Salmo Ischchan ERSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Phylogeny of Oncorhynchus (Euteleostei: Salmonidae) Based on Behavioral and Life History Characters
Copeia, 2007(3), pp. 520–533 The Phylogeny of Oncorhynchus (Euteleostei: Salmonidae) Based on Behavioral and Life History Characters MANU ESTEVE AND DEBORAH A. MCLENNAN There is no consensus between morphological and molecular data concerning the relationships within the Pacific basin salmon and trout clade Oncorhynchus. In this paper we add another source of characters to the discussion. Phylogenetic analysis of 39 behavioral and life history traits produced one tree structured (O. clarki (O. mykiss (O. masou (O. kisutch (O. tshawytscha (O. nerka (O. keta, O. gorbuscha))))))). This topology is congruent with the phylogeny based upon Bayesian analysis of all available nuclear and mitochondrial gene sequences, with the exception of two nodes: behavior supports the morphological data in breaking the sister-group relationship between O. mykiss and O. clarki, and between O. kisutch and O. tshawytscha. The behavioral traits agreed with molecular rather than morphological data in placing O. keta as the sister-group of O. gorbuscha. The behavioral traits also resolve the molecular-based ambiguity concerning the placement of O. masou, placing it as sister to the rest of the Pacific basin salmon. Behavioral plus morphological data placed Salmo, not Salvelinus, as more closely related to Oncorhynchus, but that placement was only weakly supported and awaits collection of missing data from enigmatic species such as the lake trout, Salvelinus namaycush. Overall, the phenotypic characters helped resolve ambiguities that may have been created by molecular introgression, while the molecular traits helped resolve ambiguities introduced by phenotypic homoplasy. It seems reasonable therefore, that systematists can best respond to the escalating biodiversity crisis by forming research groups to gather behavioral and ecological information while specimens are being collected for morphological and molecular analysis. -
Translation No. 4873
CANADIAN TRANSLATION OF FISHERIES AND AQUATIC SCIENCES No. 4873 Oogenesis and a maturity scale for the ovaries of the Sevan trout, Salmo ischchan (Kessler). by I.T. Negonovskaya Original Title: Ovogenez i shkala zrelosti yaichnikov sevanskoi foreli Salmo ischchan (Kessler). From: Biol. 211. Arm. 19: 58-71, 1966. Translated by the Translation Bureau (JN) Multilingual Services Division Department of the Secretary of State of Canada Department of Fisheries and Oceans Pacific Biological Station Nanaimo, BC 1982 24 Pages typescript cri-' s SIP 3 DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES CANADA DIVISION MULTILINGUES TRANSLATED FROM TRADUCTION DE INTO EN Russian English AUTHOR — AUTEUR I. T. Negonovskaya TITLE IN ENGLISH — TITRE ANGLAIS Gogenesis and a maturity scale for the ovaries . of the Sevan trout, Salmo ischchan (Kessler). TITLE IN FOREIGN LANGUAGE (TRANSLITERATE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÉRE (TRANSCRIRE EN CARACTÈRES ROMAINS) CvoFenez 1 shkala zrelosti yaichnikov sevanskci fcreli Salmo ischchan (Kessler). REFERENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHARACTERS. RÉFÉRENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÈRES ROMAINS. Biologicheslrii zhurnal Armenii REFERENCE IN ENGLISH — RÉFÉRENCE EN ANGLAIS Biological Journal of Armenia PUBLISHER — ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS Academy of Sciences of DATE DE PUBLICATION L'ORI GI NAL the Armenian SSR [USSR] 71 YEAR ISSUE NO. 5e, - VOLUME PLACE OF PUBLICATION ANNÉE NUMÉRO NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE PAGES DACTYLOGRAPHIÉES 7.revan, Armenian SSR 1966 19 4 REQUESTING DEPARTMENT Fisheries and Oceans TRANSLATION BUREAU NO. -
Lohenkalastus Lutto- Ja Nuorttijoella Kalamiesten Muisteluksia Koilliskairasta
Metsähallituksenluonnonsuojelujulkaisuja. Sarja A, No 64 Lohenkalastus Lutto- ja Nuorttijoella Kalamiesten muisteluksia Koilliskairasta Jarmo Pautamo METSÄHALLITUS Luonnonsuojelu Julkaisun sisällöstävastaa tekijä, eikä julkaisuun voida vedota Metsähallituksenvirallisena kannanottona. ISSN 1235-6549 ISBN 951-53-1166-7 Oy Edita Ab Helsinki 1997 2. painos Kansikuva: KalastusretkelläLutto- ja Suomu jokien yhtymäkohdan kosket kierrettiin Rupisuolijärvienja niidenvälisten pikkuojien kautta, mutta järviltävene oli vedettävä harjun ylitse Suomujokeen. PiirrosHellevi Salonen. KUVAILULEHTI JulkaisijaMetsähallitus 30.12.1996Julkaisun päivämäärä Tekijät (toimielimestä: toimielimen nimi, puheenjohtaja, sihteeri) SelvitysJulkaisun laji Jarmo Pautamo ToimeksiantajaMetsähallitus Toimielimen asettamispvm Julkaisun nimi Lohenkalastus Lutto- ja Nuorttijoella - kalamiesten muisteluksia Koilliskairasta Julkaisun osat Tiivistelmä Kuolavuonon kautta Jäämereen laskevan Tuulomajoen latvavedet Lutto- ja Nuorttijoki olivat aikoinaan hyviä lohi jokia, mutta lohi katosi näistä joista 1960-luvulla. Tuulomajoen lohta käsittelevä selvitys on jaettu kahteen osaan. Tä mä osa käsittelee lohenkalastuksen historiaa kirjallisuuslähteiden ja haastattelujen avulla. Haastatteluja kerättiin vuosina 1987-1995 yhteensä 55 henkilöltä, jotka ovat kalastaneet Lutto- ja Nuorttijokien alueella ennen 1960-lukua. Julkaisuun on kerätty tärkeimmät haastattelutiedot lohen esiintymisestä, kalastustavois ta ja -rajoituksista sekä saaliista. Haastattelut sisältävät myös muistelmia muiden -
The Native Trouts of the Genus Salmo of Western North America
CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction .................................................................................................................................................................. -
Movement, Migration, and Smolting of Atlantic Salmon (Salmo Salar)
Color profile: Disabled Composite Default screen 77 Movement, migration, and smolting of Atlantic salmon (Salmo salar) Stephen D. McCormick, Lars P. Hansen, Thomas P. Quinn, and Richard L. Saunders Abstract: A variety of movements characterize the behavioral plasticity of Atlantic salmon (Salmo salar) in fresh water, including movements of fry from redds, establishment of feeding territories, spawning movements of sexually mature male parr, movement to and from winter habitat, and smolt migration in spring. Smolting is an adaptive specialization for downstream migration, seawater entry, and marine residence. While still in fresh water, smolts become silvery and streamlined, lose their positive rheotaxis and territoriality, and begin schooling. Physiological changes include increased salinity tolerance, olfactory sensitivity, metabolic rate, scope for growth, and altered hemoglobin and visual pigments. Through their impact on the neuroendocrine system, photoperiod and temperature regulate physiological changes, whereas temperature and water flow may initiate migration. Smolt survival is affected by a limited period of readiness (a physiological “smolt window”) and the timing of seawater entry with environmental conditions such as temperature, food, and predators (an ecological “smolt window”). Smolt development is adversely affected by acidity, pollutants, and improper rearing conditions, and is often more sensitive than other life stages. Unfortunately, the migration corridor of smolts (mainstems of rivers and estuaries) are the most heavily -
Is Supplemental Stocking of Brown Trout (Salmo Trutta) Worthwhile in Low Productive Streams?
FOLIA ZOOLOG ICA - 4;14), 371 -38 1 11996) IS SUPPLEMENTAL STOCKING OF BROWN TROUT (SALMO TRUTTA) WORTHWHILE IN LOW PRODUCTIVE STREAMS? Rui M.V. CORTES', A111 it car TE1 XE1R N and Ca rl os A. PEREIRA ' Received September 10. 1995 Accepted Oct ober 3, 1996 IU ni vc rsicl a(\c de Tr{\s-os-MonlCS cAito Daura, Vil a Rea l lEsco la Superi or Agr{lria, Braganc;a .1Est<l((ao Aq uicola do Ave, Vil3. do Conde Abs t ract The effect or [rout slocking was cvalUalcd in two hcadslrC<lmS located in northern POrLugal in order to assess the impact on wild trout (Salmo rrulla L.) and to an;'llyse the success of thi s operatio n. The result s obln incd ex hib ited the limitation of slock ing: I ) the clu mped character of the released ri shes created a high mort ality and limited the increasi ng or sa lmoni d poPUI 'Hi oll to a fe w weeks; 2) because density-dependent f<l ctors see m to prev~il in the rcgul mio ll of s~ lmollid popUlations. stocki ng is bc ne ri ci~ l only iF ~ po pu l ~ t i on has became scarce, otherw ise, the autoc hthonolls fi sh may be strongly im pacted; 3) the re lative vulnerabil ity of each age cla ss of the nat ive trOlIl S mny "my m:cording wi th the site. Key words: stocki ng, brown trout, impact, fi sh manage ment Introduction Fi sh stocking is widely used when autochthonous fi sh populations are reduced or eliminated due to overfishing, or when degradati on is so severe that natural recovery of autoc hthonous fish stocks is no longer possible. -
Feeding Preference of Recaptured Atlantic Salmon Salmo Salar Following Simulated Escape from Fish Pens During Autumn
Vol. 1: 167–174, 2010 AQUACULTURE ENVIRONMENT INTERACTIONS Published online December 21 doi: 10.3354/aei00015 Aquacult Environ Interact OPENPEN ACCESSCCESS Feeding preference of recaptured Atlantic salmon Salmo salar following simulated escape from fish pens during autumn R. E. Olsen1,*, O. T. Skilbrei2 1Institute of Marine Research, Matre Research Station, 5984 Matredal, Norway 2Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway ABSTRACT: Escapes of farmed fish from coastal farms around the world are believed to have genetic and ecological consequences for wild fish populations. Each year there are numerous escapes of adult farmed Atlantic salmon Salmo salar. However, survival until maturity appears to be low. One possible explanation is that many of these salmon have difficulties switching to live prey. To address this possibility, growth rate and dietary preference were recorded in recaptured salmon released in 3 groups from August to October 2008 within a small fjord in south-western Norway (Masfjord). The fish were primed with a commercial diet containing 11% of the ‘vegetable oil marker’ 18:2n-6 before release. In the 14.5 to 35.1% of fish recaptured, growth rates were generally good (0.21–1.23% d–1 of fish recaptured in main fjord >2 mo after release), with body weight doubled or more for fish recap- tured after 19 wk and thereafter. However, fish recaptured in a small arm of Masfjord (Hopsvåg) had a growth rate close to zero and were in poor condition. While stomachs of recaptured fish were gen- erally empty in the first weeks after release, pellets from fish farms were found in more than 80% of the stomachs after 12 wk and thereafter. -
Salmo Australzs, a New Species of Fossil Salmonid from Southwestern Mexico
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL. 26, NO. 1, p. 1-17 (1 1 text-figs.) December 21, 1982 SALMO AUSTRALZS, A NEW SPECIES OF FOSSIL SALMONID FROM SOUTHWESTERN MEXICO BY TED M. CAVENDER AND ROBERT RUSH MILLER MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Philip D. Gingerich, Director Gerald R. Smith, Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. SALMO AUSTRALIS, A NEW SPECIES OF FOSSIL SALMONID FROM SOUTHWESTERN MEXICO BY TED M. CAVENDER1 AND ROBERT RUSH MILLER2 Abstract.-A new species of salmonid fish is described from an unconsolidated sand deposit close to the present shoreline of Lake Chapala at Ajijic, Jalisco, Mexico. Because of the superficial nature of the deposit the age of the fossil is believed to be Pleistocene. Additional salmonid remains from the lake bottom at Ajijic are associated with Pleistocene mammalian fossils. Osteological details of the fossil cranium indicate the new species is related to Western North American representatives of the genus Salmo. -
Recycled Fish Sculpture (.PDF)
Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun. -
Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish
Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish A Report of the Institute of Food Technologists for the Food and Drug Administration of the U.S. Department of Health and Human Services submitted March 29, 2001 IFT/FDA Contract No. 223-98-2333 Task Order 2 Processing Parameters Needed to Control Pathogens in Cold-smoked Fish Table of Contents Preface ........................................................................ S-1058 7. Conclusions ....................................................................... S-1079 8. Research needs ................................................................. S-1079 Science Advisory Board .......................................... S-1058 References ............................................................................. S-1080 Scientific and Technical Panel ............................... S-1058 Chapter III. Potential Hazards in Cold-Smoked Fish: Clostridium botulinum type E Reviewers .................................................................. S-1058 Scope ...................................................................................... S-1082 1. Introduction ....................................................................... S-1082 Additional Acknowledgments ............................... S-1058 2. Prevalence in water, raw fish, and smoked fish .............. S-1083 3. Growth in refrigerated smoked fish ................................. S-1083 Background ...............................................................S-1059 4. Effect of processing -
Family - Salmonidae
Family - Salmonidae Salmonid fishes include some of world's most important freshwater angling and aquaculture species. This family is native to the cool and cold waters of the Northern Hemisphere. Salmonids were first introduced to Australia in the nineteenth century, and were some of the first introductions for this family. This family is characterised by small scales, a lateral line, dorsal fin high on the back, forward on the pelvics. Closely related to the native families Aplochitonidae, Galaxiidae, Protoroctidae, and Retropinnidae. Brown trout Salmo trutta Linnaeus (R.M. McDowall) Other names: Sea trout, Englishman. Description: A thick-bodied and shallow species with a big head and mouth. Mouth becoming increasingly large with growth, and eyes relatively smaller. Dorsal fin (12-14 rays); pectoral rays (13-14); adipose fin well developed. Caudal peduncle relatively deep, and tail forked slightly or not at all. Distinct lateral line. Vertebrae 56-61. Distribution: Established in high altitude, cooler waters mostly in the highlands above 600 m. Throughout New South Wales, The Australian Capital Territory, and Victoria, including the headwaters of the Murry-Darling, and Tasmania. In Tasmania it is widespread and abundant down to sea level in all major drainages with exception to the Davey River and Bathurst harbour streams. Stocked populations are maintained in the warmer waters of New South Wales, Victoria, Tasmania, South Australia (Adelaide region) and south of Perth inWestern Australia. Natural History: Is a native species to Europe, from Iceland and Scandinavia south to Spain and northern Africa, and eastward to the Black and Caspian Seas. Introduced to Australian waters in Alien Fishes | Family Salmonidae | Page 1 the 1860s as an angling species. -
Sea Water (18‰ Salinity) in Tanks at Farm Condition
6(2): 88-95 (2012) DOI: 10.3153/jfscom.2012011 Journal of FisheriesSciences.com E-ISSN 1307-234X © 2012 www.fisheriessciences.com RESEARCH ARTICLE ARAŞTIRMA MAKALESİ ROUTINE OXYGEN CONSUMPTION RATE OF THE BLACK SEA TROUT (Salmo trutta labrax Pallas, 1811) Bilal Akbulut∗1, Eyüp Çakmak1, İlker Zeki Kurtoğlu2, Ali Alkan1 1Central Fisheries Research Institute, Kasüstü Beldesi, Yomra, Trabzon-Turkey. 2Rize University, Fisheries Faculty, Milli Piyango Kampüsü, Rize-Turkey Abstract: Aim of this study is to determinate oxygen consumption rate of Black Sea trout, (Salmo trutta labrax Pallas, 1811) in the sea water (18‰ salinity) in tanks at farm condition. Two different fish size were used as small size and big size which average weights 54.1 ±3.06 (n=300) and 507.0 ±17.71 (n=32) g, average total lengths 17.7 ±0.36 and 35.5 ±0.44 cm respectively. Water temperature averaged 10.0 ±0.01°C during the experiment. The amount of dissolved oxygen was measured during 3 days inlet and outlet of each tank. Oxygen consumption rate was found to be in the range of 95.2-140.0 mgO2kg/h according to fish size. It was observed that O2 con- sumption increased in the daylight period. Keywords: Oxygen consumption, Black Sea trout, Salmo trutta labrax, Water quality Özet: Karadeniz Alabalığının (Salmo trutta labrax Pallas, 1811) Rutin Oksijen Tüketimi Bu çalışmanın amacı, Karadeniz Alabalığının (Salmo trutta labrax Pallas, 1811) deniz suyunda (‰18 tuzluluk) çiftlik şartlarında tanklarda oksijen tüketim oranını belirlemektir. Denemede ortalama ağırlıkları 54.1 ±3.06 g (n=300) ve 507.0 ±17.71 g (n=32) ve total boyları 17.7 ±0.36 ve 35.5 ±0.44 cm olan iki farklı balık grubu kullanılmıştır.