See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337954825

FLORA AND VEGETATION STRUCTURE OF VEREDA IN SOUTHWESTERN CERRADO

Article in Oecologia Australis · December 2019 DOI: 10.4257/oeco.2019.2304.06

CITATION READS 1 141

5 authors, including:

Suzana Neves Moreira Vali Joana Pott Universidade Estadual de Mato Grosso do Sul Universidade Federal de Mato Grosso do Sul

19 PUBLICATIONS 246 CITATIONS 97 PUBLICATIONS 1,666 CITATIONS

SEE PROFILE SEE PROFILE

Arnildo Pott Rosa Helena Silva Universidade Federal de Mato Grosso do Sul 211 PUBLICATIONS 2,654 CITATIONS 13 PUBLICATIONS 17 CITATIONS SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Aquatic macrophytes in Paraguay River View project

Monitoramento ambiental da Usina São Fernando, Dourados, MS, Brasil. View project

All content following this page was uploaded by Suzana Neves Moreira on 06 February 2020.

The user has requested enhancement of the downloaded file. Oecologia Australis 23(4):776-798, 2019 https://doi.org/10.4257/oeco.2019.2304.06

GEOGRAPHIC DISTRIBUTION OF THE THREATENED PALM Euterpe edulis Mart. IN THE ATLANTIC FOREST: IMPLICATIONS FOR CONSERVATION FLORA AND VEGETATION STRUCTURE OF VEREDA IN SOUTHWESTERN CERRADO Aline Cavalcante de Souza1* & Jayme Augusto Prevedello1 1 2 2 2 1 Suzana Neves Moreira *, Vali Joana Pott , Arnildo Pott , Rosa Helena da Silva & Geraldo Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Departamento de Ecologia, Laboratório de Ecologia de 2 Paisagens, Rua São Francisco Xavier 524, Maracanã, CEP 20550-900, Rio de Janeiro, RJ, Brazil. Alves Damasceno Junior

1 E-mails: [email protected] (*corresponding author); [email protected] Universidade Estadual do Mato Grosso do Sul, Rua General Mendes de Moraes, 428, Centro, CEP 79400-000, Coxim, MS, Brazil.

2 Abstract: The combination of species distribution models based on climatic variables, with spatially explicit Universidade Federal de Mato Grosso do Sul, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, analyses of habitat loss, may produce valuable assessments of current species distribution in highly disturbed Cidade Universitária, Avenida Costa e Silva, s.n., Pioneiros, CEP 79070-900, Campo Grande, MS, Brazil. ecosystems. Here, we estimated the potential geographic distribution of the threatened palm Euterpe E-mails: [email protected] (*corresponding author); [email protected]; [email protected]; edulis Mart. (Arecaceae), an ecologically and economically important species inhabiting the Atlantic Forest [email protected]; [email protected] biodiversity hotspot. This palm is shade-tolerant, and its populations are restricted to the interior of forest E. edulis patches. The geographic distribution of has been reduced due to deforestation and overexploitation Abstract: This work was carried out aiming to evaluate phytosociological parameters and the influence of of its palm heart. To quantify the impacts of deforestation on the geographical distribution of this species, we topographic gradient and water levels on distribution in a vereda. That for, we sampled two sites (wet compared the potential distribution, estimated by climatic variables, with the current distribution of forest grassland and floodable transition to pond) in two seasons (rainy and dry). Along permanent transects, every patches. Potential distribution was quantified using five different algorithms (BIOCLIM, GLM, MaxEnt, 10 m we placed transversally four quadrats of 1 m2, 2 m apart, a total of 280 plots, to estimate percentage Random Forest and SVM). Forest cover in the biome was estimated for the year 2017, using a recently- cover of each species and water depth. To evaluate the influence of relief and flood level on plant distribution E. edulis released map with 30 m resolution. A total of 111 records were kept to model climatic suitability of , we performed a Principal Coordinate Analysis (PCoA) and Analysis of Permutational Multivariate Variance varying from 6 to 1500 m a.s.l and spanning almost the entire latitudinal gradient covered by the Atlantic (PERMANOVA). We recorded 174 species, the richest families were (40), Cyperaceae (25) and ca. Forest (from 7.72º S to 29.65º S). Based on climatic suitability alone, 93 million hectares, or 66% of the Asteraceae (14) and the richest genera Paspalum, Rhynchospora and (8 each), Hyptis and Cyperus E. edulis area of the Atlantic Forest, would be suitable for the occurrence of . However, 76% of this climatically (6), Eleocharis, Ludwigia and Xyris (5). The phytosociological parameters revealed the importance of Poaceae, ca. suitable area was deforested. Therefore, currently, only 15% of the biome retains forest patches that are Cyperaceae and Asteraceae in these communities, corroborating other reports on veredas. We found discrete E. edulis E. edulis climatically suitable for . Our analyses show that has suffered a dramatic loss of potential difference in the species richness between sampling periods, in both wet grassland and transition areas. The distribution area in the Atlantic Forest due to widespread deforestation. Our results provided updated slope varied from 0 to 314 cm and was significant for species distribution in both seasons, with a continuum E. edulis information on the distribution of , and may be used to identify which forested and deforested areas related to waterlogging and surface water on the distinct topographic quotas. In general, we found discrete could receive priority in future conservation and restoration efforts. groupments of species, particularly in lower quotas. The main indicator species were the filiform Eriochrysis holcoides Rhynchospora emaciata Andropogon virgatus Keywords: climatic suitability; deforestation; habitat loss; palm heart; species distribution modelling. (, Poaceae), (Poales, Poaceae), (Poales, Poaceae), Paspalum erianthoides (Poales, Poaceae) and P. flaccidum(Poales, Poaceae). Some species tend to be selective whilst others show plasticity regarding microhabitat.

Keywords: marsh grassland; phytosociology; savanna; topographic gradient; wetland.

INTRODUCTION 1986) and plays an important role in linking these vegetation types (Carvalho 1991). Veredas are The Cerrado domain is characterized by a legally defined as “physiognomy of savanna, found vegetation mosaic of savanna, forest and grassland on hydromorphic soils, usually with the arboreal (Felfili et al. 2004). According to Ribeiro & Walter palm Mauritia flexuosa (Arecales, Arecaceae) – (1998), the vereda is one of the physiognomies. This buriti, emergent, without forming continuous environment is interposed between Cerrado stricto canopy, intermingled with clumps of shrubby- sensu and gallery forest (Oliveira-Filho & Martins herbaceous species” (Brasil 2012). That rule also Moreira et al. | 777 considers Permanent Preservation Area (PPA) a distribution; (4) compare the floristic similarity minimum 50 m wide belt along veredas, after the between areas and seasons; (5) compare species limit of the swampy or waterlogged area. Although richness between areas. there is a law protecting veredas, considering them as PPAs, they undergo anthropic processes MATERIAL AND METHODS that may become irreversible (Oliveira et al. 2009) Study area since they are highly sensitive to disturbance and little resilient environments (Carvalho 1991). Our work was done in a vereda (20º33’24.1” S, Human disturbances in wetlands can be shown by 54º47’23.6” W, datum SAD69) at the Fazenda floristic changes, causing loss of biodiversity and Modelo, municipality of Terenos, Mato Grosso do consequent disruption of the ecosystem (Meirelles Sul state, Brazil. The area is at 550 m altitude and the et al. 2004). seasonal climate is Aw in the classification of Peel et The distribution of veredas is basically al. (2007). Monthly rainfall data were provided by a conditioned by physical factors, such as wet plain weather station, 30 km away, at the headquarters of surfaces or flat valleys, permeable surface layer over Embrapa Beef Cattle Research Center. The original an impermeable subsoil, water saturation nearly vegetation was Cerrado woodland of which a year-round and shallow water table (Drummond et fragment remains at the wetland headwater, near al. 2005), where gentle slopes favor its seasonal rise an outcrop of laterite we believed that underlies to the surface (Oliveira-Filho & Martins 1986). The this vereda. Close to the headwater is a stand of M. hydromorphic soils are ill-drained (Baccaro 1994, flexuosa. Surrounded by pasture (mainly Paspalum Ribeiro & Walter 1998), such as gleysols, planosols notatum (Poales, Poaceae) and Urochloa spp.), and organosols (Drummond et al. 2005). Guimarães the study area is grazed and trampled by cows and et al. (2002) found two soil classes, Haplic Gleysol horses, mainly in the dry season and on the edges, and Melanic Gleysol, in veredas in Uberlândia, MG. not sampled. The hydrologic regime in wetlands is the major determinant in plant community patterns Fieldwork and data analysis and species zonation (Casanova & Brock 2000). Samplings were performed in the rainy and in the Gentry (1988) suggested that habitat contributes dry season. We placed four permanent transects significantly for plant species diversity along to sample vegetation, being two on the floodable topographic and edaphic gradients, as well as transitional zone, with 170 m (68 plots) and 140 m Rezende (2007) who found a strong influence of (56 plots) and two on the wet grassland, one 150 soil moisture gradient on species distribution, m long (60 plots) and another one 240 m long (96 assorting into groups of dry and wet habitats plots), a total of 280 plots. The transition site, so and some occurring in both conditions. called because it is located near a pond (described In the study area, the drainage from the wet by Moreira et al. 2011), is seasonally flooded. grassland provides water to an adjacent pond In each transect, at every 10 m, we placed four (Moreira et al. 2015). Consequently, areas near the plots of 1 m2 transversally to the transect line pond (transitional areas) remain with more water and 2 m apart, a total of 280 plots. To visually throughout the year when compared with wet estimate cover, we imagined a cross line dividing grassland. The hypothesis we want to test is that the plot in four quarters, and so on (Figure 1). The topographic gradient and consequent different percentage cover (vertical projection) per plant water levels influence plant species distribution species within each plot was visually estimated, patterns and abundance in vereda vegetation. always by the same two persons (S. N. M. and V. Therefore, the study was divided into secondary J. P.), who recognized vegetative plants. Some objectives: (1) present the floristic composition grasses flowered where we trampled them. of the whole vereda; (2) evaluate species richness Fertile plant specimens were botanized for the and abundance in the areas (wet grassland and Herbarium CGMS of the Universidade Federal de transitional areas) and in the seasons (dry and Mato Grosso do Sul, while sterile ones were taken rainy); (3) analyze, in each season, if the topography to the greenhouse until flowering. Taxonomic and different water levels influence plant species identification was achieved comparing vouchers

Oecol. Aust. 23(4): 776–798, 2019 778 | Vegetation structure of vereda

Figure 1. Study area and scheme of distribution of the plots in the place at the Fazenda Modelo, municipality of Terenos, Mato Grosso do Sul state, Brazil. in the herbarium and consulting bibliography and To compare the data between both seasons, we specialists. utilized the Principal Coordinates Analysis (PCoA), We calculated the phytosociological parameters which allows to explore and visualize similarities Absolute Frequency (AF), Relative Frequency or differences between data sets and reveals a (RF), Absolute Cover (AC) and Relative Cover (RC) centralized matrix decomposed in its eigenvalues (Brower & Zar 1984) and the Sørensen Similarity and eigenvectors. Next, the groups identified Index (Mueller-Dombois & Ellenberg 1974). For that in the PCoA were submitted to a Permutational analysis we used percentage of cover as a measure of Multivariate Analysis of Variance (PERMANOVA) abundance instead of number of individuals, once to verify significance between the groupments of defining an individual is very difficult for bunchy topographic quotas. The analyses were performed herbaceous species (Kent & Coker 1992), generally utilizing the package Vegan (Oksanen et al. 2014) of filiform. the program R (R Core team 2017). We used an optical level to do the topographic Regarding indicator species (Dufrêne & Legendre survey on the flood free part and we measured 1997), we utilized the function indval() of the water depth per plot with a ruler (in cm) on flooded package labdsv (David, 2016), also in R. An indicator grassland to determine the altimetric position of species has specificity to a particular niche; thus, its each plot along transects. To evaluate the influence presence or abundance was utilized to indicate a of the topography on the pattern of species particular environment (Cáceres et al. 2010). distribution in the wet grassland and in transition RESULTS areas, we utilized the spreadsheets with the percentages of cover of the species in relation to the Overall floristic data topographic quotas of the terrain. In the analyses, The overall data shows a high plant richness in the the species cover percentages were distributed studied vereda. In the wet grassland plus transition according to the respective topographic quotas, areas, we sampled 174 species of 97 genera and 46 on a scale of 15 cm per quota. The plots within the families. Poaceae (40 species), Cyperaceae (25), limits of the topographic quotas were grouped for Asteraceae (14) were the richest families, adding the analyses. up 45% of the species, while 21 families showed

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 779 single species. The richest genera were Paspalum, In the analysis of the topographic gradient, we Rhynchospora and Utricularia (8 each), Hyptis and compared wet grassland and transitional area. The Cyperus (6), Eleocharis, Ludwigia and Xyris (5), topographic quotas varied from 314 cm, the top typical of veredas (Appendix 1). level, where the water table was just close to the Comparing the general richness found in the wet surface, to zero, the lowest ground, where the soil grassland with the transitional areas, we observed was waterlogged or flooded since toward the pond that the first had a slightly lower number of species the water rose to the surface (Figures 2 and 3). The (113) than the latter (122). In the transition zone, topography was important to determine the pattern we sampled 43 exclusive species, while the wet of species distribution in both rainy (p = 0.001) and grassland showed 33, and 79 were common to both dry period (p = 0.001). formations (Appendix 1). The Sørensen Similarity In the rainy period, the Principal Coordinates indexes for habitats and seasons showed a higher Analysis (PCoA) indicates two main centroids related floristic similarity between dry and rainy seasons to the topographic quotas of 0-15 cm and 15-30 cm. in similar environments than in relation to different The other quotas do not represent a clear pattern of environments (Table 1). separation of species, indicating that they are more

Table 1. Sørensen Similarity Index between areas and sampled periods in a vereda, municipality of Terenos, State of Mato Grosso do Sul, Brazil.

Grassland Rainy Grassland Dry Transitions Rainy Transitions Dry Grassland/Rainy . 0.81 0.65 0.62 Grassland/Dry . . 0.51 0.55 Transitions/Rainy . . . 0.87 Transitions/Dry . . . .

Figure 2. Ordination of the herbaceous species by Principal Coordinates Analysis (PCoA) through declivity of the terrain sampled in a vereda in municipality of Terenos, state of Mato Grosso do Sul, Brazil, in the rainy period. The numbers mean the topographical quotas in centimeters.

Oecol. Aust. 23(4): 776–798, 2019 780 | Vegetation structure of vereda

Figure 3. Ordination of the herbaceous species by Principal Coordinates Analysis (PCoA) through declivity of the terrain sampled in a vereda in municipality of Terenos, state of Mato Grosso do Sul, Brazil, in the dry period. The numbers mean the topographic quotas in centimeters. similar between them (Figure 2). influenced the pattern of distribution. The quota of The Indicator Species Analysis for the rainy period 0-15 cm, as well as in the rainy season, indicates the revealed 62 species related with distinct topographic preference of some species, whilst the quotas 15-30 quotas forming two large groups, the first with cm and 30-45 cm are more related between them 22 species and the second with 40 species. The than with the others. The highest topographic quotas indicator species of the first group are distributed in demonstrated that the species occur similarly along nine families, the richest being Poaceae (7 species), the gradient, without forming characteristic groups Cyperaceae (3) and Malvaceae, Lentibulariaceae and (Figure 3). Asteraceae (2). The characteristic species of group I The Indicator Species Analysis for the dry are: (, Lentibulariaceae), period revealed 57 species related to the distinct Rhytachne rottboellioides (Poales, Poaceae), Byttneria topographic quotas. Differently from the rainy palustris (Malvales, Malvaceae), asperum period, when we related the indicator species (Poales, Poaceae) and Andropogon hypogynus with the graph of species distribution, there (Poales, Poaceae). The species of the second group is not a clear spatial separation or preference. are represented by 10 families, Poaceae (12 species), However, the analysis indicated some key-species Cyperaceae (11) and Asteraceae (5) having the largest for the quota of 0-15 cm Schizachyrium gracilipes number. The main indicator species are Eriochrysis (Poales, Poaceae) and Eryngium ebracteatum holcoides (Poales, Poaceae), Rhynchospora emaciata (Apiales, Apiaceae) and 15-30 cm, Leersia hexandra (Poales, Cyperaceae), Andropogon virgatus (Poales, (Poales, Poaceae), Caperonia castaneifolia Poaceae), Paspalum erianthoides (Poales, Poaceae) (Malpighiales, Euphorbiaceae), Eleocharis and Paspalum flaccidum(Poales, Poaceae). plicarhachis (Poales, Cyperaceae), E. acutangula In the dry period, the Principal Coordinates (Poales, Cyperaceae), Mikania stenophylla Analysis (PCoA) revealed a spaced pattern of the (Asterales, Asteraceae), Phyllanthus stipulatus centroids, indicating that more topographic quotas (Malpighiales, Phyllanthaceae) and Aeschynomene

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 781 fluminensis (Fabales, Fabaceae). The quota of 30- Transition areas 45 cm presented just a single indicator species, In the transition areas, we sampled 122 species Lessingianthus rubricaulis (Asterales, Asteraceae). and 72 genera distributed into 34 families. Poaceae (28 species), Cyperaceae (20), Asteraceae (11) and Wet grassland Lentibulariaceae (8) were the richest families, In wet grassland, we sampled 113 species, of 71 genera adding to 55.8% of all recorded species. Another 15 and 34 families. Poaceae (27 species), Cyperaceae families were represented by a single species or just (20), Asteraceae (11), Lamiaceae (6) and Xyridaceae 17.8% of the floristic richness. The richest genera and Lentibulariaceae (5) were the richest families, were Utricularia (8), Rhynchospora (7) and Xyris, adding to 65.5% of total richness. The richest genera Eleocharis, Scleria, Hyptis and Ludwigia (4 each) were Rhynchospora (8 species), Hyptis, Paspalum, (Appendix 1). Utricularia, and Xyris (5 each). Twenty families were Saccharum asperum, A. hypogynus and represented by a single species and accumulated A. uninodis were the species with the highest 17.8% of the floristic richness (Appendix 1). relative cover the rainy season, compared with R. Eriochrysis holcoides (Poales, Poaceae) showed rottboellioides, A. hypogynus and Imperata tenuis the highest cover in the rainy season, followed (Poales, Poaceae) in the dry season (Table 2). by Anthaenantia lanata (Poales, Poaceae), P. flaccidum, P. erianthoides, Rhynchospora globosa DISCUSSION (Poales, Cyperaceae), A. virgatus, A. hypogynus and uninodis (Poales, Poaceae). In the dry Overall floristic data season, A. uninodis was the species with highest CV, Poaceae, Cyperaceae and Asteraceae were the followed by P. erianthoides, A. lanata, A. virgatus, P. richest families in other studies on wetlands in dedeccae (Poales, Poaceae), P. flaccidum, R. globosa, Cerrado (Guimarães 2001, Guimarães et al. 2002, A. hypogynus and Rhynchospora marisculus (Poales, Araújo et al. 2002, Meirelles et al. 2004, Munhoz & Cyperaceae) (Table 2). The cover of Eryngium Felfili 2008, Oliveira et al. 2009, Moreira et al. 2011, pandanifolium (Apiales, Apiaceae) did not differ Moreira et al. 2015, Bijos et al. 2017), as we also between seasons. observed. These families contain species which

Table 2. Species with highest Cover Values in Wet grassland and Transition Area at Vereda, municipality of Terenos, State of Mato Grosso do Sul, Brazil, in two differents environments and seasons with their respective Collector Number (COL.). M= Moreira,S.N. Numbers in bold represent the highest cover values.

Wet grassland Transition Area Family/Species Col. Rainy Dry Rainy Dry APIACEAE Eryngium pandanifolium Cham. & Schltdl. M 143 5.8 6.33 1.04 0.35 MALVACEAE Byttneria palustris Cristóbal M 37 1.11 1.93 6.45 8.58 POACEAE Andropogon hypogynus Hack. M 89 7.13 7.16 17.38 16.86 Axonopus uninodis (Hack.) G.A. Black M 19 6.49 18.6 13.14 11.09 Eriochrysis holcoides (Nees) Kuhlm. M 101 23.04 3.78 3.65 5.69 Imperata tenuis Hack. M 208 3.15 2.55 11.7 15.73 Paspalum erianthoides Lindm. M 303 12.22 14.38 12.55 13.83 Paspalum flaccidum Nees M 285 12.91 10.15 1.25 1.19 Rhytachne rottboellioides Desv. M 90 2.07 1.84 5.05 34.32 Saccharum asperum (Nees) Steud. M 61 1.75 0.25 22.26 3.66

Oecol. Aust. 23(4): 776–798, 2019 782 | Vegetation structure of vereda occur mostly in sunny habitats (Coutinho 1978) by Goldsmith (1974) found a type of vegetation but in wet grassland, the herbaceous dominance in the transition area and that this change occurs can be attributed to excess of water in the soil, what in a subtle way, as a continuum. In the moist and hinders the establishment of woody strata (Araújo flooded gradient of veredas occurs a continuum et al. 2002). We collected a recently described new of species replacement gradient where the plant species, Cyperus longiculmis (Poales, Cyperaceae) communities have components from neighbouring (Pereira-Silva et al. 2018). zones and also exclusive species (Costa 2007). The In spite of wet grassland and transition zone moisture gradient can select different species (Kurtz presenting some exclusive species, the large et al. 2013). Some occur preferentially in flooded number of species (79) in common reflects their soils, others in dry soils, plus those occurring in capacity to colonize both habitats with higher both environments (Guimarães et al. 2002, Resende or lower water saturation and a high similarity et al. 2013). between the same habitats, even considering The indicator species of the rainy period reflect distinct sampling seasons. Thus, the sampled area basically the growth habit of the individuals. exerts higher influence on the species composition Many cespitous tall grasses have vigorous growth than does the water regime. A similar result was in wetlands, such as A. hypogynus, A. virgatus, already observed by Moreira et al. (2011) in ponds E. holcoides, P. erianthoides, P. flaccidum, R. associated with veredas. rottboellioides and S. asperum, as well as Cyperaceae, The relationship between topographic quotas e.g. R. emaciata. The submerged or palustrine herb and distribution patterns is attributed to different Utricularia gibba (Lamiales, Lentibulariaceae) has moisture conditions along the relief gradient. abundant ramified stolons (Baleeiro et al. 2017), Similar results were described in other studies what contributes to its higher frequency and cover, (see Teixeira & Assis 2005 and Gaya 2014), where preferentially in wetter habitats, along animal hydromorphic soils have different floristic and tracks throughout the area. structural peculiarities, besides providing a greater The indicator species in the dry period variety of environments and, consequently, a more correspond majorly to other botanical families. P. diverse flora. In our study area, the slope is easily stipulatus, A. fluminensisand L. rubricaulis do not perceived as slow and the drainage is gradual. present stoloniferous propagation, such as Poaceae The water movement is visible in the veins and and Cyperaceae, however, occur in specific zones, animal tracks, from the highest to the lowest i.e. areas with less flooding. ground, where the water begins to dam up, as well as in puddles in small depressions between Wet grassland grass bunches. The soil was not analyzed, but we Similar to several reports the richest families in observed that the wet grassland was waterlogged in wet grassland were Poaceae, Cyperaceae and spite of the slope because there is a thicker organic Asteraceae (Guimarães et al. 2002, Araújo et al. top horizon functioning as a sponge compared 2002, Meirelles et al. 2004, Munhoz & Felfili 2007, with the transition floodable grassland. Positive Munhoz & Felfili 2008, Oliveira et al. 2009, Moreira relationships between declivity and species et al. 2011, Moreira et al. 2015, Bijos et al. 2017), plus distribution in forests were described by several the main genera Rhynchospora and Xyris (Araújo authors (see Gartlan et al. 1986, Oliveira-Filho et al. et al. 2002, Munhoz & Felfili 2007, Resendeet al. 1994a, 1994b, Van Den Berg & Oliveira-Filho 1999). 2013). Araújo et al. (2002) suggest that these richest The Principal Coordinates Analysis and the families have species well adapted to the conditions Indicator Species Analysis in both sampled periods of soil and waterlogging, commonly found in suggest the formation of groups mainly on the veredas, reflected by the high representativity of the lowest quotas and that these lack exclusive species herbaceous stratum. since they occur in the transition zone between The highest cover values (CV) represent species the wet grassland and the associated pond. This with dense tussocks as much in the dry as in the could be explained by transition areas containing rainy season, such as A.lanata and P. erianthoides species from either. The transition zones can be (Poaceae) and R. globosa (Cyperaceae). The characterized as ecotones. A pioneer study on vereda dense tussocks of filiform species can hinder the

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 783 establishment of other species in wetter zones of deficit. This tussock grass is only grazed after burn the vereda (Araújo et al. 2002), such as A. lanata, or during critical dry or flood periods (Pott 1982), A. hypogynus, A. uninodis and R. rottboellioides. though in the study area it occurs in the transition E. pandanifolium (Apiaceae) showed high CV in temporary pond/wet grassland, where cattle can both seasons. Differently from grasses, this species have access but prefers softer grasses, what could grows in groups and shows high competitiveness explain its high coverage. We observed that I. for space with graminoids, mainly for having tenuis formed dense dominant populations, what rosette-like large strong leaves (Cardozo 2017), is due to the multiple aggregate culms (Welker & pushing others aside. The species which form Longhi-Wagner 2012) from the strong rhizome net. dense tussocks, such as grasses, tend to show Frequent in the studied vereda, R. rottboellioides is higher cover than small and slender herbs in high not yet cited for the Central-West region in the list abundance (Munhoz & Felfili 2008). We observed of the Brazilian Flora (Flora do Brasil 2018). that some species of Lamiaceae (Hyptis spp.), We concluded that the studied vereda presents Ochnaceae (Sauvagesia racemosa), Apocynaceae a continuum of environmental conditions related (Rhabdadenia ragonesei), Orobanchaceae to soil moisture and waterlogging of the distinct (Escobedia grandiflora), Gesneriaceae (Sinningia topographic quotas. Thereby, some species tend to elatior) and Lentibulariaceae (Utricularia occur preferentially in certain microhabitats whilst praelonga) elongate stems over the filiform tussocks others show a wider plasticity. to expose the flowers, as also reported by Araújo et al. (2002). The dense grass bunch expands to its ACKNOWLEDGEMENTS periphery and tends to die in the middle, where the decayed matter becomes colonized by ferns We thank the Universidade Federal de Mato and shrubs (e. g. Miconia chamissois, Myrtales, Grosso do Sul (UFMS) for sponsoring the study. To Melastomataceae). Conselho Nacional de Desenvolvimento Científico There is a higher probability to find fertile plants e Tecnológico (CNPq) for scholarship to Suzana during the rainy season. We found the highest Neves Moreira and grants to Arnildo Pott and species richness in the rainy season (Munhoz Geraldo Alves Damasceno Junior. To Embrapa & Felfili 2006), what does not correspond to the Gado de Corte that gave us access to the area and establishment of true aquatic plants but to the kept firebreaks. appearance of species between seasons or just not sampled before. REFERENCES

Transition areas Araújo, G. M., Barbosa, A. A. A., Arantes, A. A., & Poaceae, Cyperaceae and Asteraceae correspond Amaral, A. F. 2002. Composição florística de to the richest families in most reports on wetlands, Veredas no município de Uberlândia, MG. such as veredas (Araújo et al. 2002, Guimarães et Revista Brasileira de Botânica, 25(4), 475-493. al. 2002, Meirelles et al. 2002, Tannus & Assis 2004, Baccaro, C. A. D. 1994. As unidades Munhoz & Felfili 2006, Munhoz & Felfili, 2007, geomorfológicas e a erosão nos chapadões Oliveira et al. 2009, Moreira et al. 2011, Resende et do município de Uberlândia. Sociedade & al. 2013, Moreira et al. 2015, Silva et al. 2017, Bijos Natureza, Uberlândia, 6(11/12), 19-33 et al. 2017, Moreira et al. 2017). Coutinho (1998) Baleeiro, P. C., Moreira, A. D. R., Silva, N. G., and Araújo et al. (2002) mention that these three & Bove, C. P. 2017. Flora do Rio de Janeiro: families present a great number of genera and Lentibulariaceae. Rodriguésia, 68(1), 59-71. heliophilous species. DOI: 10.1590/2175-7860201768111 Saccharum asperum can occur either in drier Bijos, N. R., Eugênio, C. U. O., Mello, T. R. B., Souza, areas of the vereda edge (Oliveira et al. 2009) G. F., & Munhoz, C. B. R. 2017. Plant species or water courses and marshes, with high cover composition, richness, and diversity in the (Meirelles et al. 2002). Andropogon hypogynus palm swamps (veredas) of Central Brazil. Flora, was representative in both seasons, showing to 236-237, 94-99. DOI: 10.1016/j.flora.2017.10.002 be adapted to either flooding or relative water Brasil. 2012. Lei No. 12.651, de 25 de maio de 2012.

Oecol. Aust. 23(4): 776–798, 2019 784 | Vegetation structure of vereda

Conselho Nacional do Meio Ambiente, Brasília, Flora do Brasil. 2018. Poaceae in Flora do Brasil Brasil. Retrieved on June 21, 2018, from http:// 2020 under construction. Jardim Botânico do www.planalto.gov.br/ccivil_03/_Ato2011- Rio de Janeiro. Retrieved on October 08, 2018, 2014/2012/Lei/L12651.htm from http://floradobrasil.jbrj.gov.br/reflora/ Brower, J. E., & Zar, J. H. 1984. Field and laboratory floradobrasil/FB13567 methods for general ecology. 2nd ed. Iowa: Gartlan, J. S., Newbery, D. M., Thomas, D. W., & Wm. C. Brown Company: p. 226. Waterman, P. G. 1986. The influence of topography Cáceres, M., Legendre, P., & Moretti, M. 2010. and soil phosphorus on the vegetation of Korup Improving indicator species analysis by Reserve, Cameroun. Vegetatio, 65, 131-148. DOI: combining groups of sites. Oikos, 119(10), 1674- 10.1007/BF00044814 1684. DOI: 10.1111/j.1600-0706.2010.18334.x Gaya, T. R. L. M. 2014. A floresta inundável do Cardozo, A. L. 2017. O gênero Eryngium L. norte de Minas Gerais: identidade florística e (Apiaceae, Saniculoideae) no Estado do Paraná. estrutura de comunidades arbustivo-arbóreas. Master Thesis. Setor de Ciências Biológicas, Lavras, MG. Master thesis. Engenharia Florestal. Universidade Federal do Paraná. p. 88. Universidade Federal de Lavras: p. 225. Carvalho, P. G. S. 1991. As Veredas e sua Gentry, A. H. 1988. Changes in plant community importância no domínio dos cerrados. Informe diversity and floristic composition on Agropecuário, 168, 54-56. environmental and geographical gradients. Casanova, M. T., & Brock, M. A. 2000. How do Annals of the Missouri Botanical Garden, 75(1), depth, duration and frequency of flooding 1–34. influence the establishment of wetland plant Goldsmith, F. B. 1974. Multivariate analyses of communities? Plant Ecology, 147, 237-250. DOI: tropical grassland communities in Mato Grosso, 10.1023/A:1009875226637 Brasil. Journal of Biogeography, 1(1), 111-122. Costa, A. F. 2007. Zonação do gradiente Guimarães, A. J. M. 2001. Característica do solo vegetacional Cerrado Típico-Campo Sujo- e da comunidade vegetal em área natural Vereda, na Estação Ecológica de Águas e antropizada de uma Vereda na região de Emendadas, Brasilia, DF. Master thesis. Uberlândia, MG. Master thesis. Ecologia Departamento de Ecologia, Universidade de e Conservação dos Recursos Naturais. Brasília: p. 65. Universidade Federal de Uberlândia, Coutinho, L. M. 1978. O conceito de Cerrado. Uberlândia: p. 44. Revista Brasileira de Botânica, 1, 17-73. Guimarães, A. J. M., Araújo, G. M., & Corrêa, G. F. David, W. R. 2016. Labdsv: Ordination and 2002. Estrutura fitossociológica em área natural Multivariate Analysis for Ecology. R package e antropizada de uma vereda em Uberlândia, version 1.8-0. Retrieved from https://CRAN.R- MG. Acta Botanica Brasilica, 16(3), 317-330. project.org/package=labdsv DOI: 10.1590/S0102-33062002000300007 Dufrêne, M., & Legendre, P. 1997. Species Kent, M., & Coker, P. 1992. Vegetation description assemblages and indicator species: the need for and analysis: A practical approach. Michigan: a flexible asymmetrical approach. Ecological CRC Press: p. 363. Monographs, 67, 345-366. DOI: 10/bbgdvn Kurtz, B. C., Gomes, J. C., & Scarano, F. R. 2013. Drummond, G. M., Martins, C. S., Machado, Structure and phytogeographic relationships A. B. M., Sebaio, F. A., & Antonini, Y. 2005. of swamp forests of Southeast Brazil. Acta Biodiversidade em Minas Gerais: Um atlas para Botanica Brasilica, 27(4), 647-660. DOI: 10.1590/ sua conservação. Belo Horizonte: Fundação S0102-33062013000400002 Biodiversitas: p. 222. Meirelles, M. L., Oliveira, R. C., Vivaldi, L. J. Santos, Felfili, J. M., Silva-Junior. M. C., Sevilha, A. C., Fagg, A. R., & Correia, Jr. 2002. Espécies do estrato C. W., Walter, B. M. T., Nogueira, P. E., & Rezende, herbáceo e profundidade do lençol freático em A. B. 2004. Diversity, floristic and structural áreas úmidas do Cerrado. Boletim de Pesquisa patterns of Cerrado vegetation in central Brazil. e Desenvolvimento, Embrapa Cerrados, 25, Plant Ecology, Dordrecht, 175, 37-46. DOI: 1-19. 10.1023/B:VEGE.0000048090.07022.02 Meirelles, M. L., Guimarães, A. J. M., Oliveira, R.C.,

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 785

Araújo, G. M., & Walter, J. F. 2004. Impactos Revista Brasileira de Botânica, 9, 207-223. sobre o estrato herbáceo de Áreas Úmidas do Oliveira-Filho, A. T., Almeida, R. J., Mello, J. Cerrado. In: L.M.S. Aguiar, & A. J. A. Camargo M., & Gavilanes, M. L. 1994a. Estrutura (Eds.), Cerrado: ecologia e caracterização. pp. fitossociológica e variáveis ambientais em um 41-68. Planaltina: Embrapa Cerrados. trecho da mata ciliar do córrego dos Vilas Boas, Moreira, S. N., Pott, A., Pott, V. J., & Damasceno- Reserva Biológica do Poço Bonito, Lavras (MG). Junior, G. A. 2011. Structure of pond vegetation Revista Brasileira de Botânica, 17, 67-85. of a vereda in the Brazilian Cerrado. Oliveira-Filho, A. T., Vilela, E. A., Carvalho, D. A., Rodriguésia, 62(4), 721-729. DOI: 10.1590/S2175- & Gavilanes, M. L. 1994b. Effect of soils and 78602011000400002 topography on the distribution of tree species Moreira, S. N., Eisenlohr, P. V., Pott, A., Pott, V. J., in a tropical riverine forest in Southeastern & Oliveira-Filho, A. T. 2015. Similar vegetation Brazil. Journal of Tropical Ecology, 10(4), 483- structure in protected and non-protected 508. DOI: 10.1017/S0266467400008178 wetlands in Central Brazil: conservation Oliveira, G. C., Araújo, G. M., & Barbosa, A. A. significance. Environmental Conservation, 42, A. 2009. Florística e zonação de espécies 356-362. DOI: 10.1017/S0376892915000107 vegetais em veredas no Triângulo Mineiro, Moreira, S. N., Pott, V. J., & Pott, A. 2017. Are Brasil. Rodriguésia, 60(4), 1077-1085. DOI: Mauritia flexuosa L. f. palm swamps in the 10.1590/2175-7860200960417 Brazilian Pantanal true veredas? A floristic Peel, M. C., Finlayson, B. L., & McMahon, T. A. appraisal. Boletim do Museu Paraense Emílio 2007. Updated world map of the Köppen- Goeldi Ciências Naturais, 12(2), 221-238. Geiger climate classification. Hydrology and Mueller-Dombois, D., & Ellenberg, H. 1974. Aims Earth System Sciences, 11(5), 1633-1644. DOI: and methods of vegetation ecology. New York: 10.5194/hess-11-1633-2007 John Wiley & Sons: p. 547. Pereira-Silva, L., Hefler, S. M., & Trevisan, R. 2018. Munhoz, C. B. R., & Felfili, J. M. 2006. Floristics of Cyperus longiculmis and C. valiae (Cyperaceae), the herbaceous and sub-shrub layer of a moist two new species from Brazil. Systematic Botany, grassland in the Cerrado Biosphere Reserve 43(3), 741-746. DOI: 10.1600/036364418X697454 (Alto Paraíso de Goiás), Brazil. Edinburgh Pott, A. 1982. Pastagens da sub-regiões do Journal of Botany, 63, 343-354. DOI: 10.1017/ Paiaguás e da Nhecolândia do Pantanal Mato- S0960428606000539 Grossense. Corumbá: EMBRAPA/UEPAE: p. 49. Munhoz, C. B. R., & Felfili, J. M. 2007. Florística R Core Team. 2017. R: A language and environment do estrato herbáceo-subarbustivo de um for statistical computing. R Foundation campo limpo úmido em Brasília, Brasil. Biota for Statistical Computing, Vienna, Austria. Neotropica, 7(3), 205-215. DOI: 10.1590/S1676- Retrieved from http://www.R-project.org/ 06032007000300022 Resende, I. L. M., Chaves, L. J., & Rizzo, J. A. 2013. Munhoz, C. B. R., & Felfili, J. M. 2008. Fitossociologia Floristic and phytosociological analysis of palm do estrato herbáceo-subarbustivo de um swamps in the central part of the Brazilian campo limpo úmido no Brasil Central. Acta savanna. Acta Botanica Brasilica 27, 205-225. Botanica Brasilica, 22(4), 905-913. DOI: 10.1590/ DOI: 10.1590/S0102-33062013000100020 S0102-33062008000400002 Rezende, J. M. 2007. Florística, fitossociologia Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, e a influência do gradiente de umidade do P., Minchin, P. R., O’Hara, R. B., Simpson, G. solo em campos limpos úmidos no Parque L., Solymos, P., Stevens, M. H. H., & Wagner, Estadual de Jalapão, Tocantins. Master thesis. H. 2014. Vegan: Community Ecology Package. Departamento de Engenharia Florestal. R Package Version 2.2-0. Retrieved from http:// Universidade de Brasília. p. 60. CRAN.Rproject.org/package=vegan Ribeiro, J. F., & Walter, B. M. 1998. Fitofisionomias Oliveira-Filho, A. T., & Martins, F. R. 1986. do bioma Cerrado. In: S. M. Sano, & S. P. Distribuição, caracterização e composição Almeida (Orgs.), Cerrado: Ambiente e flora. pp. florística das formações vegetais da região da 89-166. Planaltina: Embrapa/CPAC. Salgadeira, na Chapada dos Guimarães (MT). Silva, D. P., Amaral, A. G., Bijos, N. R., & Munhoz,

Oecol. Aust. 23(4): 776–798, 2019 786 | Vegetation structure of vereda

C. B. R. 2017. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable? Acta Botanica Brasilica, 32(1), 47-54. DOI: 10.1590/0102-33062017abb0209 Tannus, J. L. S., & Assis, M. A. 2004. Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica, 27(3), 489–506. DOI:10.1590/S0100-84042004000300009 Teixeira, A. P., & Assis, M. A. 2005. Caracterização florística e fitossociológica do componente arbustivo-arbóreo de uma floresta paludosa no Município de Rio Claro (SP), Brasil. Revista Brasileira de Botânica, 28(3), 467-476. DOI: 10.1590/s0100-84042005000300005 Van Den Berg, E., & Oliveira-Filho, A. T. 1999. Spatial partitioning among tree species within an area of tropical montane gallery forest in South-eastern Brazil. Flora, 194(3), 249-266. DOI: 10.1016/S0367-2530(17)30911-8 Welker, C. A. D., & Longhi-Wagner, M. H. 2012. The genera Eriochrysis P. Beauv., Imperata Cirillo and Saccharum L. (Poaceae–– Saccharinae) in the state of Rio Grande do Sul, Brazil. Brazilian Journal of Botany 35(1), 87-105. DOI: 10.1590/S0100-84042012000100010

Submitted: 15 October 2018 Accepted: 22 July 2019 Published online: 16 December 2019 Associate Editors: Camila Aoki & Gudryan J. Barônio

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 787

CV 0.4 0.35 1.58 0.22 0.29 2.68 0.17 5.55 8.91

RF Dry 3.85 0.28 0.09 0.75 5.91 0.19 0.19 2.07 0.09

1.7 0.1 RC 0.07 0.31 0.83 2.99 0.03 0.61 0.08

CV 1.7 0.4 0.16 1.04 0.92 0.27 1.95 0.18 5.98 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 1.17 0.16 2.02 0.47 0.16 0.62 0.23 1.63 0.16 Rainy

0 0.3 RC 0.53 3.96 0.57 0.25 0.03 0.32 0.03

CV 1.6 0.19 0.67 0.14 0.65 0.19 6.33

RF 0.4 Dry 0.13 0.27 2.39 0.66 0.13 0.13

0.4 RC 0.06 3.94 0.94 0.01 0.25 0.06 municipality of Terenos, State of Mato Grosso do Sul, Brazil, with their respective with their respective Brazil, do Sul, Grosso of Mato State Terenos, municipality of

CV 0.2 5.8 0.18 0.45 1.35 0.43 0.43 1.45 Wet grassland Wet

RF 0.12 0.37 0.12 0.61 2.08 0.37 0.37 0.86 Rainy

RC 0.06 0.08 0.08 0.74 3.72 0.06 0.06 0.59

Col. M 87 M 31 M 26 M 58 M 54 M 084 M 178 M 143 M 284 M 366 M 156 M 192 P 10.918 (Mart. ex DC.) ex (Mart. Echinodorus longipetalus Micheli Britton tenellum (Mart.) Helanthium Sagittaria rhombifolia Cham. Sagittaria rhombifolia Lam. Eryngium ebracteatum Eryngium floribundum Cham. & Schltdl. Eryngium pandanifolium Cham. & Schltdl. Mandevilla widgrenii C. Ezcurra widgrenii Mandevilla (Vell.) Miers Rhabdadenia madida (Vell.) Secondatia densiflora A. DC. densiflora Secondatia Widgrenia corymbosa Malme Widgrenia Mauritia flexuosa L.f. flexuosa Mauritia (Kunth) DC. alata (Kunth) Achyrocline Acilepidopsis echitifolia Acilepidopsis H.Rob. Family/Species ALISMATACEAE APIACEAE APOCYNACEAE ARECACEAE ASTERACEAE Collector Number (Col.), Relative Frequency (RF), Relative Cover (RC) and Cover Values (CV). and seasons (Rainy was describedThe value for two different Values and Cover (RC) Cover (RF), Relative Frequency Relative (Col.), Number Collector represent The numbers in bold Pott. Joana Vali and P= Moreira Neves Suzana M= Area). Transition and Grassland environments Dry) and two different (Wet values. the highest coverage Vereda, at Vereda, Areas Transition and grassland Wet sampled in 1. Species Appendix

Oecol. Aust. 23(4): 776–798, 2019 788 | Vegetation structure of vereda

CV 0.1 0.24 0.23 2.33 0.89 0.25

RF Dry 0.19 0.19 1.88 0.66 0.09 0.09

RC 0.05 0.04 0.45 0.23 0.01 0.15

0.2 CV 0.29 0.17 0.49 0.37 1.49 0.51 0.26 0.69 1.19 0.17 0.17 0.89 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.7 0.16 0.23 0.16 0.39 0.23 1.17 0.39 0.23 0.47 0.16 0.16 0.23 Rainy

0.1 RC 0.04 0.06 0.02 0.14 0.32 0.12 0.03 0.22 0.49 0.02 0.02 0.65

CV 0.83 0.19 0.41 0.34 0.15 2.96 0.58 0.14 0.18

RF Dry 0.27 0.13 0.27 0.27 0.13 1.33 0.27 0.13 0.13

RC 0.56 0.06 0.14 0.07 0.02 1.63 0.31 0.01 0.05

CV 1.8 1.01 3.13 0.31 0.61 0.12 1.05 1.77 0.48 0.13 0.18 Wet grassland Wet

RF 1.1 1.1 0.49 1.84 0.25 0.25 0.12 0.86 0.37 0.12 0.12 Rainy

0 0.7 RC 0.52 1.29 0.06 0.36 0.19 0.67 0.11 0.01 0.06

Col. M 95 M 40 M 45 M 358 M 199 M 359 M 135 M 107 M 100 M 176 M 201 M 125 M 108 M 152 M 113 P 8914 (Sch. Bip. ex Bip. (Sch. macrocephalum (Less.) DC. (Less.) Campuloclinium Chromolaena laevigata (Lam.) R.M. Chromolaena King & H. Rob. Chromolaena palmaris Chromolaena R.M. King. & H. Rob. Baker) Conyza bonariensis (L.) Cronquist (Hook. & Arn.) Leptostelma tweediei (Hook. & G.L.Nesom D.J.N.Hind (Less.) H. (Less.) Lessingianthus bardanoides Rob. (Humb. & Lessingianthus rubricaulis (Humb. H.Rob. Bonpl.) Mikania cordifolia (L. cordifolia Mikania f.) Willd. Mikania stenophylla Holmes Mikania D. Don longifolia D. Pichrosia (Gardner) D.J.N. D.J.N. (Gardner) crenulata Trichogonia Hind (Less.) chamaedrys(Less.) Vernonanthura H.Rob. Begonia cucullata Willd. Lobelia aquatica Cham . Lobelia camporum Pohl Hook. & Arn. Hook. hederacea Pratia Family/Species BEGONIACEAE CAMPANULACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 789

1 CV 0.73 0.22 1.14 3.47

RF Dry 0.56 0.19 0.94 0.66 2.72

0.2 RC 0.17 0.03 0.34 0.75

CV 0.48 0.65 0.16 0.27 0.19 1.02 0.42 0.86 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.39 0.54 0.16 0.23 0.16 0.93 0.39 0.62 Rainy

RC 0.09 0.11 0.01 0.03 0.03 0.09 0.03 0.24

CV 0.65 2.57 0.52 0.65 0.14

RF Dry 0.53 1.86 0.27 0.53 0.13

RC 0.12 0.71 0.25 0.12 0.01

CV 0.3 1.6 0.5 1.77 0.16 0.16 1.06 0.99 0.12 Wet grassland Wet

RF 0.25 1.47 0.12 0.12 1.23 0.86 0.86 0.49 0.12 Rainy

0 0.3 0.2 RC 0.05 0.04 0.04 0.37 0.13 0.01

23 M 7 Col. M 43 M 28 M 11 M 67 M 71 M 77 M 307 M 310 P 10.841 P 10.274 P 10.848 P 10.985 (Kunth) (Kunth) . (Roxb. ex Bruzelius) ex Bruzelius) (Roxb. furcata furcata Agardh Nitella Melothria fluminensis Gardner Melothria (Kunth) Benth. ex Benth. (Kunth) Ascolepis brasiliensis Clarke C.B. (Rottb.) Endl. ex Endl. (Rottb.) brevifolius Cyperus Hassk. Cyperus haspan L. Cyperus Hefler longiculmis Pereira-Silva, Cyperus & R. Trevis. var. i mpolitus rigens var. Cyperus & Longhi-Wagner Hefler Cyperus unioloides R. Br. Cyperus Pereira-Silva. Hefler & R. Hefler Pereira-Silva. valie Cyperus Trevis. (Roxb.) Schult. acutangula (Roxb.) Eleocharis Eleocharis capillacea Kunth Eleocharis Eleocharis minima Kunth Eleocharis Eleocharis nudipes Palla Eleocharis Family/Species CHARACEAE CHLORANTHACEAE Hedyosmum brasiliense Miq brasiliense Hedyosmum CUCURBITACEAE CYPERACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 790 | Vegetation structure of vereda

0.3 CV 2.07 0.11 0.17 3.81 0.53 0.22 0.57 1.29 0.22 0.68 0.21 0.73 0.32 2.41

RF 1.6 Dry 0.09 0.19 0.09 2.82 0.19 0.19 0.38 0.94 0.19 0.38 0.09 0.38 0.28 1.88

RC 0.48 0.02 0.12 0.08 0.99 0.35 0.03 0.19 0.35 0.03 0.31 0.12 0.35 0.04 0.54

CV 3.14 1.13 0.24 4.83 0.41 1.76 1.24 0.68 0.76 0.48 0.16 0.16 0.17 1.95 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 2.56 0.93 0.16 3.03 0.23 1.09 0.93 0.62 0.62 0.47 0.16 0.16 0.16 1.63 Rainy

0 0 0.2 1.8 0.3 RC 0.58 0.08 0.18 0.68 0.06 0.14 0.01 0.02 0.31

CV 3.3 0.8 4.63 0.45 2.79 2.28 1.83 2.12 1.98 9.46 7.03

RF 0.4 Dry 3.32 5.05 1.73 3.06 1.33 1.33 1.73 2.66 1.33 0.53

0.5 RC 1.31 4.41 0.05 1.06 3.97 0.95 0.39 0.64 0.65 0.27

CV 0.9 0.91 0.29 1.18 1.48 5.15 0.75 3.53 1.56 1.64 1.62 0.94 8.23 Wet grassland Wet

RF 4.9 1.1 1.1 0.74 0.25 0.98 0.86 2.45 0.49 0.49 1.84 1.35 0.74 Rainy

0.2 2.7 0.2 RC 0.17 0.04 0.62 3.33 0.26 0.41 1.69 0.46 0.29 0.52

M M 3 Col. M 8 M 12 M 10 M 14 M 80 M 75 M 69 M 309 M 325 M 116 M 204 M 294 M 148 M 162 M 165 (Kunth) (Kunth) Lindl. ex Nees ex Lindl. (Griseb.) (Griseb.) plicarhachis Eleocharis Svenson Lipocarpha humboldtiana Nees Lipocarpha (Nees) Boeckeler conferta (Nees) Rhynchospora Rhynchospora corymbosa (L.) Britton Rhynchospora Rhynchospora rugosa (Vahl) Gale Rhynchospora Rhynchospora loefgrenii Boeckeler loefgrenii Rhynchospora marisculus Rhynchospora (Nees) emaciata (Nees) Rhynchospora Boeckeler (Nees) Schrad. Schrad. trispicata (Nees) Rhynchospora ex Steud. Rhynchospora velutina velutina Rhynchospora Boeckeler Scleria hirtella Sw. Scleria leptostachya Kunth Scleria lithosperma (L.) Sw. Nees ex Kunth Nees Scleria microcarpa (Poir.) Ruhland caulescens (Poir.) Syngonanthus Eriocaulon sellowianum Kunth sellowianum Eriocaulon Caperonia castaneifolia (L.) A. St.-Hil. Caperonia Family/Species ERIOCAULACEAE EUPHORBIACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 791

0.1 CV 0.2 0.1 0.64 0.17 0.13 0.11

RF Dry 0.38 0.09 0.09 0.09 0.19 0.09 0.09

RC 0.26 0.08 0.01 0.04 0.02 0.02 0.01

CV 0.35 0.41 0.17 0.42 0.39 0.17 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.23 0.31 0.16 0.31 0.31 0.16 Rainy

0.1 RC 0.11 0.02 0.11 0.08 0.02

CV 1.25 0.15 1.87 1.81 0.62

RF Dry 0.93 0.13 1.06 1.46 0.53

RC 0.32 0.02 0.81 0.35 0.09

CV 1.8 0.14 0.44 1.77 3.67 1.03 0.13 0.55 0.87 Wet grassland Wet

RF 2.7 0.12 0.37 1.47 0.86 0.98 0.12 0.37 0.61 Rainy

0.3 RC 0.02 0.07 0.97 0.17 0.82 0.01 0.18 0.26

Col. M 50 M 59 M 98 M 144 M 175 M 117 M 114 M 301 M 944 M 188 M 360 M 109 P 10.870 P 10.849 P 10.969 (Pohl ex Benth.) Benth.) ex (Pohl Sapium hasslerianum Huber Aeschynomene fluminensis Vell. Aeschynomene sensitiva Sw.Aeschynomene sensitiva (Aubl.) Pulle Chelonanthus alatus (Aubl.) Cham . Schultesia aptera Schultesia gracilis Mart. Schultesia gracilis Miq.Schultesia heterophylla (Kunth) Chautems elatior (Kunth) Sinningia Isopterygium tenerifolium Mitt. Isopterygium Cypella laxa Ravenna Cypella Cantinoa althaeifolia Cantinoa & J.F.B.Pastore Harley ex Benth. Pohl crenata Hyptis Pohl ex Benth. Pohl lavandulacea Hyptis Pohl ex Benth. Pohl microphylla Hyptis Hyptis pachyarthra Briq. pachyarthra Hyptis Family/Species FABACEAE GENTIANACEAE GESNERIACEAE HYPNACEAE IRIDACEAE LAMIACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 792 | Vegetation structure of vereda

1 CV 0.1 0.1 0.1 0.16 0.11 0.33 0.13 8.58

RF Dry 0.09 0.09 0.09 0.09 0.09 0.19 6.38 0.09 0.75

RC 0.07 0.01 0.01 0.01 0.02 0.14 2.19 0.04 0.25

CV 0.28 1.67 3.33 0.84 0.48 0.45 2.13 0.44 6.77 6.45 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.16 1.17 4.66 2.72 0.62 0.23 0.31 4.27 1.55 0.31 Rainy

RC 0.12 0.51 2.11 0.61 0.21 0.25 0.14 2.18 0.57 0.13

0.9 CV 0.45 0.32 0.45 0.71 1.93

RF 0.4 0.4 0.4 Dry 0.66 0.27 1.33

RC 0.6 0.05 0.24 0.05 0.05 0.31

CV 0.4 2.44 0.12 0.13 0.62 0.12 0.65 1.11 Wet grassland Wet

RF 1.96 0.12 0.12 0.37 0.12 0.37 0.37 0.74 Rainy

0 0 RC 0.48 0.01 0.25 0.03 0.28 0.37

M 1 Col. M 82 M 30 M 76 M 38 M 37 M 170 M 336 M 184 M 129 M 180 M 134 M 130 M 345 M 371 M 362 M 282 A. St.-Hil. & St.-Hil. A. Hyptis pulchella Briq.Hyptis Hyptis recurvata Poit. recurvata Hyptis Nectandra gardneri Meisn. gardneri Nectandra L. Utricularia Utricularia gibba L. Utricularia Utricularia hydrocarpa Vahl hydrocarpa Utricularia Utricularia myriocista Utricularia Girard Weber ex Benj. Weber nervosa Utricularia A. St.-Hil. & Girard A. St.-Hil. praelonga Utricularia Spruce ex Oliv. trichophylla Spruce Utricularia A. St.-Hil. Utricularia Heteropterys procoriacea Nied. procoriacea Heteropterys Heteropterys eglandulosa A. Juss. Heteropterys (Kunth) A.Juss. orinocensis (Kunth) Heteropterys Byttneria palustris Cristóbal Byttneria Melochia simplex A. St.-Hil. simplex Melochia (Mill.) Fawc. & Rendle Fawc. villosa (Mill.) Melochia Family/Species LAURACEAE LENTIBULARIACEAE MALPIGHIACEAE MALVACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 793

0.2 CV 3.19 0.98 0.21 0.62 0.88 1.82 1.98 0.67 0.13

RF Dry 1.5 0.19 2.25 0.66 0.19 0.47 0.66 1.41 0.47 0.09

RC 0.2 0.02 0.94 0.32 0.02 0.15 0.22 0.41 0.48 0.04

CV 0.16 3.28 1.53 1.04 0.79 0.43 0.74 1.46 1.45 0.24 0.21 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.7 0.16 2.41 1.17 0.62 0.39 0.54 1.09 1.09 0.16 0.16 Rainy

RC 0.2 0.01 0.87 0.36 0.34 0.17 0.04 0.37 0.36 0.08 0.06

0.5 CV 1.4 0.87 1.93 2.98 0.19 0.19

RF 0.4 Dry 0.66 1.06 1.59 1.99 0.13 0.13

0.1 RC 0.21 0.34 0.34 0.99 0.06 0.06

CV 0.31 2.18 0.24 2.11 0.19 0.18 Wet grassland Wet

RF 0.25 1.71 0.12 1.59 0.12 0.12 Rainy

RC 0.06 0.47 0.12 0.52 0.07 0.06 - -

Col. M 83 M 34 M 85 M 96 M 32 M 86 M 74 M 39 M 314 M 339 M 166 M 174 M 123 (Micheli) (Micheli) L. rhombifolia Sida Mayaca sellowiana Kunth sellowiana Mayaca Acisanthera alsinaefolia Triana Acisanthera . Cogn divaricata Acisanthera Acisanthera variabilis (DC.) Triana variabilis Acisanthera Miconia chamissois Naudin Miconia (Bonpl.) Cogn. (Bonpl.) gracilis Tibouchina (Mart.) Mez Rapanea umbellata (Mart.) Sauvagesia racemosa A. St.-Hil. racemosa Sauvagesia (Hassl.) H. Hara bullata (Hassl.) Ludwigia Ludwigia filiformis Ludwigia Ramamoorthy Ludwigia irwinii Ramamoorthy Ludwigia (Poir.) H. Hara (Poir.) nervosa Ludwigia (Cambess.) H. Hara sericea (Cambess.) Ludwigia Cyrtopodium paludicola Hoehne Cyrtopodium Family/Species MAYACACEAE MELASTOMATACEAE MYRSINACEAE OCHNACEAE ONAGRACEAE ORCHIDACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 794 | Vegetation structure of vereda

CV 0.42 0.25 16.86

RF Dry 0.28 0.09 5.07

RC 0.14 0.15 11.79

CV 0.16 0.43 0.34 0.16 17.38 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.16 0.31 0.31 0.16 4.42 Rainy

0 RC 0.01 0.11 0.03 12.96

CV 0.19 0.32 0.15 0.15 0.79 7.16

RF 0.4 Dry 0.13 0.13 0.13 0.13 3.59

RC 0.06 0.19 0.02 0.02 3.57 0.39

CV 0.3 0.14 0.14 0.51 0.19 0.18 0.36 7.13 Wet grassland Wet

RF 0.12 0.12 0.37 0.12 0.25 0.12 3.55 0.12 Rainy

RC 0.02 0.02 0.14 0.07 0.05 0.06 3.58 0.24 -

Col. M 94 M 36 M 41 M 89 M 323 M 363 M 364 M 203 M 213 M 205 M 137 M 221 M 104 M 324 Habenaria nuda Lindl. Habenaria Habenaria pungens Cogn. Habenaria Escobedia grandiflora (L. f.) Kuntze Escobedia grandiflora Passiflora pottiae Cervi & Imig Passiflora Hieronyma alchorneoides Allemão Hieronyma (Raf.) G.L. stipulatus (Raf.) Phyllanthus Webster Piper fuligineum Kunth . Piper macedoi Yunck (Cham.) B.L. Rob. Bacopa monnierioides (Cham.) B.L. (Benth.) Edwall (Benth.) Bacopa reflexa Descole & Borsini Descole Bacopa scabra Andropogon bicornis L. Andropogon Andropogon glaziovii Hack. glaziovii Andropogon Andropogon hypogynusAndropogon Hack. Andropogon macrothrix Trin. macrothrix Andropogon Family/Species OROBANCHACEAE PASSIFLORACEAE PHYLLANTHACEAE PIPERACEAE PLANTAGINACEAE POACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 795

CV 0.1 2.61 1.62 1.06 2.79 1.16 3.69 5.69 11.09 15.73 13.83

3 RF Dry 1.88 3.76 0.66 0.75 1.41 2.16 0.75 0.09 5.26 3.57

RC 0.74 7.33 0.96 0.31 1.38 3.53 0.41 0.69 10.47 10.26

CV 1.97 0.28 0.29 1.12 1.14 3.65 1.39 0.08 11.7 5.36 13.14 12.55 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.7 0.7 1.32 0.16 3.26 0.16 1.79 0.78 0.08 3.65 2.87 2.87 Rainy

RC 0.65 0.12 9.88 0.14 0.43 0.44 1.86 0.61 8.05 2.49 9.68

CV 4.4 1.15 0.17 0.93 3.21 3.78 1.03 0.55 2.55 18.6 10.6 11.53 11.15 14.38

RF 0.4 0.4 Dry 4.65 6.24 0.13 6.24 0.66 1.99 1.73 0.66 0.93 3.06 4.38 2.13

RC 6.88 0.75 4.91 0.04 0.27 1.22 2.05 0.37 0.15 1.62 6.22 2.27 12.36 11.32

CV 2.6 0.9 1.15 1.82 1.56 0.67 3.15 0.14 8.65 6.49 Wet grassland Wet 13.49 23.04 12.22

RF 4.41 0.37 4.78 1.47 0.86 0.61 1.35 8.21 0.98 0.49 1.23 2.57 0.12 Rainy

RC 0.78 9.08 3.87 5.02 1.74 0.29 0.47 0.58 0.18 1.92 9.65 0.02 14.83 Col. M 56 M 24 M 19 M 20 M 20 M 60 M 17 M 22 M 334 M 101 M 189 M 361 M 208 M 259 M 343 M 303 M 304 P 10058 P 10.777 (Nees) (Nees) (Trin. ex Döll) (Trin. (Humb. & Bonpl. Bonpl. & (Humb. comans cf. Anthaenantiopsis trachystachya trachystachya Anthaenantiopsis ex Pilg. Mez (Kunth) Benth. lanata (Kunth) Anthaenantia Andropogon virgatus Desv. Andropogon Kuhlm. (Humb. & Bonpl. ex & Bonpl. hispida (Humb. Arundinella Kuntze Willd.) Axonopus (Hack.) G.A. Black Axonopus uninodis (Hack.) (Mez) Chase Axonopus purpusii (Mez) (Nees) Kuhlm. Axonopus siccus (Nees) (Steud.) A. Camus aurita (Steud.) Coelorhachis P. Beauv. Eriochrysis cayennensis P. (Nees) Kuhlm. Eriochrysis holcoides (Nees) Hyparrhenia bracteata bracteata Hyparrhenia ex Willd.) Stapf (Nees) Stapf rufa (Nees) Hyparrhenia (Nees ex Trin.) Trin.) ex (Nees procurrens Ichnanthus Swallen Imperata tenuis Hack. Imperata Leersia hexandra Sw.Leersia hexandra Paspalum dedeccae Quarin Paspalum Paspalum erianthoides Lindm. Paspalum Nees erianthum Nees ex Trin. Paspalum Family/Species Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 796 | Vegetation structure of vereda

CV 0.1 0.13 1.19 0.37 3.66 0.33 0.72 0.12 0.24 7.55 34.32

RF Dry 0.09 0.66 0.28 9.95 2.25 3.85 0.28 0.66 0.09 0.19 0.09

RC 0.04 0.53 0.09 1.41 3.71 0.05 0.06 0.02 0.05 0.01 24.37

CV 0.24 1.25 0.16 5.05 0.56 1.38 0.25 0.44 0.46 0.72 8.63 22.26 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 5.9 0.7 0.16 0.62 0.16 1.94 3.42 0.47 1.17 0.16 0.39 0.39 Rainy

0.1 0.1 RC 0.08 0.63 0.01 3.11 5.22 0.21 0.05 0.07 0.02 16.36

CV 0.85 1.84 0.25 5.49 0.51 1.33 10.15

RF 0.4 Dry 3.45 0.66 0.53 0.13 2.52 0.93

6.7 0.4 RC 0.19 1.31 0.12 2.97 0.11

CV 0.6 2.52 0.55 2.07 1.75 0.53 0.13 7.79 Wet grassland Wet 12.91

RF 1.23 3.92 0.49 1.47 0.37 0.25 0.12 3.92 0.49 Rainy

0.6 RC 1.29 8.99 0.06 1.38 0.28 0.01 3.87 0.11 Col. M 90 M 61 M 73 M 93 M 18 M 327 M 365 M 285 M 299 M 355 M 330 M 140 M 340 M 157 M 128 M 1278 P 10.787 (Kunth) (Kunth) Filg.. P.M. Peterson Peterson P.M. Filg.. Kunth lenticulare Paspalum Paspalum glaucescens Hack. Paspalum Nees flaccidum Nees Paspalum Paspalum maculosum Trin. Paspalum Hitchc. & Chase wrightii Hitchc. Paspalum Rheochloa scabriflora scabriflora Rheochloa Herrera & Y. Rhytachne rottboellioides Desv. Rhytachne rottboellioides (Nees) Steud. Saccharum asperum (Nees) Saccharum villosum Steud. Schizachyrium condensatum Schizachyrium Nees (Trin.) Chase (Trin.) Sacciolepis vilvoides (Hack.) A. (Hack.) Schizachyrium gracilipes Camus Kerguélen (Poir.) parviflora Setaria (Nees ex Trin.) decipiens (Nees ex Trin.) Steinchisma Br. W.V. (Sw.) Zuloaga laxum (Sw.) Steinchisma Trichanthecium caaguazuense Trichanthecium & Morrone Zuloaga (Henrard) Trichanthecium parvifolium (Lam.) Trichanthecium & Morrone Zuloaga Family/Species Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 Moreira et al. | 797

CV 0.13 0.87 0.21 0.64

RF Dry 0.09 0.47 0.19 0.56

0.4 RC 0.04 0.02 0.08

CV 0.21 0.84 0.92 0.17 2.56 Transition Area Transition Continued on next page... 1. Continued Appendix

RF 0.16 0.54 0.78 0.16 1.55 Rainy

RC 0.06 0.29 0.14 0.02 1.01

CV 4.3 0.34 0.15

RF Dry 0.27 2.13 0.13

RC 0.07 2.17 0.02

CV 4.42 0.16 Wet grassland Wet

RF 2.7 0.12 Rainy

RC 1.72 0.04

M 6 Col. M 42 M 92 M 55 M 65 M 368 M 224 M 168 M 338 P 10.552 Pontederia parviflora Alexander parviflora Pontederia Anagalis minima (L.) E.H.L. Krause Anagalis Pityrogramma calomelanos (L.) Link Pityrogramma Hexasepalum radula (Willd.) radula & Hexasepalum Delprete J.H. Kirkbr. (Bremek.) pulchristipula (Bremek.) Borreria & E.L. Cabral Bacigalupo . elaeagnoides Radlk Matayba (Benth.) Hassl. stricta (Benth.) Melasma Schwenckia juncoides Chodat Solanum subinerme Jacq. Styrax camporum Pohl Styrax Family/Species PONTEDERIACEAE PRIMULACEAE PTERIDACEAE RUBIACEAE SAPINDACEAE SCROPHULARIACEAE SOLANACEAE STYRACACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019 798 | Vegetation structure of vereda

CV 0.16 0.51 1.44 0.26 0.34

RF Dry 0.09 0.38 1.03 0.19 0.28

RC 0.06 0.13 0.41 0.08 0.05

0.2 CV 0.68 2.33 0.36 0.47 Transition Area Transition

RF 0.16 0.47 1.71 0.23 0.39 Rainy

RC 0.04 0.21 0.62 0.12 0.08

CV 1.9 0.19 3.66 0.64

RF Dry 0.13 2.39 1.06 0.53

RC 0.06 1.27 0.84 0.11

CV 3.7 0.39 0.18 1.21 0.13 0.16 Wet grassland Wet

RF 0.25 0.12 0.74 1.96 0.12 0.12 Rainy

RC 0.14 0.06 0.47 1.74 0.01 0.04

Col. M 88 M 348 M 126 M 351 M 350 M 353 Cecropia pachystachya Trécul Cecropia Xyris jupicai Rich. Xyris F. Muell. F. laxiflora Xyris Xyris savanensis Miq. savanensis Xyris Xyris tortula Mart. Xyris Xyris schizachne Mart. Xyris Family/Species URTICACEAE XYRIDACEAE Appendix 1. ...Continued 1. Appendix

Oecol. Aust. 23(4): 776–798, 2019

View publication stats