Curvularia geniculata, herbarum, Cladosporium lignicola, 487 Int.J.Curr.Microbiol.App.Sci (2016) 5(12): 486-492 Cladosporium sphaerospermum, inequalis, Curvularia spicifera, Curvularia geniculata, Curvularia lunata, Cunninghamella echinulata, Curvularia tetramera, Curvularia Cunninghamella elegans, Cephalosporium inequalis, Curvularia spicifera, acremonium, Cephalosporium roseum, Cunninghamella echinulata, Cunning- Cylindrosporium acacia, Drechslera hamella elegans, Cephalosporium austrliensis, Drechslera spicifera, Fusarium acremonium, Cephalosporium roseum, moniliforme, Fusarium oxysporum, Cephalosporium ir regularis, Drechslera Fusarium solani, Fusarium roseum, austrliensis, Drechslera spicifera, Fusarium Flavodon clavus, Ganoderma lucidium, moniliforme, Fusarium oxysporum, Mucor globosus, Mucor Plumbens, Mucor Fusarium solani, Fusarium roseum, racemosus, Mucor indicus, Nigrospora Helminthosporium oryzae, Hymenochaete oryzae, Nigrospora sphaerica, Pencillium fuliginosa, Mucor globosus, Mucor citrinum, Pencillium italicum, Pencillium plumbens, Mucor racemosus, Mucor nigricans, Pencillium funiculosum, Phoma indicus, Nigrospora oryzae, Nigrospora betae, Phoma lingam, Phellinus badicus, sphaerica, Neurospora crassa, Pencillium Phellinus fastutus, Rhizopus nigricans, citrinum, Pencillium chrysogenum, Rhizopus stolonifera, Trichoderma viride, Pencillium italicum, Pencillium nigricans, Trichoderma roseum, Pencillium oxalicum, Pencillium digitatum, Verticilliumglaucumwere dominant species Pencillium notatum, Pencillium funi- in industrial area. culosum, Phoma lingam, Phoma betae, Paecilomyces varioti, Paecilomyces 31 species were isolated from Government fusisporus, Rhizopus nigricans, Rhizopus school area. Aspergillus fumigatus, stolonifer, Trichoderma harizianum, Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma roseum, Aspergillus terreus Aspergillus versicolor, Verticilliumg lacum these were dominant Aspergillus tamaraii, Aspergillus gigantius, species in the market area. Aspergillus granulosus, Aspergillusoryzae, Alternatria alternata, Alternaria solani, 59 speices were isolated from industrial A;ternaria tenuis, Alternaria alternata, area, Aspergillus fumigatus, Aspergillus Cladosporium lignicola, Curvularia niger, Aspergillus flavus, Aspergillus geniculata, Curvularia lunata, candidus, Aspergillus sydowi, Aspergillus Cunninghamella echinulate, Cephaliophora versicolor, Aspergillus tamarii, Aspergillus irregularis, Drechslera australiensis, clavatus, Aspergillus gigantius, Aspergillus Fusarium moniliforme, Fusarium granulosus, Aspergillus nidulans, oxysporum, Fusarium solani, Mucor Aspergillus oryzae, Aspergillus restrictus, globosus, Mucor plumbens, Mucor Alternaria alternata, Alternaria brassicae, racemosus, Mucor indicus, Pencillium Alternaria solani, Stereum versicolor, chrysogenum, Pencillium oxalicum, Botrytis cinera, Candida albicans, Pencillium notatum, Phoma betae, Cladosporium herbarum, Cladosporium Rhizopus nigricans, Rhizopus stolonifera, lignicola, Cladosporium sphaerospermum, Trichoderma viride, Trichoderma roseum Curvularia geniculata, Curvularia lunata, were dominant species in this area. Curvularia tetramera, Curvularia 488 Int.J.Curr.Microbiol.App.Sci (2016) 5(12): 486-492 Table.1 S. No Fungal species Vegetable Industrial area Government Market area school area 1. Aspergillus fumigatus +++++ ++++ +++ 2. Aspergillus
Recommended publications
  • Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision
    ES/ER/TM-126/R2 Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision This document has been approved by the East Tennessee Technology Park Technical Information Office for release to the public. Date: ES/ER/TM-126/R2 Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision R. A. Efroymson M. E. Will G. W. Suter II Date Issued—November 1997 Prepared for the U.S. Department of Energy Office of Environmental Management under budget and reporting code EW 20 LOCKHEED MARTIN ENERGY SYSTEMS, INC. managing the Environmental Management Activities at the East Tennessee Technology Park Oak Ridge Y-12 Plant Oak Ridge National Laboratory Paducah Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant under contract DE-AC05-84OR21400 for the U.S. DEPARTMENT OF ENERGY PREFACE This report presents a standard method for deriving benchmarks for the purpose of “contaminant screening,” performed by comparing measured ambient concentrations of chemicals. The work was performed under Work Breakdown Structure 1.4.12.2.3.04.07.02 (Activity Data Sheet 8304). In addition, this report presents sets of data concerning the effects of chemicals in soil on invertebrates and soil microbial processes, benchmarks for chemicals potentially associated with United States Department of Energy sites, and literature describing the experiments from which data were drawn for benchmark derivation. iii ACKNOWLEDGMENTS The authors would like to thank Carla Gunderson and Art Stewart for their helpful reviews of the document. In addition, the authors would like to thank Christopher Evans and Alexander Wooten for conducting part of the literature review.
    [Show full text]
  • Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand
    Journal of Fungi Article Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand Sarunpron Khruengsai 1, Teerapong Sripahco 1 and Patcharee Pripdeevech 1,2,* 1 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; [email protected] (S.K.); [email protected] (T.S.) 2 Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand * Correspondence: [email protected] Abstract: Accumulated plastic waste in the environment is a serious problem that poses an ecological threat. Plastic waste has been reduced by initiating and applying different alternative methods from several perspectives, including fungal treatment. Biodegradation of 30 fungi from Thailand were screened in mineral salt medium agar containing low-density polyethylene (LDPE) films. Diaporthe italiana, Thyrostroma jaczewskii, Collectotrichum fructicola, and Stagonosporopsis citrulli were found to grow significantly by culturing with LDPE film as the only sole carbon source compared to those obtained from Aspergillus niger. These fungi were further cultured in mineral salt medium broth containing LDPE film as the sole carbon source for 90 days. The biodegradation ability of these fungi was evaluated from the amount of CO2 and enzyme production. Different amounts of CO2 were released from D. italiana, T. jaczewskii, C. fructicola, S. citrulli, and A. niger culturing with LDPE film, ranging from 0.45 to 1.45, 0.36 to 1.22, 0.45 to 1.45, 0.33 to 1.26, and 0.37 to 1.27 g/L, respectively. These fungi were able to secrete a large amount of laccase enzyme compared to manganese peroxidase, and lignin peroxidase enzymes detected under the same conditions.
    [Show full text]
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique January 2014 Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 11 Commercial Device Usage Statistics 13 Mold Descriptions 14 M-1 Stachybotrys chartarum 14 M-2 Aspergillus clavatus 18 M-3 Microsporum gypseum 22 M-4 Scopulariopsis species 26 M-5 Sporothrix schenckii species complex 30 Yeast Descriptions 34 Y-1 Cryptococcus uniguttulatus 34 Y-2 Saccharomyces cerevisiae 37 Y-3 Candida dubliniensis 40 Y-4 Candida lipolytica 43 Y-5 Cryptococcus laurentii 46 Direct Detection - Cryptococcal Antigen 49 Antifungal Susceptibility Testing - Yeast 52 Antifungal Susceptibility Testing - Mold (Educational) 54 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally.
    [Show full text]
  • Developing a Role for Rhizopus Oryzae in the Biobased Economy by Aiming at Ethanol and Cyanophycin Coproduction
    Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis committee Promotor Prof. Dr. J.P.M. Sanders Professor a of Organic Chemistry Wageningen University & Research Promotor Dr. R.A. Weusthuis Associated Professor, Bioprocess Engineering Wageningen University & Research Other members: Prof. Dr. B.P.H.J. Thomma, Wageningen University & Research Prof. Dr. J. Hugenholtz, Wageningen University & Research Dr. M.A. Kabel, Wageningen University & Research Prof. Dr. P.J. Punt, Leiden University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction Bas Johannes Meussen Thesis Submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 5 September 2018 at 1:30 p.m. in the Aula Bas Johannes Meussen Developing a role for Rhizopus oryzae in the biobased economy by aiming at ethanol and cyanophycin coproduction (180 pages). PhD thesis, Wageningen University, The Netherlands (2018). With propositions and summary in English. ISBN: 978-94-6343-484-3 DOI: https://doi.org/10.18174/456662 Contents Chapter 1 General Introduction 1 Chapter 2 Metabolic engineering of Rhizopus 31 oryzae for the production of platform chemicals Chapter 3 Production of cyanophycin in 63 Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene Chapter 4 A fast and accurate UPLC method for 87 analysis of proteinogenic amino acids Chapter 5 Introduction of β-1,4-endoxylanase 116 activity in Rhizopus oryzae Chapter 6 General Discussion 135 Summary 165 Acknowledgements 161 Curriculum Vitea 165 List of Publications 167 Overview of Completed Training Activities 169 Chapter 1.
    [Show full text]
  • Research Article Random Mutagenesis of the Aspergillus Oryzae Genome Results in Fungal Antibacterial Activity
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2013, Article ID 901697, 5 pages http://dx.doi.org/10.1155/2013/901697 Research Article Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity Cory A. Leonard,1 Stacy D. Brown,2 and J. Russell Hayman1 1 Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70577, Johnson City, TN 37614, USA 2 Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, P.O. Box 70436, Johnson City, TN 37614, USA Correspondence should be addressed to J. Russell Hayman; [email protected] Received 30 April 2013; Revised 9 July 2013; Accepted 9 July 2013 Academic Editor: Joseph Falkinham Copyright © 2013 Cory A. Leonard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin- resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity.
    [Show full text]
  • Optimization of Glucoamylase Production by Mucor Indicus, Mucor Hiemalis, and Rhizopus Oryzae Through Solid State Fermentation
    Turkish Journal of Biochemistry – Türk Biyokimya Dergisi; 2016; 41 (4): 250-256 Biotechnology Research Article – 78700 Sanaz Behnam*, Keikhosro Karimi, Morteza Khanahmadi, Zahra Salimian Optimization of glucoamylase production by Mucor indicus, Mucor hiemalis, and Rhizopus oryzae through solid state fermentation Mucor indicus, Mucor hiemalis, ve Rhizopus oryzae tarafından üretien glukoamilazın katı hal fermantasyonu ile optimizasyonu DOI 10.1515/tjb-2016-0036 Özet: Amaç: Glukoamilaz, çok çeşitli endüstriyel uygu- Received August 5, 2015; accepted February 12, 2016; lamaları olan bir hidrolizleme enzimidir. Glukoamilaz, published online August 1, 2016 doğal zygomycetes küflerinden olan Mucor indicus, Mucor hiemalis, and Rhizopus oryzae kullanılarak buğday kepeği Abstract: Objective: Glucoamylase is a hydrolyzing enzyme üzerinde katı hal fermentasyonu ile üretilmiştir. with several industrial applications. Glucoamylase was produced via a solid state fermentation by three naturally Metod: Enzim üretimi için kültür sıcaklığı, ortalama nem occurring zygomycetes fungi of Mucor indicus, Mucor hie- miktarı ve kültür süreleri çalışılmıştır. Deneyler, üç değiş- malis, and Rhizopus oryzae on wheat bran. ken için merkezi birleşik kompozit tasarımı üzerinde tepki yüzeyi metodolojisi (RSM) kullanılacak şekilde tasarlan- Methods: The effects of cultivation temperature, medium mıştır. moisture content, and cultivation time on the enzyme pro- duction were investigated. Experiments were designed Bulgular: Glukoamilaz üretimi için kullanılan üç küf için with an orthogonal central composite design on the three optimum sıcaklık ve ortalama nem miktarı, sırası ile, variables using response surface methodology (RSM). 26.6oC ve %71.8 olarak bulunmuştur. Optimum kültür süresi ise M. hiemalis and R. oryzae için 33.1 s, M. indicus Results: For glucoamylase production, the optimum tem- için ise 66.8 s olarak bulunmuştur.
    [Show full text]
  • Saoharit Nitayavardhana Dissertation
    PROTEIN-RICH FUNGAL BIOMASS PRODUCTION ON SUGARCANE VINASSE FOR ANIMAL FEED APPLICATIONS WITH CONCOMITANT WATER RECLAMATION A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MOLECULAR BIOSCIENCES AND BIOENGINEERING DECEMBER 2012 By Saoharit Nitayavardhana Dissertation Committee: Samir Kumar Khanal, Chairperson Andrew G. Hashimoto Clyde Tamaru Tao Yan Yong Li PingSun Leung ACKNOWLEDGMENTS I would like to extent my deepest gratitude to my advisor Assoc. Prof. Samir Kumar Khanal for his invaluable guidance throughout the entire process of this research. I am indebted to his support, understanding, patience, encouragement, and most importantly, his friendship during my graduate studies at the University of Hawaii at Manoa. He has broadened my vision, taught me to be independent, and provided me always the best opportunity. This research would not have been possible without his scholarly advice and discussion. I would also like to thank my committee members, Dr. Andrew Hashimoto, Dr. Clyde Tamaru, Dr. Tao Yan, Dr. Yong Li, and Dr. PingSun Leung for their advices with my research, dissertation, and especially for taking time to serve on my committee. Thanks are extended to Dr. Jon-Paul Bingham who has encouraged me throughout my graduate studies. His invaluable guidance and lively talk is highly appreciated. I am thankful to my Bioenergy Research group, especially to Mr. Pradeep Munasinghe and Mr. Surendra KC, for their support, lively discussion, and invaluable feedback. Special thanks are due to, my friend, Mr. Devin Takara, for his friendship, helps, suggestions, and encouragement throughout my stay in Hawaii.
    [Show full text]
  • Characterization of Indoor Molds with Allergenic Potential After Cryopreservation at -20°C for One Year
    American Journal of Innovative Research and Applied Sciences. ISSN 2429-5396 I www.american-jiras.com ORIGINAL ARTICLE CHARACTERIZATION OF INDOOR MOLDS WITH ALLERGENIC POTENTIAL AFTER CRYOPRESERVATION AT -20°C FOR ONE YEAR | M’boh Epi Reine Elisabeth N'gou 1,2 | Chiaye Claire Antoinette Yapo-Crezoit 2 | Ama Valérie Bonouman 2 | Diane Kouao 2 | Toure offianan 2 | and | Allico Joseph Djaman 1,2 | 1. Félix Houphouët Boigny University | Laboratory of biology and health | 2. Pasteur Institute of Côte d'Ivoire | Unity of Mycology | Unit of Immunology | Unit of biological Ressources | | Received November 22, 2020 | | Accepted December 07, 2020 | | Published December 14, 2020 | | ID Article| M’boh–Ref3-ajira221120| ABSTRACT Background: The cryopreservation for long period of mold strains of medical interest essential for research is complex. Our objective is to evaluate the impact of conservation with 10% of Glycerol and Brain Heart Infusion (BHI Broth) on the survival of molds of medical interest at -20°C. Methodology: This is an analytical study of the cultural and morphological characteristics of 1310 mold strains isolated from environmental samples (air, surface and dust) collected from all azimuths and preserved in 10% Glycerol and BHI Broth at -20°C for one year. Results: Among the 1310 isolated strains and revived, colony growth was observed in 1059 strains (80.84%) against 251 (19.16%) which showed no signs of development and 119 strains (9.08%) were contaminated by other mold species or yeasts. Fungal viable strains observed after cryopreservation are: Aspergillus fumigatus, Aspergillus flavus, Aspergillus versicolor, Aspergillus niger, Aspergillus terreus, Aspergillus ochraceus, Aspergillus clavatus, Aspergillus sp, Penicillium sp, Fusarium solani, Fusarium sp, Curvularia sp, Mucor sp, Rhizomucor sp, and Trichoderma sp.
    [Show full text]
  • Medical and Veterinary Mycology Maximum Performance Solutions Customisable MIC of Bacteria,Mycobacteriaandyeasts,Ensuringaccuratefirsttimeresults
    OFFICIALOFFICIAL JOURNAL JOURNAL OF OF THE THE AUSTRALIAN AUSTRALIAN SOCIETY SOCIETY FOR FOR MICROBIOLOGY MICROBIOLOGY INC. INCINC. VolumeVolume 3636 NumberNumber 22 MayMay 20152015 Medical and veterinary mycology customisable MIC solutions Sensititre provides the only fully customizable system (ARIS 2X, SWIN, OptiRead, AIM, Vizion) with a choice of completely automated, semi-automated, or manual equipment to cover all diagnostic testing needs in the clinical laboratory.More than 240 antimicrobials are available for susceptibility testing of bacteria, mycobacteria and yeasts, ensuring accurate first time results. maximum performance • To find out more visit www.trekds.com or call 1300-735-292 YeastOne™ plates Colorimetric alamarBlue™ agent provides reliable and consistent endpoint determination, with visual read option for yeast and filamentous fungi* *CE/IVD-marked. For research use only in the U.S. Not for use in diagnostic procedures. © 2015 Thermo Fisher Scientific Inc. All rights reserved. © 2015 Thermo Fisher Scientific Inc. All rights The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 36 Number 2 May 2015 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Guest For Microbiology Australia Editorial 42 correspondence, see address below. Medical and veterinary mycology 42 Editorial team Wieland Meyer, Laszlo Irinyi and Tania Sorrell Prof. Ian Macreadie, Mrs Jo Macreadie In Focus 44 and Mrs Hayley Macreadie DNA barcoding of human and animal pathogenic fungi: Editorial Board the ISHAM-ITS database 44 Dr Chris Burke (Chair) Dr Gary Lum Prof.
    [Show full text]
  • Taxonomic Revision of Aspergillus Section Clavati Based on Molecular, Morphological and Physiological Data
    available online at www.studiesinmycology.org STUDIE S IN MYCOLOGY 59: 89–106. 2007. doi:10.3114/sim.2007.59.11 Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data J. Varga1,3, M. Due2, J.C. Frisvad2 and R.A. Samson1 1CBS Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, P.O. Box 533, Hungary *Correspondence: János Varga, [email protected] Abstract: Aspergillus section Clavati has been revised using morphology, secondary metabolites, physiological characters and DNA sequences. Phylogenetic analysis of β-tubulin, ITS and calmodulin sequence data indicated that Aspergillus section Clavati includes 6 species, A. clavatus (synonyms: A. apicalis, A. pallidus), A. giganteus, A. rhizopodus, A. longivesica, Neocarpenteles acanthosporus and A. clavatonanicus. Neocarpenteles acanthosporus is the only known teleomorph of this section. The sister genera to Neocarpenteles are Neosartorya and Dichotomomyces based on sequence data. Species in Neosartorya and Neocarpenteles have anamorphs with green conidia and share the production of tryptoquivalins, while Dichotomomyces was found to be able to produce gliotoxin, which is also produced by some Neosartorya species, and tryptoquivalines and tryptoquivalones produced by members of both section Clavati and Fumigati. All species in section Clavati are alkalitolerant and acidotolerant and they all have clavate conidial heads. Many species are coprophilic and produce the effective antibiotic patulin. Members of section Clavati also produce antafumicin, tryptoquivalines, cytochalasins, sarcins, dehydrocarolic acid and kotanins (orlandin, desmethylkotanin and kotanin) in species specific combinations.
    [Show full text]
  • WO 2013/038197 Al 21 March 2013 (21.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/038197 Al 21 March 2013 (21.03.2013) P O P C T (51) International Patent Classification: Geir [NO/NO]; Bj0rndalen 81, N-7072 Heimdal (NO). A01N 43/16 (2006.01) A01N 43/653 (2006.01) MYRVOLD, Rolf [NO/NO]; 0vre Gjellum vei 28, N- A61K 31/734 (2006.01) A01P 3/00 (2006.01) 1389 Heggedal (NO). A01N 43/90 (2006.01) (74) Agent: DEHNS; St Bride's House, 10 Salisbury Square, (21) International Application Number: London EC4Y 8JD (GB). PCT/GB20 12/052274 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date kind of national protection available): AE, AG, AL, AM, 14 September 2012 (14.09.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) English Filing Language: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 1116010.8 15 September 201 1 (15.09.201 1) GB NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (71) Applicant (for all designated States except US): AL- RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, GIPHARMA AS [NO/NO]; Industriveien 33, N-1337 TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Sandvika (NO).
    [Show full text]
  • ASPERGILLOSIS and MUCORMYCOSIS 27 - 29 February 2020 Lugano, Switzerland APPLICATIONS OPENING SOON
    ABSTRACT BOOK 9th ADVANCES AGAINST ASPERGILLOSIS AND MUCORMYCOSIS 27 - 29 February 2020 Lugano, Switzerland www.AAAM2020.org APPLICATIONS OPENING SOON The Gilead Sciences International Research Scholars Program in Anti-fungals is to support innovative scientific research to advance knowledge in the field of anti-fungals and improve the lives of patients everywhere Each award will be funded up to USD $130K, to be paid in annual installments up to USD $65K Awards are subject to separate terms and conditions A scientific review committee of internationally recognized experts in the field of fungal infection will review all applications Applications will be accepted by residents of Europe, Middle East, Australia, Asia (Singapore, Hong Kong, Taiwan, South Korea) and Latin America (Mexico, Brazil, Argentina and Colombia) For complete program information and to submit an application, please visit the website: http://researchscholars.gilead.com © 2020 Gilead Sciences, Inc. All rights reserved. IHQ-ANF-2020-01-0007 GILEAD and the GILEAD logo are trademarks of Gilead Sciences, Inc. 9th ADVANCES AGAINST ASPERGILLOSIS AND MUCORMYCOSIS Lugano, Switzerland 27 - 29 February 2020 Palazzo dei Congressi Lugano www.AAAM2020.org 9th ADVANCES AGAINST ASPERGILLOSIS AND MUCORMYCOSIS 27 - 29 February 2020 - Lugano, Switzerland Dear Advances Against Aspergillosis and Mucormycosis Colleague, This 9th Advances Against Aspergillosis and Mucormycosis conference continues to grow and change with the field. The previous eight meetings were overwhelmingly successful,
    [Show full text]