Keratinocyte-Derived Follistatin Regulates Epidermal Homeostasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa
International Journal of Molecular Sciences Review Development and Maintenance of Epidermal Stem Cells in Skin Adnexa Jaroslav Mokry * and Rishikaysh Pisal Medical Faculty, Charles University, 500 03 Hradec Kralove, Czech Republic; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs. Keywords: stem cell; epidermal placode; skin adnexa; signalling; hair pigmentation; markers; keratins 1. Epidermal Stem Cells as Units of Development 1.1. Development of the Epidermis and Placode Formation The embryonic skin at very early stages of development is covered by a surface ectoderm that is a precursor to the epidermis and its multiple derivatives. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Long-Lasting Muscle Thinning Induced by Infrared Irradiation Specialized with Wavelengths and Contact Cooling: a Preliminary Report
Long-Lasting Muscle Thinning Induced by Infrared Irradiation Specialized With Wavelengths and Contact Cooling: A Preliminary Report Yohei Tanaka, MD, Kiyoshi Matsuo, MD, PhD, and Shunsuke Yuzuriha, MD, PhD Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan Correspondence: [email protected] Published May 28, 2010 Objective: Infrared (IR) irradiation specialized with wavelengths and contact cooling increases the amount of water in the dermis to protect the subcutaneous tissues against IR damage; thus, it is applied to smooth forehead wrinkles. However, this treatment consistently induces brow ptosis. Therefore, we investigated whether IR irradiation induces muscle thinning. Methods: Rat central back tissues were irradiated with the specialized IR device. Histological evaluation was performed on sagittal slices that included skin, panniculus carnosus, and deep muscles. Results: Significant reductions in panniculus carnosus thickness were observed between controls and irradiated tissues at postirradiation day 30 (P30), P60, P90, and P180; however, no reduction was observed in nonirradiated controls from days 0 to 180. No significant changes were observed in the trunk muscle over time. From day 0, dermal thickness was significantly reduced at P90 and P180; however, no difference was observed between P180 and nonirradiated controls at day 180. DNA degradation consistent with apoptosis was detected in the panniculus carnosus at P7 and P30. Conclusions: We found that IR irradiation induced long-lasting superficial muscle thinning, probably by a kind of apoptosis. The panniculus carnosus is equivalent to the superficial facial muscles of humans; thus, the changes observed here reflected those in the frontalis muscle that resulted in brow ptosis. -
Anatomy of the Dog the Present Volume of Anatomy of the Dog Is Based on the 8Th Edition of the Highly Successful German Text-Atlas of Canine Anatomy
Klaus-Dieter Budras · Patrick H. McCarthy · Wolfgang Fricke · Renate Richter Anatomy of the Dog The present volume of Anatomy of the Dog is based on the 8th edition of the highly successful German text-atlas of canine anatomy. Anatomy of the Dog – Fully illustrated with color line diagrams, including unique three-dimensional cross-sectional anatomy, together with radiographs and ultrasound scans – Includes topographic and surface anatomy – Tabular appendices of relational and functional anatomy “A region with which I was very familiar from a surgical standpoint thus became more comprehensible. […] Showing the clinical rele- vance of anatomy in such a way is a powerful tool for stimulating students’ interest. […] In addition to putting anatomical structures into clinical perspective, the text provides a brief but effective guide to dissection.” vet vet The Veterinary Record “The present book-atlas offers the students clear illustrative mate- rial and at the same time an abbreviated textbook for anatomical study and for clinical coordinated study of applied anatomy. Therefore, it provides students with an excellent working know- ledge and understanding of the anatomy of the dog. Beyond this the illustrated text will help in reviewing and in the preparation for examinations. For the practising veterinarians, the book-atlas remains a current quick source of reference for anatomical infor- mation on the dog at the preclinical, diagnostic, clinical and surgical levels.” Acta Veterinaria Hungarica with Aaron Horowitz and Rolf Berg Budras (ed.) Budras ISBN 978-3-89993-018-4 9 783899 9301 84 Fifth, revised edition Klaus-Dieter Budras · Patrick H. McCarthy · Wolfgang Fricke · Renate Richter Anatomy of the Dog The present volume of Anatomy of the Dog is based on the 8th edition of the highly successful German text-atlas of canine anatomy. -
Skin Regeneration with All Accessory Organs Following Ablation with Irreversible Electroporation
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE RESEARCH ARTICLE J Tissue Eng Regen Med 2017. Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/term.2374 Skin regeneration with all accessory organs following ablation with irreversible electroporation Alexander Golberg1,2*, Martin Villiger3, G. Felix Broelsch4, Kyle P. Quinn5,6, Hassan Albadawi7†, Saiqa Khan4, Michael T. Watkins7, Irene Georgakoudi5, William G. Austen Jr4, Marianna Bei1, Brett E. Bouma3,8, Martin C. Mihm Jr9 and Martin L. Yarmush1,10* 1Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, MA, 02114, USA 2Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel 3Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street, Boston, Massachusetts, 02114, USA 4Department of Surgery, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA 5Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA 6Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA 7Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA 8Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts, 02142, USA 9Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA 10Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA Abstract Skin scar formation is a complex process that results in the formation of dense extracellular matrix (ECM) without normal skin appendages such as hair and glands. The absence of a scarless healing model in adult mammals prevents the development of successful therapies. -
Gen Anat-Skin
SKIN • Cutis,integument • External covering • Skin+its appendages-- -integumentary system • Largest organ---15 to 20% body mass. LAYERS • Epidermis •Dermis Types • Thick and thin(1-5 mm thick) • Hairy and non hairy Thick skin EXAMPLES • THICK---PALMS AND SOLES BUT ANATOMICALLY THE BACK HAS THICK SKIN. REST OF BODY HAS THIN SKIN • NON HAIRY----PALMS AND SOLES,DORSAL SURFACE OF DISTAL PHALANX,GLANS PENIS,LABIA MINORA,LABIA MAJORA AND UMBLICUS FUNCTIONS • Barrier • Immunologic • Homeostasis •Sensory • Endocrine • excretory EPIDERMIS(layers) • Stratum basale or stratum germinativum • Stratum spinosum • Stratum granulosum • Stratum lucidum • Stratum corneum Type of cells in epidermis and keratinization • Keratinocytes • Melanocytes • Langerhans • Merkels cells DERMIS LAYERS---- 1.PAPILLARY • Dermal papillae • Complementary epidermal ridges or rete ridges • Dermal ridges in thick skin • Hemidesmosomes present both in dermis and epidermis RETICULAR LAYER •DENSE IRREGULAR CONNECTIVE TIISUE Sensory receptors • Free nerve endings • Ruffini end organs • Pacinian and • Meissners corpuscles Blood supply • Fasciocutaneous A • Musculocutaneous A • Direct cutaneous A APPENDAGES • Hair follicle producing hair • Sweat glands(sudoriferous) • Sebaceous glands • Nails Hair follicle • Invagination of epidermis • Parts---infundibulum, isthmus, inferior part having bulb and invagination HAIR follicle layers • Outer and inner root sheath • Types of hair vellus, terminal, club • Phases of growth— anagen, catagen and telogen Hair shaft • Cuticle •Cortex • Medulla -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Clonal Analysis Reveals Nerve-Dependent and Independent Roles on Mammalian Hind Limb Tissue Maintenance and Regeneration
Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration Yuval Rinkevicha,1,2, Daniel T. Montorob,1,2, Ethan Muhonenb,1, Graham G. Walmsleya,b, David Lob, Masakazu Hasegawab, Michael Januszykb, Andrew J. Connollyc, Irving L. Weissmana,2, and Michael T. Longakera,b,2 aInstitute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Developmental Biology, bHagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, and cDepartment of Pathology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Irving L. Weissman, June 1, 2014 (sent for review January 14, 2014) The requirement and influence of the peripheral nervous system example, histopathology studies report SCI patients presenting on tissue replacement in mammalian appendages remain largely with dermal fibrosis, progressive skin thickening, and nail hy- undefined. To explore this question, we have performed genetic pertrophy on lower limbs/digits after SCI (17, 18). The severity of lineage tracing and clonal analysis of individual cells of mouse the phenotypes in these studies is progressive and directly cor- hind limb tissues devoid of nerve supply during regeneration of related with the degree of injury. the digit tip, normal maintenance, and cutaneous wound healing. To directly interrogate the peripheral nerve requirements of We show that cellular turnover, replacement, and cellular dif- mammalian hind limb tissues, we used a novel transgenic line ferentiation from presumed tissue stem/progenitor cells within that permits in vivo clonal analysis of individual cells to describe hind limb tissues remain largely intact independent of nerve and the clonal read-out of primary limb tissues in response to nerve-derived factors. -
Experimental Model of Cultured Skin Graft1
Experimental model of cultured skin graft1 Alfredo Gragnani2 Jeffrey R. Morgan3 Lydia Masako Ferreira4 ________________________________________________________________________________ Gragnani A, Morgan JR, Ferreira LM. Experimental model of cultured skin graft. Acta Cir Bras [serial online] 2004 Vol 19 Special Edition. Available on URL: http://www.scielo.br/acb. ABSTRACT - One of the most used animal models of cultured keratinocytes autografting is based on xenografting of human keratinocytes to the rat or athymic mice, immunological neutral recipient that acts as biological carrier. It could be studied in this model many facts that occur after transplant without the ethical aspect in the clinical study. The proposition of the experimental model is related to the sequence of the total or partial skin transplant, as autografting or xenografting, cultured or not, to the back of athymic mice. The model presents the possibility of study in vivo athymic animal, when the in vivo study in anima nobili is not ethical. It permits the xenografting evaluation of cultured cells graft or of the genetically modified cells and of the association of the cultured cells and the dermal substitutes, the composite grafts, and of the autografting. KEY WORDS – Keratinocytes. Dermis. Skin transplantation. Cells, Cultured. Athymic mice. ________________________________________________________________________________ Introduction The possibility of using pure epidermal sheets or epithelial cell suspensions or associated with dermal analogues as grafts was first investigated in animal models over 40 years ago1. Thus, animal models for cultured keratinocyte grafting may now include autografts or allografts in many species. In addition, cultured human epithelial xenografts can be transplanted to immunodeficient athymic mice or rat as a model of human autografting. -
SKIN GRAFTS and SKIN SUBSTITUTES James F Thornton MD
SKIN GRAFTS AND SKIN SUBSTITUTES James F Thornton MD HISTORY OF SKIN GRAFTS ANATOMY Ratner1 and Hauben and colleagues2 give excel- The character of the skin varies greatly among lent overviews of the history of skin grafting. The individuals, and within each person it varies with following highlights are excerpted from these two age, sun exposure, and area of the body. For the sources. first decade of life the skin is quite thin, but from Grafting of skin originated among the tilemaker age 10 to 35 it thickens progressively. At some caste in India approximately 3000 years ago.1 A point during the fourth decade the thickening stops common practice then was to punish a thief or and the skin once again begins to decrease in sub- adulterer by amputating the nose, and surgeons of stance. From that time until the person dies there is their day took free grafts from the gluteal area to gradual thinning of dermis, decreased skin elastic- repair the deformity. From this modest beginning, ity, and progressive loss of sebaceous gland con- skin grafting evolved into one of the basic clinical tent. tools in plastic surgery. The skin also varies greatly with body area. Skin In 1804 an Italian surgeon named Boronio suc- from the eyelid, postauricular and supraclavicular cessfully autografted a full-thickness skin graft on a areas, medial thigh, and upper extremity is thin, sheep. Sir Astley Cooper grafted a full-thickness whereas skin from the back, buttocks, palms of the piece of skin from a man’s amputated thumb onto hands and soles of the feet is much thicker. -
Índice De Denominacións Españolas
VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28 -
Skin Calcium-Binding Protein Is a Parvalbumin of the Panniculus Carnosus*
Skin Calcium-Binding Protein Is a Parvalbumin of the Panniculus Carnosus* Pam ela Hawley-Nelson, M.S. , M artin W. Berchtold, Ph.D., H em·ik Huitfeldt, M .D., Jack Spi egel , Ph.D., and Stuart H . Yusp a, M.D. Laboraco ry of Cellular Ca rcinogenes is and T umor Promotion, Nati onal Cancer Institute (PI-1 -N , HI-I , SHY), lkthcsda, Ma rybnd; Depart ment of Cell Biology. Baylor College of Med icine (MWB) , Houston, Texas; and Department of Biology. Catholi c University of Ameri ca (PI-1 -N , JS) , Was hington, D.C. , U.S.A. Skin calcium-binding protein (SCaBP) is a ca lcium binding that the l\1,. 13,000 PV/SCaBP cross-reacting antigen was protein purified from w hole rat skin. It has a molecul ar res tricted to the hypodermal tiss ue removed by scrapin g. weig ht o f approx11nately 12,000 daltons but migrates at l\1,. Immunoflu orescent stain ing of Bouin-fixed skin sections 13,000 on sodium dodecyl sul fa te (S D S)-polyacrylamJde w ith these antisera confirmed the locali za ti on ofPV /SCaBP gels. On nitrocellulose blots of SDS-polyacrylamide gels, to the panniculus ca rnosus, a h ypodermal m uscle layer. 6 different antisera to SC aBP reacted equally wel l with N ewborn mouse skin does no t conta in this antigen. Ad SCaBP and parvalbumin (PV), an 11 ,500-dalton calcium ditional polypeptides of M ,. 10, 500 and 12,000 on SDS gel s bin ding pro tein purifi ed from rat skeletal muscle, which of extracts from the epidermis of newborn and adult rats also migrates at M ,.