Observations on the Mobility of the Silver-Studded Blue Plebejus Argus [Online]

Total Page:16

File Type:pdf, Size:1020Kb

Observations on the Mobility of the Silver-Studded Blue Plebejus Argus [Online] 30 October 2019 © Harry E. Clarke Citation: Clarke, H.E. (2019). Observations on the Mobility of the Silver-studded Blue Plebejus argus [Online]. Available from http://www.dispar.org/reference.php?id=150 [Accessed November 15, 2019]. Observations on the Mobility of the Silver-studded Blue Plebejus argus Harry E. Clarke Abstract: The Silver-studded Blue is often considered to be a sedentary species, not moving more than 50 m during its life. However, based on recent research and my own experience from Surrey, this is not the case. Males can easily move 200 m when relocated away from ant nests, and new sites can be colonised within a few years from source sites at least 3 km away, probably a year or so after the ants Lasius niger or Lasius alienus have colonised. Silver-studded Blue is a butterfly of early successional habitat, so it needs to be mobile in order to find suitable habitat for the next generation. If it was very sedentary, then colonies would soon die out as habitat matures and becomes unsuitable to support the ants and the butterfly. Introduction This article has been prompted by the statements that Silver-studded Blue (Plebejus argus) is sedentary, barely moving more than 20 m, with 50 m considered exceptional, and breeding populations of 100 m or more considered isolated, based on three mark-release-recapture studies (Thomas, 2014) and (Eeles, 2019). This does not agree with my own observations and does not seem consistent with the habitat requirements. Figure 1 - Male Silver-studded Blue on Bell Heather Photo © Harry E. Clarke The Silver-studded Blue is a butterfly of early successional habitat [1]. Unless something is keeping the habitat in check, early successional habitat develops into late successional habitat with heathland (one of the habitats occupied by the butterfly) degenerating into woodland. For an early successional butterfly to survive, it must be able to find new habitats. If it is very sedentary then it will soon die out, as the habitat becomes unsuitable. The Silver-studded Blue has a number of subspecies, indicating that some populations are isolated, with no interchange between them. The Silver- studded Blue forms discrete colonies and is certainly not as mobile as some species, such as the Brimstone (Gonepteryx rhamni), which roams over large areas. Ant Associations The Silver-studded Blue is one of the few obligate myrmecophiles [2] among the Palaeartic Lycaenidae, with entirely phytophagous (plant eating) non-inquiline [3] caterpillars (Fiedler, 2006). The Idas Blue (Plebejus idas) is the only other known European example (Fiedler, 1995). Obligate myrmecophiles are highly specific with regard to its ant hosts. Butterflies such as the Large Blue are inquiline social parasites of ant colonies (Fiedler, 2006). The subspecies argus of Silver-studded Blue on heathland has a proven relationship with Lasius niger (Fiedler, 2006; Wells, 2012; Seifert, 2018) and subspecies caernensis has a proven relationship with Lasius alienus (Harris, 2008; Seifert, 2018) on limestone sites. A proven relationship means that Silver-studded Blue larvae or pupae have been found in the ant nests, tended by the ants. 1 of 4 Figure 2 - Silver-studded Blue larva attended by Lasius niger Photo © Steve Ogden There is only circumstantial evidence for a relationshiop between the subspecies argus and Lasius platythorax. However, despite an extensive literature search and asking relevant experts, no proof of the relationship has been established. Wells (2012) found no relationship with Laisus psammophilus in Norfolk, despite the presence of both the ant and the butterfly. Habitat requirements The habitat requirements for the Silver-studded Blue are complex, since the ant, larval and adult requirements are all slightly different. However, for a successful colony to exist, these habitats must exist in close proximity. Figure 3 - Typical lowland heath Silver-studded Blue habitat at Silchester Common Photo © Peter Eeles Silver-studded Blue larvae require the sward height to be less than 7 cm (Thomas, 1985) and where the larval foodplant is growing. Recorded larval foodplants are Bell Heather (Erica cinerea), Common Bird's-foot Trefoil (Lotus corniculatus), Common Rock-rose (Helianthemum nummularium), Cross-leaved Heath (Erica tetralix), Gorse (Ulex europeaus), Ling (Calluna vulgaris) and Horseshoe Vetch (Hippocrepis comosa). Adults require a nectar source during the flight season. On heathland this is usually Bell Heather or Cross-leaved Heath. Ling does not flower until the end of the flight period. Adults also require somewhere to roost, which can be long grass, such as Purple Moor-grass (Molinia caerulea), mature heather or gorse (Ulex sp.), which can provide shelter from the wind. The habitat requirements for the ants are described in great detail in Seifert (2018). In brief, the habitat requirements for Lasius niger are that the nests are made in a mineral substrate (such as compact sand), in an unshaded location, on a flat or gentle slope. A slope that is too steep is probably too arid, which may explain the absence of the ants, and this is clearly demonstrated at Hankley Common in Surrey. Ant nests are created in bare ground and, as vegetation grows, the ants attempt to keep the roof of their nests baked by the sun. I've observed mounds over 30cm high. Lasius niger avoids shady woodlands and bogs where it is replaced by Lasius platythorax, which makes its nest out of organic material, such as dead wood or peat. Figure 4 - Lasius niger nest built up due to being overgrown by vegetation Photo © Harry E. Clarke Biology 2 of 4 The Silver-studded Blue life cycle starts with the female laying eggs close to ant nests (Jordano, 1992) of either Lasius niger or L. alienus between June and August. When the eggs hatch in the spring (or in July if there is a very rare second brood), the larvae are picked up by worker ants and taken back to their nest. As larvae develop, they are attended by the ants. The larvae secrete copious amounts of sugars and proteins which the ants feed upon. If it was not for the ants constantly keeping the Silver-studded Blue larvae clean, the larvae would probably succumb to fungal infections. The larvae feed at night, with the ants making excellent body guards for the larvae. The host ants have been shown to successfully defend the larvae from attack from other ant species (Jordano, 1992). When the Silver-studded Blue larva has completed its development, it pupates in or near the ant nests. It is possible that the pupae are able to communicate with the ants, as has been demonstrated in the Large Blue (Barbero, 2012). When the adult ultimately ecloses, ants remain in attendance while the butterfly expands and dries its wings. The adult's furry body is wet with droplets of liquid which are highly attractive to the ants (Thomas, 1985; Thomas, 2014). Males patrol areas containing ant nests, searching for freshly eclosed females with which to mate. Experiments in Spain showed that displaced males soon return to these areas (Seymour, 2003). Figure 5 - Silver-studded Blue copulating pair Photo © Harry E. Clarke Females mate shortly after emergence (Thomas, 1985). The copulating pairs I have observed are always of females with fully expanded wings and with no ants present. The ants possibly prevent males from mating too soon. Once the females have mated, they then hide for a few days to allow their eggs to mature (Seymour, 2003), and to avoid the attention of males. Hence they will emigrate from the immediate vicinity of the natal patch. When the eggs are mature, the female will then search out nests of their host ant species for oviposition. Displacement In a study in the Doñana National Park in southern Spain, researchers recorded a movement of 900 m for Silver-studded Blue from where it was released in a fragmented habitat, and 783 m in a less fragmented area. They moved males 200 m away from Lasius niger nests, and within a day or so, all had returned to the capture area (Seymour, 2003). I have observed a male zoom around an area of 15 to 20 m diameter at Hankley Common in Surrey. In under a minute it must have covered over 100 m, the area being typical Silver-studded Blue habitat. I have observed a female Silver-studded Blue at least 500 m from any suitable habitat. Whilst out surveying for Silver-studded Blues at Frensham Common in Surrey, I was in the middle of some tall Ling, when a small brown butterfly flew past me and landed a few metres away, where I was able to identify it as a female Silver-studded Blue. I was at least 500 m away from the nearest colony, which I had just come from, and it must have been at least 500 m to the next colony. In recent years in Surrey, there have been two examples of Silver-studded Blue colonising sites at least 3 km away from the nearest known colonies, with all the evidence pointing to a natural colonisation rather than an introduction. A small heathland (at SU9638) had recently been cleared, where a tiny colony, consisting of only a few Silver-studded Blues, was discovered in 2016. Given that the site was unknown by Lepidoperists (there were no records in the database), it is unlikely that anyone had released butterflies there (and certainly not the site owner). The colony lasted a couple of years, before dying out as the habitat became unsuitable. The nearest colony was 3 km away as the crow flies, with roads and woods inbetween. At another site (at SU8945) which had been recently cleared by the Amphibian and Reptile Trust, the Silver-studded Blue was discovered.
Recommended publications
  • Elizabeth I. Cash
    ELIZABETH I. CASH Department of Environmental Science, Policy, and Management University of California, Berkeley 130 Mulford Hall, #3114 Berkeley, CA 94720-3114 Email: [email protected] URL: http://www.elizabethcash.com/ CURRENT POSITION University of California, Berkeley Berkeley, CA Postdoctoral Scholar August 2016 - Present EDUCATION Arizona State University Tempe, AZ PhD, Biology 2016 Dissertation: Proximate and ultimate mechanisms of nestmate recognition in ants Advisors: Jürgen Gadau (committee chair) & Jürgen Liebig Committee: Jennifer Fewell, Bert Hölldobler, & Kenro Kusumi The Ohio State University Columbus, OH BSc, cum laude, Biology 2009 Independent Research: The function of pheromones in socially parasitic Lasius ants Advisors: Joseph Raczkowski, Steven Rissing, & John Wenzel University of Cincinnati Cincinnati, OH Foundation Coursework, Design 1999 RESEARCH EXPERIENCE AND TRAINING University of California, Berkeley Berkeley, CA Postdoctoral Scholar; Advisor: Neil D. Tsutsui August 2016 - Present Evolution of desiccation resistance and colony recognition in Argentine ants Arizona State University Tempe, AZ Graduate Research Associate; Advisor: Jürgen Gadau 2009 - 2016 Acyl-CoA desaturase gene family evolution and function in ants Ant Course Portal, AZ Participant; Field course on ant collection, identification, and curation 2015 University of Würzburg / Arizona State University Würzburg, Germany Participant; International symposium and workshop on frontiers in insect biology 2014 Smithsonian Tropical Research Institute / Arizona State University BCI, Panama Participant; Tropical Field Biology course 2011 The Ohio State University Columbus, OH Laboratory Assistant; Advisors: Joseph Raczkowski, Steven Rissing, & John Wenzel 2007 - 2009 Behavioral and chemical ecology of social parasitism in Lasius ants 1 PEER-REVIEWED PUBLICATIONS Cash E, Tsutsui N, and Smith A (in preparation) The evolution of acyl-CoA desaturase genes in Odontomachus trap-jaw ants.
    [Show full text]
  • Der Idas-Bläuling (Plebejus Idas Linnaeus 1771) Am Lech
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des naturwiss. Vereins für Schwaben, Augsburg Jahr/Year: 2003 Band/Volume: 107 Autor(en)/Author(s): Pfeuffer Eberhard Artikel/Article: Der Idas-Bläuling (Plebejus idas L innaeus 1771) am Lech 64-81 Berichte des Naturwissenschaftlichen©Naturwissenschaftlicher Vereins Verein für für Schwaben, Schwaben download e.V. unter www.biologiezentrum.at 107. Bd. 2003 Eberhard Pfeuffer Der Idas-Bläuling (Plebejus idas Linnaeus 1771) amLech 1. Einleitung Schotterheiden und Weiden-Tamariskenfluren der Alpenflüsse waren in Süddeutschland ursprünliche Habitate des Idas-Bläulings Plebejus idas Linnaeus 1771 (Schwibinger & Bräu 2001). 1836 hatte C. F. Freyer zum Vorkommen des Idas-Bläulings bei Augsburg vermerkt: „Er fliegt in hiesiger Gegend Mitte Juni gerne in den Flussbeeten der Wertach und des Leches“ Ähnlich beschreibt 1860 J. B.K ranz das Habitat im Isartal bei München: besonders in Auen auf kiesigen, sonnigen Plätzen mit schwa­ cher Vegetation sehr häufig“. Kiesige Auenstandorte größeren Ausmaßes mit lückiger Vegetation gibt es heute im Bereich der nördlichen Alpenflüsse nur noch im inneralpinen Raum, außeralpin als Folge der Fluss Verbauungen des 19. und 20. Jh. längst nicht mehr. Dies trifft besonders für den Lech zu. Nur im Oberen Lechtal1 in Tirol ist die Wild­ flusslandschaft des Lechs mit Umlagerungsstrecken und der typischen Zonierung noch weitgehend erhalten. In seinem weiteren Verlauf wurde der Wildfluss durch den Aus­ bau zu einer Kette von Staustufen nahezu völlig und die ehemalige Auenlandschaft weitgehend zerstört. Trotz dieser tiefgreifenden Veränderungen des Flusstales kommt heuteP. idas nicht nur im inneralpinen, sondern auch im außeralpinen Bereich vor: am Oberen Lech in seinen ursprünglichen Habitaten, am Unteren Lech auf Sekundärstandorten.
    [Show full text]
  • Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Kampinos National Park and Its Buffer Zone
    Fr a g m e n t a Fa u n ist ic a 51 (2): 107-118, 2008 PL ISSN 0015-9301 O M u seu m a n d I n s t i t u t e o f Z o o l o g y PAS Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Kampinos National Park and its buffer zone Izabela DZIEKAŃSKA* and M arcin SlELEZNlEW** * Department o f Applied Entomology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warszawa, Poland; e-mail: e-mail: [email protected] **Department o f Invertebrate Zoology, Institute o f Biology, University o f Białystok, Świerkowa 2OB, 15-950 Białystok, Poland; e-mail: [email protected] Abstract: Kampinos National Park is the second largest protected area in Poland and therefore a potentially important stronghold for biodiversity in the Mazovia region. However it has been abandoned as an area of lepidopterological studies for a long time. A total number of 80 butterfly species were recorded during inventory studies (2005-2008), which proved the occurrence of 80 species (81.6% of species recorded in the Mazovia voivodeship and about half of Polish fauna), including 7 from the European Red Data Book and 15 from the national red list (8 protected by law). Several xerothermophilous species have probably become extinct in the last few decadesColias ( myrmidone, Pseudophilotes vicrama, Melitaea aurelia, Hipparchia statilinus, H. alcyone), or are endangered in the KNP and in the region (e.g. Maculinea arion, Melitaea didyma), due to afforestation and spontaneous succession. Higrophilous butterflies have generally suffered less from recent changes in land use, but action to stop the deterioration of their habitats is urgently needed.
    [Show full text]
  • Biological Resources Report City of Fort Bragg Wastewater Treatment Plant Upgrade
    BIOLOGICAL RESOURCES REPORT CITY OF FORT BRAGG WASTEWATER TREATMENT PLANT UPGRADE 101 West Cypress Street (APN 008-020-07) Fort Bragg Mendocino County, California prepared by: William Maslach [email protected] August 2016 BIOLOGICAL RESOURCES REPORT CITY OF FORT BRAGG WASTEWATER TREATMENT PLANT UPGRADE 101 WEST CYPRESS STREET (APN 008-020-07) FORT BRAGG MENDOCINO COUNTY, CALIFORNIA PREPARED FOR: Scott Perkins Associate Planner City of Fort Bragg 416 North Franklin Street Fort Bragg, California PREPARED BY: William Maslach 32915 Nameless Lane Fort Bragg, California (707) 732-3287 [email protected] Contents Executive Summary ...................................................................................................................................... iv 1 Introduction and Background ............................................................................................................... 1 1.1 Purpose ......................................................................................................................................... 1 1.2 Scope of Work ............................................................................................................................... 1 1.3 Location & Environmental Setting ................................................................................................ 1 1.4 Land Use ........................................................................................................................................ 2 1.5 Site Directions ..............................................................................................................................
    [Show full text]
  • Butterflies & Flowers of the Kackars
    Butterflies and Botany of the Kackars in Turkey Greenwings holiday report 14-22 July 2018 Led by Martin Warren, Yiannis Christofides and Yasemin Konuralp White-bordered Grayling © Alan Woodward Greenwings Wildlife Holidays Tel: 01473 254658 Web: www.greenwings.co.uk Email: [email protected] ©Greenwings 2018 Introduction This was the second year of a tour to see the wonderful array of butterflies and plants in the Kaçkar mountains of north-east Turkey. These rugged mountains rise steeply from Turkey’s Black Sea coast and are an extension of the Caucasus mountains which are considered by the World Wide Fund for Nature to be a global biodiversity hotspot. The Kaçkars are thought to be the richest area for butterflies in this range, a hotspot in a hotspot with over 160 resident species. The valley of the River Çoruh lies at the heart of the Kaçkar and the centre of the trip explored its upper reaches at altitudes of 1,300—2,300m. The area consists of steep-sided valleys with dry Mediterranean vegetation, typically with dense woodland and trees in the valley bottoms interspersed with small hay-meadows. In the upper reaches these merge into alpine meadows with wet flushes and few trees. The highest mountain in the range is Kaçkar Dağı with an elevation of 3,937 metres The tour was centred around the two charming little villages of Barhal and Olgunlar, the latter being at the fur- thest end of the valley that you can reach by car. The area is very remote and only accessed by a narrow road that winds its way up the valley providing extraordinary views that change with every turn.
    [Show full text]
  • A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA Trevor Manendo University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2008 A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA Trevor Manendo University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Manendo, Trevor, "A Phylogenetic Analysis of North American Lasius Ants Based on Mitochondrial and Nuclear DNA" (2008). Graduate College Dissertations and Theses. 146. https://scholarworks.uvm.edu/graddis/146 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A phylogenetic analysis of North American Lasius ants based on mitochondrial and nuclear DNA. A Thesis Presented by Trevor Manendo to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Biology May, 2008 Accepted by the Faculty of the Graduate College, The University of Vermont in Partial fulfillment of the requirements for the degree of Master of Science specializing in Biology. Thesis Examination Committee: ice President for Research and Dean of Graduate Studies Date: March 19,2008 ABSTRACT The ant genus Lasius (Formicinae) arose during the early Tertiary approximately 65 million years ago. Lasius is one of the most abundant and widely distributed ant genera in the Holarctic region, with 95 described species placed in six subgenera: Acanthomyops, Austrolasius, Cautolasius, Chthonolasius, Dendrolasius and Lasius.
    [Show full text]
  • State of California the Natural Resources Agency DEPARTMENT of FISH and GAME Biogeographic Data Branch California Natural Diversity Database
    State of California The Natural Resources Agency DEPARTMENT OF FISH AND GAME Biogeographic Data Branch California Natural Diversity Database STATE & FEDERALLY LISTED ENDANGERED & THREATENED ANIMALS OF CALIFORNIA January 2010 This is a list of animals found within California or off the coast of the State that have been classified as Endangered or Threatened by the California Fish & Game Commission (state list) or by the U.S. Secretary of the Interior or the U.S. Secretary of Commerce (federal list). The official California listing of Endangered and Threatened animals is contained in the California Code of Regulations, Title 14, Section 670.5. The official federal listing of Endangered and Threatened animals is published in the Federal Register, 50 CFR 17.11. The California Endangered Species Act of 1970 created the categories of “Endangered” and “Rare”. The California Endangered Species Act of 1984 created the categories of “Endangered” and “Threatened”. On January 1, 1985, all animal species designated as “Rare” were reclassified as “Threatened”. Animals that are candidates for state listing and animals proposed for federal listing are also included on this list. A state candidate species is one that the Fish and Game commission had formally noticed as being under review by the Department for addition to the State list. A federal proposed species is one for which a proposed regulation has been published in the Federal Register. Code Designation: Totals as of January 2010 SE = State-listed as Endangered 45 ST = State listed as Threatened 34 SR = State listed as Rare – old designation, all animals reclassified to Threatened on 1/1/85 0 FE = Federally listed as Endangered (21.5% of all U.S.
    [Show full text]
  • Yukon Butterflies a Guide to Yukon Butterflies
    Wildlife Viewing Yukon butterflies A guide to Yukon butterflies Where to find them Currently, about 91 species of butterflies, representing five families, are known from Yukon, but scientists expect to discover more. Finding butterflies in Yukon is easy. Just look in any natural, open area on a warm, sunny day. Two excellent butterfly viewing spots are Keno Hill and the Blackstone Uplands. Pick up Yukon’s Wildlife Viewing Guide to find these and other wildlife viewing hotspots. Visitors follow an old mining road Viewing tips to explore the alpine on top of Keno Hill. This booklet will help you view and identify some of the more common butterflies, and a few distinctive but less common species. Additional species are mentioned but not illustrated. In some cases, © Government of Yukon 2019 you will need a detailed book, such as , ISBN 978-1-55362-862-2 The Butterflies of Canada to identify the exact species that you have seen. All photos by Crispin Guppy except as follows: In the Alpine (p.ii) Some Yukon butterflies, by Ryan Agar; Cerisy’s Sphynx moth (p.2) by Sara Nielsen; Anicia such as the large swallowtails, Checkerspot (p.2) by Bruce Bennett; swallowtails (p.3) by Bruce are bright to advertise their Bennett; Freija Fritillary (p.12) by Sonja Stange; Gallium Sphinx presence to mates. Others are caterpillar (p.19) by William Kleeden (www.yukonexplorer.com); coloured in dull earth tones Butterfly hike at Keno (p.21) by Peter Long; Alpine Interpretive that allow them to hide from bird Centre (p.22) by Bruce Bennett.
    [Show full text]
  • Specimen Records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895
    Catalog: Oregon State Arthropod Collection 2019 Vol 3(2) Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. S, P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895. Catalog: Oregon State Arthropod Collection 3(2). (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4594 Introduction These records were generated using funds from the LepNet project (Seltmann) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Lycaenidae and Riodinidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed by Jon Shepard and Paul Hammond prior to digitization. Nomenclature follows that of (Pelham 2008). Results The holdings in these two families are extensive. Combined, they make up 25,743 specimens (24,598 Lycanidae and 1145 Riodinidae).
    [Show full text]
  • Hybridization in Ants
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Hybridization in Ants Ian Butler Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons HYBRIDIZATION IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ian Butler June 2020 © Copyright by Ian Butler 2020 HYBRIDIZATION IN ANTS Ian Butler, Ph.D. The Rockefeller University 2020 Interspecific hybridization is a relatively common occurrence within all animal groups. Two main factors make hybridization act differently in ants than in other species: eusociality and haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They instead develop from unfertilized eggs as haploid clones of their mother. This means that interspecifically mated queens do not completely sacrifice reproductive potential even if all hybrids are sterile because they can still produce fertile males. These factors in turn suggest that hybridization should be more common among the social Hymenoptera than other animal groups. Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, although these data are limited. Furthermore, there is a large amount of overlap between cases of interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants where caste is determined primarily by genotype are associated with hybridization.
    [Show full text]
  • The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change Along an Industrial Pollution Gradient
    S S symmetry Article The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient Vitali Zverev and Mikhail V. Kozlov * Department of Biology, University of Turku, 20014 Turku, Finland; vitzve@utu.fi * Correspondence: mikoz@utu.fi Abstract: The rapid and selective responses to changes in habitat structure and climate have made butterflies valuable environmental indicators. In this study, we asked whether the decline in butterfly populations near the copper-nickel smelter in Monchegorsk in northwestern Russia is accompanied by phenotypic stress responses to toxic pollutants, expressed as a decrease in body size and an increase in fluctuating asymmetry. We measured the concentrations of nickel and copper, forewing length, and fluctuating asymmetry in two elements of wing patterns in Boloria euphrosyne, Plebejus idas, and Agriades optilete collected 1–65 km from Monchegorsk. Body metal concentrations increased toward the smelter, confirming the local origin of the collected butterflies. The wings of butterflies from the most polluted sites were 5–8% shorter than those in unpolluted localities, suggesting adverse effects of pollution on butterfly fitness due to larval feeding on contaminated plants. However, fluctuating asymmetry averaged across two hindwing spots did not change systematically with pollution, thereby questioning the use of fluctuating asymmetry as an indicator of habitat quality in butterfly conservation projects. Keywords: copper-nickel smelter; fluctuating asymmetry; Kola Peninsula; Lepidoptera; phenotypic Citation: Zverev, V.; Kozlov, M.V. stress responses; wing length The Fluctuating Asymmetry of the Butterfly Wing Pattern Does Not Change along an Industrial Pollution Gradient. Symmetry 2021, 13, 626. https://doi.org/10.3390/sym13040626 1.
    [Show full text]
  • Lepidoptera: Lycaenidae) Im Tauberland Und Angrenzenden Regionen
    Carolinea 73 (2015): 29-81, 84 Abb.; Karlsruhe, 15.12.2015 29 Neue Erkenntnisse zur Verbreitung und Lebensweise von myrmekophilen Bläulingen (Lepidoptera: Lycaenidae) im Tauberland und angrenzenden Regionen MATTHIAS SANETRA, ROBERT GÜSTEN & ROBERT TRUSCH Kurzfassung to ants (myrmecophily) are described. Oviposition be- Im Tauberland im Norden Baden-Württembergs wurden haviour and the habitat of early stages could be docu- acht myrmekophile Bläulingsarten, Glaucopsyche alexis mented for P. daphnis. Possible host ant species of M. (Alexis-Bläuling), Polyommatus eumedon (Storchschna- alcon X were identified by investigation of the ant fauna bel-Bläuling), Polyommatus daphnis (Zahnflügel-Bläu- close to Gentiana cruciata plants. Myrmica schencki is ling), Polyommatus amandus (Vogelwicken-Bläuling), deemed to be the main host. Regional ecological spe- Polyommatus thersites (Esparsetten-Bläuling), Plebejus cializations are discussed through comparison with argus (Argus-Bläuling), Maculinea arion (Thymian-Amei- other populations. Also, implications for the conservation senbläuling) und Maculinea alcon X (Kreuzenzian-Amei- of myrmecophilous blues, which are sensitive to certain senbläuling), im Hinblick auf ihre aktuelle Verbreitung mowing and grazing regimes, are presented. und ihre Biologie und Ökologie untersucht. Es wurde festgestellt, dass M. arion im Tauberland und Nördlichen Autoren Bauland ausgestorben ist. Die Präimaginalstadien (Eier MATTHIAS SANETRA, Hunsrückstr. 7, D-64546 Mörfelden- und Raupen) von G. alexis, P. eumedon, P. amandus, P. Walldorf; E-Mail: [email protected] thersites und P. argus wurden im Freiland aufgefunden, ROBERT GÜSTEN, Merckstr. 28, D-64283 Darmstadt; und ihre Beziehungen zu Ameisen (Myrmekophilie) wer- E-Mail: [email protected] den beschrieben. Das Eiablageverhalten und das Ent- ROBERT TRUSCH, Staatliches Museum für Naturkunde wicklungshabitat konnten für P.
    [Show full text]