The 2 Fundamental Questions: Linneaus and Kirchner

Total Page:16

File Type:pdf, Size:1020Kb

The 2 Fundamental Questions: Linneaus and Kirchner 2/1/2011 The 2 fundamental questions: y Has evolution taken pp,lace, and if so, what is the Section 4 evidence? Professor Donald McFarlane y If evolution has taken place, what is the mechanism by which it works? Lecture 2 Evolutionary Ideas Evidence for evolution before Darwin Golden Age of Exploration y Magellan’s voyage –1519 y John Ray –University of y Antonius von Leeuwenhoek ‐ microbes –1683 Cambridge (England) y “Catalog of Cambridge Plants” – 1660 –lists 626 species y 1686 –John Ray listing thousands of plant species! y In 1678, Francis Willoughby publishes “Ornithology” Linneaus and Kirchner Athenasius Kircher ~ 1675 –Noah’s ark Carl Linneaus – Sistema Naturae ‐ 1735 Ark too small!! Uses a ‘phenetic” classification – implies a phylogenetic relationship! 300 x 50 x 30 cubits ~ 135 x 20 x 13 m 1 2/1/2011 y Georges Cuvier 1769‐ 1832 y “Fixity of Species” Evidence for Evolution –prior to 1830 • Enormous diversity of life –WHY ??? JBS Haldane " The Creator, if He exists, has "an inordinate fondness for beetles" ". Evidence for Evolution –prior to 1830 Evidence for Evolution –prior to 1830 y The discovery of variation. y Comparative Anatomy. Pentadactyl limbs Evidence for Evolution –prior to Evidence for Evolution –prior to 1830 1830 y Fossils – homologies with living species y Vestigal structures Pentadactyl limbs !! 2 2/1/2011 Evidence for Evolution –prior to 1830 Evidence for Evolution –prior to 1830 y Invariance of the fossil sequence y Plant and animal breeding JBS Haldane: “I will give up my belief in evolution if someone finds a fossil rabbit in the Precambrian.” Charles Darwin Jean Baptiste Lamark y 1744‐1829 y 1809 –1882 y Organisms have the ability to adapt to their y Voyage of Beagle 1831 ‐ 1836 environments over the course of their lives. y Organisms have the ability to pass on these ‘acquired characteristics’ to their offspring. y Organisms have a built‐in “drive to perfection” Alfred Russel Wallace y 1858 –The Linnaean Society y 1823 –1913 y Wallace’s Ternate paper + y Amazon 1848 ‐1852 y Darwin’s letter to Asa Gray y “Wallacea” 1854 ‐ 1862 y 1859 –“Origin of Species” 3 2/1/2011 The 5 tenets of the Theory of Natural The Modern Synthesis Selection y Early to mid‐20th Century y All organisms show variation y RA Fisher ~ 1918 ‐ statistics y At least some variation is heritable y JBS Haldane ~ 1924 –evolutionary genetics y All organisms produce more offspring than y Sewall Wright –evolutionary genetics can survive y George Gaylord Simpson – paleontology y Offspring with ‘favorable’ variations will have a better chance of survival and y Ernst Mayer –biogeography and speciation reproduction y The ‘favorable’ variation will be more common in the next generation 4.
Recommended publications
  • A Timeline of Significant Events in the Development of North American Mammalogy
    SpecialSpecial PublicationsPublications MuseumMuseum ofof TexasTexas TechTech UniversityUniversity NumberNumber xx66 21 Novemberxx XXXX 20102017 A Timeline of SignificantTitle Events in the Development of North American Mammalogy Molecular Biology Structural Biology Biochemistry Microbiology Genomics Bioinformatics and Computational Biology Computer Science Statistics Physical Chemistry Information Technology Mathematics David J. Schmidly, Robert D. Bradley, Lisa C. Bradley, and Richard D. Stevens Front cover: This figure depicts a chronological presentation of some of the significant events, technological breakthroughs, and iconic personalities in the history of North American mammalogy. Red lines and arrows depict the chronological flow (i.e., top row – read left to right, middle row – read right to left, and third row – read left to right). See text and tables for expanded interpretation of the importance of each person or event. Top row: The first three panels (from left) are associated with the time period entitled “The Emergence Phase (16th‒18th Centuries)” – Mark Catesby’s 1748 map of Carolina, Florida, and the Bahama Islands, Thomas Jefferson, and Charles Willson Peale; the next two panels represent “The Discovery Phase (19th Century)” – Spencer Fullerton Baird and C. Hart Merriam. Middle row: The first two panels (from right) represent “The Natural History Phase (1901‒1960)” – Joseph Grinnell and E. Raymond Hall; the next three panels (from right) depict “The Theoretical and Technological Phase (1961‒2000)” – illustration of Robert H. MacArthur and Edward O. Wilson’s theory of island biogeography, karyogram depicting g-banded chromosomes, and photograph of electrophoretic mobility of proteins from an allozyme analysis. Bottom row: These four panels (from left) represent the “Big Data Phase (2001‒present)” – chromatogram illustrating a DNA sequence, bioinformatics and computational biology, phylogenetic tree of mammals, and storage banks for a supercomputer.
    [Show full text]
  • What the Modern Age Knew Piero Scaruffi 2004
    A History of Knowledge Oldest Knowledge What the Jews knew What the Sumerians knew What the Christians knew What the Babylonians knew Tang & Sung China What the Hittites knew What the Japanese knew What the Persians knew What the Muslims knew What the Egyptians knew The Middle Ages What the Indians knew Ming & Manchu China What the Chinese knew The Renaissance What the Greeks knew The Industrial Age What the Phoenicians knew The Victorian Age What the Romans knew The Modern World What the Barbarians knew 1 What the Modern Age knew Piero Scaruffi 2004 1919-1945: The Age of the World Wars 1946-1968: The Space Age 1969-1999: The Digital Age We are not shooting enough professors An eye for an eye makes (Lenin’s telegram) the whole world blind. (Mahatma Gandhi) "Pacifism is objectively pro-Fascist.” (George Orwell, 1942) "The size of the lie is a definite factor What good fortune for governments in causing it to be believed" that the people do not think (Adolf Hitler, "Mein Kampf") (Adolf Hitler) 2 What the Modern Age knew • Bibliography – Paul Kennedy: The Rise and Fall of the Great Powers (1987) – Jacques Barzun: "From Dawn to Decadence" (2001) – Gregory Freeze: Russia (1997) – Andrzej Paczkowski: The Black Book of Communism (1999) – Peter Hall: Cities in Civilization (1998) – Edward Kantowicz: The World In The 20th Century (1999) – Paul Johnson: Modern Times (1983) – Sheila Jones: The Quantum Ten (Oxford Univ Press, 2008) – Orlando Figes: “Natasha's Dance - A Cultural History of Russia” (2003) 3 What the Modern Age knew • Bibliography –
    [Show full text]
  • Karl Jordan: a Life in Systematics
    AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history.
    [Show full text]
  • Representatives and Committees of the Society
    REPRESENTATIVES AND COMMITTEES OF THE SOCIETY Representatives of the Society in the Division of Physical Sciences of the National Research Council: 1944-1945—Marston Morse, M. H. Stone, Warren Weaver. 1945-1946—A. B. Coble, G. A. Hedlund, Saunders MacLane, Marston Morse, Oswald Veblen, Warren Weaver. 1946-1947—A. B. Coble, Saunders MacLane, John von Neumann, M. H. Stone, Oswald Veblen, Warren Weaver. 1947-1948—R. V. Churchill, M. R. Hestenes, Saunders MacLane, John von Neu­ mann, M. H. Stone, Oswald Veblen. Representatives on the Council of the American Association for the Advancement of Science: 1945—R. P. Agnew, M. R. Hestenes. 1946—Philip Franklin, C. V. Newsom. 1947—Solomon Lefschetz, G. T. Whyburn. Representatives on the Editorial Board of the Annals of Mathematics: K. 0. Friedrichs, Norman Levinson, R. L. Wilder. Representatives on the Editorial Board of the Duke Mathematical Journal: F. J. Murray, Morgan Ward. Representative on the American Year Book: G. T. Whyburn. Liaison Officer in Connection with Editorial Management of Quarterly of Applied Mathematics: Einar Hille. Colloquium Speakers: 1944—Einar Hille. 1946—Hassler Whitney. 1945—Tibor Rado. 1947—Oscar Zariski. Committee to Select Gibbs Lecturers for 1946 and 1947: L. M. Graves (Chairman), G. A. Hedlund, S. S. Wilks. Gibbs Lecturers: 1923—M. I. Pupin. 1930—E. B. Wilson. 1939—Theodore von Kârmân. 1924—Robert Henderson. 1931—P. W. Bridgman. 1941—Sewall Wright. 1925—James Pierpont. 1932—R. C. Tolman. 1943—Harry Bateman. 1926—H. B. Williams. 1934—Albeit Einstein. 1944—John von Neumann. 1927-E. W. Brown. 1935—Vannevar Bush. 1945—J. C. Slater. 1928—G.
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • 2019 American Society of Naturalists Awards
    2019 American Society of Naturalists Awards Sewall Wright Award Jonathan B. Losos The Sewall Wright Award, established in 1991, is given annu- Jonathan has made numerous other fundamental contribu- ally and honors a senior but still active investigator who is tionstothestudyofadaptiveradiationandbiodiversity,in- making fundamental contributions to the goals of the Amer- cluding the evolutionary genetics of biological invasions. How- ican Society of Naturalists, namely, promoting the conceptual ever, his influence is not restricted solely to studies published unification of the biological sciences. The 2019 Sewall Wright in the primary scientific literature. For example, he is a coau- Award honors Jonathan B. Losos, William H. Danforth Dis- thor of the widely used textbook Biology (Raven et al., McGraw- tinguished University Professor at Washington University Hill) and has also published books and articles targeted to- and director of the Living Earth Collaborative, a collaboration ward the more general reader, the latest being the beautiful among Washington University, the Missouri Botanical Gar- and highly readable book Improbable Destinies: Fate, Chance, den, and the Saint Louis Zoo. and the Future of Evolution (Penguin Random House, 2017). Jonathan is known for his integrative approach to the Jonathan served as president of the American Society of study of evolutionary diversification and for his seminal work Naturalists in 2010 and as editor-in-chief of the society’s flag- with Anolis lizards. This work spans field and laboratory stud- ship journal, The American Naturalist, from 2002 to 2006. ies of rapid evolution and includes studies of behavior, ecol- His career has taken him from his first faculty position at ogy, and phylogenetics.
    [Show full text]
  • Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
    Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The
    [Show full text]
  • ST. LAWRENCE HIGH SCHOOL a JESUIT CHRISTIAN MINORITY INSTITUTION WORKSHEET – 05 Class: IX Sub: Life Science Date: 30.01.2021
    ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION WORKSHEET – 05 Class: IX Sub: Life Science Date: 30.01.2021 Topic: Taxonomy-Classification of diversity of life F.M. : 15 Choose the correct option: (1x15=15) 1. The process of arranging species in definite pattern is known as: a) taxonomy b) classification c) hierarchy d) nomenclature 2. The branch of biology which deals with the grouping of plants and animals is called …….. a) Nomenclature b) structural hierarchy c) taxonomy d) all of these 3. The study of taxonomy includes: a) Identification b) nomenclature c) classification d) all of these 4. The word ‘taxonomy’ comes from the Greek word Taxis meaning ………….. and nomos meaning laws: a) Classify b) Characterize c) arrangement d)none of these 5. ……………….. divided animals in two groups Anaima and Enaima . a) Aristotle b) John Ray c) John Miller d) Louis Pasteur 6. The word Anaima means …...... a) animals with blue blood b) animals with red blood c) animals without red blood d) animals without blue blood 7. ……………. divided plants as herbs,shrubs,undershrubs and trees. a) Aristotle b) Theophrastus c) John Ray d) all of these 8. Carrolus Linnaeus was a ……… naturalist who classisfied plants in Herbae and Arborea. a) Swedish b) English c) Spainish d) Australian 9. Linnaeus classified plants in in the following book: a) Species Plantarum b) Species Naturae c) Species plantae d) Species herbae 10. In which year did Linnaeus classified animals in Systema Naturae? a) 1753 b) 1758 c) 1756 d) 1769 11. The lowest major group representing plants and animals is referred to as …………… a) Genus b) Species c) Class d) Order 12.
    [Show full text]
  • Ministers of ‘The Black Art’: the Engagement of British Clergy with Photography, 1839-1914
    Ministers of ‘the Black Art’: the engagement of British clergy with photography, 1839-1914 Submitted by James Downs to the University of Exeter as a thesis for the degree of Doctor of Philosophy in English in March 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. Abstract 1 Ministers of ‘the Black Art’: the engagement of British clergy with photography, 1839- 1914 This thesis examines the work of ordained clergymen, of all denominations, who were active photographers between 1839 and the beginning of World War One: its primary aim is to investigate the extent to which a relationship existed between the religious culture of the individual clergyman and the nature of his photographic activities. Ministers of ‘the Black Art’ makes a significant intervention in the study of the history of photography by addressing a major weakness in existing work. Taking an interdisciplinary approach, the research draws on a wide range of primary and secondary sources such as printed books, sermons, religious pamphlets, parish and missionary newsletters, manuscript diaries, correspondence, notebooks, biographies and works of church history, as well as visual materials including original glass plate negatives, paper prints and lantern slides held in archival collections, postcards, camera catalogues, photographic ephemera and photographically-illustrated books.
    [Show full text]
  • The Charles Knight-Joseph Hooker Correspondence
    A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 David J. Galloway Hon. Research Associate Landcare Research, and Te Papa Tongarewa [email protected] Geoscience Society of New Zealand miscellaneous publication 133J December 2013 Published by the Geoscience Society of New Zealand Inc, 2013 Information on the Society and its publications is given at www.gsnz.org.nz © Copyright David J. Galloway, 2013 Geoscience Society of New Zealand miscellaneous publication 133J ISBN 978-1-877480-36-2 ISSN 2230-4495 (Online) ISSN 2230-4487 (Print) This document is available as a PDF file that can be downloaded from the Geoscience Society website at: http://www.gsnz.org.nz/information/misc-series-i-49.html Bibliographic Reference Galloway D.J. 2013: A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 Geoscience Society of New Zealand miscellaneous publication 133J. 88 pages. A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 Contents Introduction 3 Charles Knight correspondence at Kew 5 Acknowledgements 6 Summaries of the letters 7 Transcriptions of the letters from Charles Knight 15 Footnotes 70 References 77 Figure 1: Dr Charles Knight FLS, FRCS 2 Figure 2: Group photograph including Charles Knight 2 Figure 3: Page of letter from Knight to Hooker 14 Table 1: Comparative chronology of Charles Knight, W.J. Hooker and J.D. Hooker 86 1 Figure 1: Dr Charles Knight FLS, FRCS Alexander Turnbull Library,Wellington, New Zealand ¼-015414 Figure 2: Group taken in Walter Mantell‟s garden about 1865 showing Charles Knight (left), John Buchanan and James Hector (right) and Walter Mantell and his young son, Walter Godfrey Mantell (seated on grass).
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • Information Theory, Evolution, and the Origin of Life
    Information theory, evolution, and the origin of life HUBERT P. YOCKEY CAMBRIDGE UNIVERSITY PRESS CA\15RIDG£ \J);IVE;<SITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473• USA wv1rw.cambridge.org Information on this tide: www.cambridge.org/978opu69585 © Hubert P. Yockey 2005 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2005 Reprinred 2006 First paperback edition 2010 A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data Yockey, Hubert P. Information theory, evolution, and the origin of life I Huberr P. Yockey. p. em. Includes bibliographical references (p. ) . ISS� 0·521·80293-8 (hardback: alk. paper) r. Molecular biology. 2. Information theory in biology. 3· Evolution (Biology) 4· Life-Origin. r. Title. QHso6.Y634 2004 572.8 dc22 2004054518 ISBN 978-0·)21-80293-2 Hardback ISBN 978-0-52H6958-5 Paperback Cambridge University Press has no responsibility for rhe persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information theory, evolution, and the origin of life Information TheOI)\ Evolution, and the Origin of Life presents a timely introduction to the use of information theory and coding theory in molecular biology.
    [Show full text]