Winter 2007 Gems & Gemology

Total Page:16

File Type:pdf, Size:1020Kb

Winter 2007 Gems & Gemology G EMS & G VOLUME XLIII WINTER 2007 EMOLOGY CVD Synthetic Diamonds Canary Tourmaline W Fluorescence Spectroscopy INTER Napoleon Necklace 2007 P AGES 291–408 V OLUME 43 N O. 4 THE QUARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA ® Winter 2007 VOLUME 43, NO. 4 291 LETTERS ________ FEATURE ARTICLES _____________ 294 Latest-Generation CVD-Grown Synthetic Diamonds from Apollo Diamond Inc. Wuyi Wang, Matthew S. Hall, Kyaw Soe Moe, Joshua Tower, and Thomas M. Moses Presents the gemological and spectroscopic properties of Apollo’s latest products, which show significant improvements in size, color, and clarity. 314 Yellow Mn-rich Tourmaline from the Canary Mining Area, Zambia pg. 295 Carat Points Brendan M. Laurs, William B. Simmons, George R. Rossman, Eric A. Fritz, John I. Koivula, Björn Anckar, and Alexander U. Falster Explores the vivid “canary” yellow elbaite from the Lundazi District of eastern Zambia, the most important source of this tourmaline. 332 Fluorescence Spectra of Colored Diamonds Using a Rapid, Mobile Spectrometer Sally Eaton-Magaña, Jeffrey E. Post, Peter J. Heaney, Roy A. Walters, Christopher M. Breeding, and James E. Butler Reports on the use of fluorescence spectroscopy to characterize colored diamonds from the Aurora Butterfly and other collections. NOTES AND NEW TECHNIQUES ________ 352 An Examination of the Napoleon Diamond Necklace Eloïse Gaillou and Jeffrey E. Post pg. 329 Provides a history and gemological characterization of this historic necklace. REGULAR FEATURES _____________________ 358 Lab Notes Apatite in spessartine • Atypical photoluminescence feature in a type IIa diamond • Diamond with “holiday” inclusions • Diamond with large etch channels containing iron sulfides • Black diamond with an oriented etch channel • The pareidolia of diamonds • Notable emerald carving • Gold coated onyx • Double-star sapphire • Imitation turquoise 366 Gem News International Record auction prices for diamonds • Namibian diamond mining pg. 360 • Double jeopardy in amber • Andradite from Namibia • Andradite from Pakistan • Axinite from Tanzania • Baddeleyite from Mogok, Myanmar • Chrysocolla chalcedony from Iran/Armenia area • Clinohumite and chondrodite from Tanzania • Transparent dumortierite and sapphirine from Tanzania • Brazilian blue “opal” • Otolith pendant • Inclusions in quartz from Paraíba, Brazil • Sinhalite from Myanmar • Cu-bearing tourmaline mines in Mozambique • New Cu-bearing tourmaline from Nigeria • Synthetic beryl simulating “Paraíba” tourmaline • YAG with a “reverse” color change • Conference reports 392 Book Reviews 395 Gemological Abstracts 401 2007 Subject and Author Index pg. 383 ® EDITORIAL Editor-in-Chief Editor Editors, Lab Notes STAFF Alice S. Keller Brendan M. Laurs Thomas M. Moses [email protected] The Robert Mouawad Campus Shane F. McClure 5345 Armada Drive Managing Editor Carlsbad, CA 92008 Editor, Gem News International Thomas W. Overton (760) 603-4503 Brendan M. Laurs [email protected] [email protected] Technical Editor Editors, Book Reviews Associate Editor Sally Magaña Susan B. Johnson Stuart Overlin [email protected] Jana E. Miyahira-Smith [email protected] Thomas W. Overton Consulting Editor Circulation Coordinator Carol M. Stockton Debbie Ortiz Editors, Gemological Abstracts Contributing Editor (760) 603-4000, ext. 7142 Brendan M. Laurs James E. Shigley [email protected] Thomas W. Overton PRODUCTION Art Director Production Assistant Website: STAFF Karen Myers Allison DeLong www.gia.edu EDITORIAL Shigeru Akamatsu Jaroslav Hyr`´sl Thomas M. Moses REVIEW BOARD Tokyo, Japan Prague, Czech Republic New York, New York Edward W. Boehm A. J. A. (Bram) Janse Mark Newton Solana Beach, California Perth, Australia Coventry, United Kingdom James E. Butler Alan Jobbins George Rossman Washington, DC Caterham, United Kingdom Pasadena, California Alan T. Collins Mary L. Johnson Kenneth Scarratt London, United Kingdom San Diego, California Bangkok, Thailand John Emmett Anthony R. Kampf James E. Shigley Brush Prairie, Washington Los Angeles, California Carlsbad, California Emmanuel Fritsch Robert E. Kane Christopher P. Smith Nantes, France Helena, Montana New York, New York Henry A. Hänni Lore Kiefert Christopher M. Welbourn Basel, Switzerland New York, New York Reading, United Kingdom Subscriptions to addresses in the U.S. are priced as follows: $74.95 for one year (4 issues), $194.95 for three years (12 issues). SUBSCRIPTIONS Subscriptions sent elsewhere are $85.00 for one year, $225.00 for three years. Canadian subscribers should add GST. Special rates are available for GIA alumni and current GIA students. One year: $64.95 to addresses in the U.S., $75.00 else- where; three years: $179.95 to addresses in the U.S., $210.00 elsewhere. Please have your student or Alumni number ready when ordering. Go to www.gia.edu or contact the Circulation Coordinator (see above). Single copies of this issue (print or PDF) may be purchased for $19.00 in the U.S., $22.00 elsewhere. Discounts are given for bulk orders of 10 or more copies of any one issue. A limited number of back issues are also available for purchase. Please address all inquiries regarding subscriptions and single copy or back issue purchases to the Circulation Coordinator or visit www.gia.edu. To obtain a Japanese translation of Gems & Gemology, contact GIA Japan, Okachimachi Cy Bldg., 5-15-14 Ueno, Taitoku, Tokyo 110, Japan. Our Canadian goods and service registration number is 126142892RT. DATABASE Gems & Gemology’s impact factor is 1.381 (ranking 11th out of the 26 journals in the Mineralogy category), according to COVERAGE Thomson Scientific’s 2006 Journal Citation Reports (issued July 2007). Full-text electronic (PDF) versions of Gems & Gemology issues from Spring 2005 to the present are available through EBSCO. Gems & Gemology is abstracted in Thomson Scientific products (Current Contents: Physical, Chemical & Earth Sciences and Science Citation Index—Expanded, including the Web of Knowledge) and other databases. For a complete list, see www.gia.edu/gemsandgemology. MANUSCRIPT Gems & Gemology welcomes the submission of articles on all aspects of the field. Please see the Guidelines for Authors on our SUBMISSIONS Website, or contact the Managing Editor. Letters on articles published in Gems & Gemology are also welcome. COPYRIGHT Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. AND REPRINT Copying of the photographs by any means other than traditional photocopying techniques (Xerox, etc.) is prohibited without the PERMISSIONS express permission of the photographer (where listed) or author of the article in which the photo appears (where no photographer is listed). For other copying, reprint, or republication permission, please contact the Managing Editor. Gems & Gemology is published quarterly by the Gemological Institute of America, a nonprofit educational organization for the gem and jewelry industry, The Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, CA 92008. Postmaster: Return undeliverable copies of Gems & Gemology to GIA, The Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, CA 92008. Any opinions expressed in signed articles are understood to be the opinions of the authors and not of the publisher. ABOUT THE The Napoleon Necklace was presented by Napoleon Bonaparte to his second wife, Empress Marie-Louise, in 1811 to celebrate COVER the birth of their son. In this issue, the article by Drs. Eloïse Gaillou and Jeffrey Post presents gemological data on a selection of diamonds from this notable jewel. Necklace courtesy of the Smithsonian Institution, Washington, DC; photo © Harold & Erica Van Pelt. Painting of Marie-Louise by Giovan Battista Borghesi, courtesy of Scala/Art Resource, New York. Color separations for Gems & Gemology are by Pacific Plus, Carlsbad, California. Printing is by Allen Press, Lawrence, Kansas. © 2007 Gemological Institute of America All rights reserved. ISSN 0016-626X Letters G&G IN THE BUSH So there I am, out in the middle of the Tanzanian bush at Tunduru, spitting distance from Mozam- bique, on the Muhuwesi River. I’m haggling over a parcel of sapphire with a miner named Joseph. He reaches into his bag and pulls out one of the most dog-eared documents I’ve ever laid eyes on (figure 1). It’s one of his most treasured possessions. I thought you and your readers might get a kick out of this photo. Richard W. Hughes Fallbrook, CA REPLY The G&G editors indeed enjoyed the photo, and we would dearly like to replace Mr. Mayunga’s tattered issue. Any G&G readers who plan to travel to the Figure 1. Tanzanian miner Joseph Mayunga, who lives along the eastern side of the Muhuwesi River area in the near future should contact us so that we near Mining Area number 8, displays a weathered can send a replacement (and a copy of this issue) for copy of the Winter 1996 Gems & Gemology. He was him. given the issue by a Sri Lankan gem dealer in thanks after closing a large deal for chrysoberyl rough. Photo by R. W. Hughes. MORE ON COATED COLORED DIAMONDS Although the Spring 2007 article by A. H. Shen et al., In the case of the yellow color treatment, the “Serenity coated colored diamonds: Detection and authors noted the presence of the N2 center in natural durability,” imparted a vast amount of technical infor- yellows and the implied absence in treated yellows mation, I believe it also omitted important elements
Recommended publications
  • Structure and Physical Properties of Hydrogrossular Mineral Series
    STRUCTURE AND PHYSICAL PROPERTIES OF HYDROGROSSULAR MINERAL SERIES A THESIS IN PHYSICS Presented to the Faculty of the University of Missouri-Kansas City in Partial requirements for the degree MASTER OF SCIENCE By PUJA ADHIKARI M.Sc, Tribhuban University, Kathmandu, Nepal, 2010 Kansas City, Missouri 2015 ©2015 PUJA ADHIKARI ALL RIGHTS RESERVED Structure and physical properties of Hydrogrossular mineral series Puja Adhikari, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2015 ABSTRACT The mineral hydrogrossular series (Ca3Al2(SiO4)3-x(OH) 4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth’s mantle. They are vital to the planet’s hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data.
    [Show full text]
  • Mother's Day Mailer
    For You, Mom KENDRA SCOTT Elisa Necklace in White Howlite/Silver $60 | Cynthia Pendant Necklace in White Howlite/Silver $68 Reid Pendant Necklace in White Howlite/Silver $88 | Elle Earrings in White Howlite/Silver $65 2 Cynthia Cuff Bracelet in Silver White Mix $78 KENDRA SCOTT Elisa Necklace in White Howlite/Silver $60 | Cynthia Pendant Necklace in White Howlite/Silver $68 Reid Pendant Necklace in White Howlite/Silver $88 | Elle Earrings in White Howlite/Silver $65 TORY BURCH Cynthia Cuff Bracelet in Silver White Mix $78 Kira Chevron Small Camera Bag in Limone, Pink City and Bluewood $358 3 KATE SPADE NEW YORK Augusta Bilayer Square Polarized Sunglasses in Black/Pink $180 Lillian Filigree Temple Round Sunglasses in Crystal/Beige $160 Britton Metal Arm Square Polarized Sunglasses in 4 Brown/Blue Havana $180 CLOTH & STONE Flutter Sleeve Striped Tank in Multi $68 JOE’S JEANS The Scout Mid Rise Slim Tomboy Crop Jeans $178 BIRKENSTOCK Women’s Arizona Birko-Flor® Sandal in White $100 BONNIE JEAN Knit to Chambray Romper in Blue $36 BIRKENSTOCK Kid’s Arizona Soft Footbed Sandal in White $60 5 Just for Mommy & Me HAMMITT Hunter Backpack in Pewter $325 Hunter Mini Backpack in Pewter $195 CECELIA Sunbeam Wooden Earrings $28 Ginkgo Seed Drop Wooden Earrings $28 Chevron Triangle Wooden Earrings $28 Sunburst Tiered Wooden Earrings $28 Pomegranate Rectangular Wooden Earrings $28 6 Just for Mommy & Me CARA Open Raffia Hoop Earrings in Sage $26 | Mini Tassel Teardrop Earrings in Sage $26 Woven Hoop Earrings in Light Grey $26 | Woven Raffia Hoop Earrings
    [Show full text]
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • 10-11-Cat.Pdf
    “The birth of a Pearl is a wondrous event. A particle of sand, piece of a shell, or foreign object drifts into the Oyster’s body and the oyster begins to secrete layers of nacre (Mother-of-Pearl) around the irritant. Over time, the layers transform into a glowing one-of-a-kind Pearl. Pearls have taught me about gratitude and nature’s wisdom. How many of us are able to take a challenge, as Oysters do, and find the gift in it? It isn’t always easy to find the positive in the hardships we endure, but in time beauty is often revealed. When we assimilate what we have learned from the difficulties we have overcome, we can then celebrate them as blessings and continue to grow. Every woman deserves to feel beautiful. Pearls can help us feel beautiful on the outside, while we practice embracing the challenges on the inside.” I’d like to share our Treasured Gems with you: Gem #1: Everything happens to us for a reason, from which I can learn and grow. Gem #2: Trusting my intuition and a power greater then myself provides the best guidance. Gem #3: All I have is today. Let me make today a fully alive day. Gem #4: I will take full responsibility for my choices and not feel responsible about the choice of others. Gem #5: I will not hurt others, instead I will use compassion and always use respect. Gem #6: When I treat myself as a priority, I am better able to deal with life’s challenges.
    [Show full text]
  • The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
    THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Geology Club Mineral: Collecting Trip
    Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico.
    [Show full text]
  • Analytical Methods to Differentiate Romanian Amber and Baltic Amber for Archaeological Applications
    Cent. Eur. J. Chem. • 7(3) • 2009 • 560-568 DOI: 10.2478/s11532-009-0053-8 Central European Journal of Chemistry Analytical methods to differentiate Romanian amber and Baltic amber for archaeological applications Research Article Eugenia D. Teodor1*, Simona C. Liţescu1, Antonela Neacşu2, Georgiana Truică1 Camelia Albu1 1 National Institute for Biological Sciences, Centre of Bioanalysis, Bucharest, 060031, Romania 2 University of Bucharest, Faculty of Geology and Geophysics, Bucharest, 010041, Romania Received 27 August 2008; Accepted 02 March 2009 Abstract: The study aims to establish several definite criteria which will differentiate Romanian amber and Baltic amber to certify the local or Baltic origin of the materials found in archaeological sites on the Romanian territory, by using light microscopy and performing analytical methods, such as Fourier transform infrared spectroscopy-variable angle reflectance and liquid chromatography with mass spectrometry detection. Experiments especially by Fourier transformed infrared spectroscopy, were applied to a wide range of samples with controlled origin. The methods were optimised and resulted in premises to apply the techniques to analysis of the archaeological material. Keywords: Romanian amber • FTIR-VAR • LC-MS • Light microscopy © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction (Oligocene). The resin-bearing strata are intercalated within the lower and medium part of the lower Kliwa Amber is a fossil resin originating from different types sandstone (0.20-1.40 m). They consist of siliceous clay of Conifers and certain flowering trees, especially in hot (0.20-1.40 m) always containing thin intercalations of climates. From the mineralogical point of view amber bituminous shales (2-5 cm) and of preanthracite coal could be considered a mineraloid.
    [Show full text]
  • Minnesota's Mineral Resources
    CHAPTER • 9 Minnesota's Mineral Resources IN MINNESOTA the production of iron ore is far more valuable economically than the total of all other mineral products, but im­ portant industries are based on Minnesota's other geological forma­ tions as well. Architectural, monumental, and structural stone are produced from granite, limestone, dolomite, and other Minnesota rocks. Gravel and sand are excavated and processed, and clay is used for many ceramic products. :Manganese in important amounts occurs in the iron ores of the Cuyuna district. Finally, although they are often not thought of as mineral products, two of our most im­ portant mineral resources are water and soil. The iron ores and mining operations of the Mesabi, Vermilion, and Cuyuna iron-bearing districts and of the southeastern lYlinnesota counties will be discussed in detail in later chapters, but a few sta­ tistics on Minnesota's iron ore industry may remind us how impor­ tant this geological heritage is. The following is an estimate of Min­ nesota's iron ore reserves, made on lYlay 1, 1961: Gross Tons Mesabi Range 500,799,179 Vermilion Range 9,755,974 Cuyuna Range 36,530,000 Fillmore County 'il,860,337 Total iron ore 549,945,490 172 MI NESOTA'S MINERAL RESOURCES The total production of iron ore in Minne ota to January 1, 1962, was 2,529,737,553 tons. Total taxes paid on iron ore to January 1, 1961 , were approximately $1,257,448,400, a very important source of funds for the state government. Slightly over 60 per cent of the total iron ore produced in the United States has come from l\1inne- ota.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Not for Publication United States Court of Appeals
    NOT FOR PUBLICATION FILED DEC 20 2018 UNITED STATES COURT OF APPEALS MOLLY C. DWYER, CLERK FOR THE NINTH CIRCUIT U.S. COURT OF APPEALS CYNTHIA CARDARELLI PAINTER, No. 17-55901 individually and on behalf of other members of the general public similarly situated, D.C. No. 2:17-cv-02235-SVW-AJW Plaintiff-Appellant, v. MEMORANDUM* BLUE DIAMOND GROWERS, a California corporation and DOES, 1-100, inclusive, Defendants-Appellees. Appeal from the United States District Court for the Central District of California Stephen V. Wilson, District Judge, Presiding Argued and Submitted December 3, 2018 Pasadena, California Before: D.W. NELSON and WARDLAW, Circuit Judges, and PRATT,** District Judge. * This disposition is not appropriate for publication and is not precedent except as provided by Ninth Circuit Rule 36-3. ** The Honorable Robert W. Pratt, United States District Judge for the Southern District of Iowa, sitting by designation. Cynthia Painter appeals the district court’s order dismissing her complaint with prejudice on grounds of preemption and failure to state a claim pursuant to Federal Rule of Civil Procedure 12(b)(6). On behalf of a putative class, Painter claims that Blue Diamond Growers (“Blue Diamond”) mislabeled its almond beverages as “almond milk” when they should be labeled “imitation milk” because they substitute for and resemble dairy milk but are nutritionally inferior to it. See 21 C.F.R. § 101.3(e)(1). We have jurisdiction under 28 U.S.C. § 1291 and review the district court’s dismissal de novo. Durnford v. MusclePharm Corp., 907 F.3d 595, 601 (9th Cir.
    [Show full text]
  • Invictus Catalog Lowres.Pdf
    At Invictus Body Jewelry we believe that professional piercers and body modifi cation artists desire high quality, implant grade jewelry at a reasonable price. To accomplish this, we designed and developed Invictus Body Jewelry to supply implant grade titanium jewelry to professional piercers all over the world. Invictus Body Jewelry is manufactured out of Ti 6Al-4V ELI ASTM F-136 implant grade titanium. All of our jewelry is internally threaded and adheres to industry standard thread patterns. At Invictus Body Jewelry we strive to provide the professional piercer with safe, customizable, and affordable implant grade jewelry. 2 www.invictusbodyjewelry.com Invictus Body Jewelry is manufactured only using implant grade materials - Ti 6Al-4V ELI ASTM-F136. All Invictus Body Jewelry products are internally threaded for professional piercers and their clients. Invictus Body Jewelry uses industry standard thread patterns. We use M1.2 threading on our 14ga and M0.9 threading on our 16ga & 18ga. We believe in providing quality piercing products at reasonable prices to our customers. We fulfi ll orders within 24 to 48 hours from being entered into the system. Invictus Body Jewelry is only available to wholesale customers. Only piercing shops and retailers may purchase our products, not the general public. 203.803.1129 3 HORSESHOES & CURVES TIHI (Internally Threaded Titanium Horseshoes) TICI (Internally Threaded Titanium Curves) CodeSizeDiameter Ends Code Size Diameter Ends TIHI601 16g 1/4” 3mm TIHI411 14g 5/16” 4mm TIHI611 16g 5/16” 3mm TIHI421
    [Show full text]