Scientists' Warning on the Conservation of Subterranean

Total Page:16

File Type:pdf, Size:1020Kb

Scientists' Warning on the Conservation of Subterranean Forum Scientists’ Warning on the Conservation of Subterranean Ecosystems Downloaded from https://academic.oup.com/bioscience/article-abstract/69/8/641/5519083 by Texas A+M at Galveston user on 15 August 2019 STEFANO MAMMOLA , PEDRO CARDOSO , DAVID C. CULVER, LOUIS DEHARVENG, RODRIGO L. FERREIRA, CENE FIŠER, DIANA M. P. GALASSI, CHRISTIAN GRIEBLER, STUART HALSE , WILLIAM F. HUMPHREYS, MARCO ISAIA, FLORIAN MALARD, ALEJANDRO MARTINEZ , OANA T. MOLDOVAN, MATTHEW L. NIEMILLER, MARTINA PAVLEK , ANA SOFIA P. S. REBOLEIRA , MARCONI SOUZA-SILVA, EMMA C. TEELING, J. JUDSON WYNNE, AND MAJA ZAGMAJSTER In light of recent alarming trends in human population growth, climate change, and other environmental modifications, a “Warning to humanity” manifesto was published in BioScience in 2017. This call reiterated most of the ideas originally expressed by the Union of Concerned Scientists in 1992, including the fear that we are “pushing Earth’s ecosystems beyond their capacities to support the web of life.” As subterranean biologists, we take this opportunity to emphasize the global importance and the conservation challenges associated with subterranean ecosystems. They likely represent the most widespread nonmarine environments on Earth, but specialized subterranean organisms remain among the least documented and studied. Largely overlooked in conservation policies, subterranean habitats play a critical role in the function of the web of life and provide important ecosystem services. We highlight the main threats to subterranean ecosystems and propose a set of effective actions to protect this globally important natural heritage. Keywords: biodiversity crisis, caves, extinction risk, groundwater, nature conservation “Human beings and the natural world are on a collision articles focused on particular biological or social systems course.” (William J. Ripple, Oregon State University, Corvallis, —Union of Concerned Scientists’ Manifesto, 1992 Oregon, personal communication, 7 September 2018). As a group of subterranean biologists with different areas of uilding on the manifesto World Scientists’ Warning expertise and a strong commitment to biodiversity conser- B to Humanity, issued in 1992 by the Union of Concerned vation, we take this opportunity to examine some alarming Scientists, Ripple and colleagues (2017) recently published a trends underscored by the Alliance of World Scientists from passionately debated article titled “World scientists’ warning a subterranean perspective. We discuss the implications that to humanity: A second notice.” This novel proclamation, this Ripple and colleagues (2017) manifesto has for the con- which was endorsed by more than 15,000 cosignatory sci- servation of the subterranean realm, which includes some entists (the Alliance of World Scientists), reiterated most of of the most unique, secluded, understudied, and difficult to the ideas and concerns presented in the first manifesto and, study environments on our planet. in particular, the fear that humans are “pushing Earth’s eco- Although subterranean habitats are not at the forefront of systems beyond their capacities to support the web of life.” one’s mind when thinking about global conservation issues, The second notice highlighted alarming trends in several they support exceptional forms of life and represent critical environmental issues over the last 25 years (1992–2016), habitats to be preserved and prioritized in conservation poli- including global climate change, deforestation, biodiversity cies. Although some conservation efforts have been devoted loss, human population increase, and a decline in freshwater to protect subterranean ecosystems at a local level, no global resources. assessment has been conducted that explicitly takes these Since its publication, this second notice has been exten- resources into account (e.g., Brooks et al. 2006, Sutherland sively discussed in the scientific literature and social media, et al. 2018). Even though there are common conservation stimulating an upsurge of discipline-specific follow-up concerns that affect all biological systems, many of them are BioScience 69: 641–650. © The Author(s) 2019. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. All rights reserved. For Permissions, please e-mail: [email protected]. doi:10.1093/biosci/biz064 Advance Access publication 19 June 2019 https://academic.oup.com/bioscience August 2019 / Vol. 69 No. 8 • BioScience 641 Forum more acute and visible in the subterranean realm and are biota we observe in a cave are just the tip of the subterranean emphasized in this contribution. biodiversity iceberg, what can we do practically to protect the full extent of subterranean habitats and their inhabitants? The challenges of protecting the unknown To make sound decisions for the conservation of the sub- In the era of drones, satellites, and remote-sensing technol- terranean world, there is first an urgent need to accelerate ogy, most of the accessible places on Earth have been directly scientific research, aimed at exploring subterranean biodi- or indirectly mapped and explored. A remarkable exception versity together with the abiotic and biotic factors that drive to the geographic knowledge of our planet comes from the its distribution patterns across space and time. Available Downloaded from https://academic.oup.com/bioscience/article-abstract/69/8/641/5519083 by Texas A+M at Galveston user on 15 August 2019 subterranean world, which is therefore recognized as one estimates (Zagmajster et al. 2018) suggest that most obligate of the most important frontiers of modern exploration subterranean species worldwide have not yet been described (Ficetola et al. 2019). Subterranean ecosystems are likely the (i.e., a Linnean shortfall). In the epoch of the sixth mass most widespread nonmarine environments on Earth. For extinction crisis, many of these species may face extinction example, more than 50,000 caves have been documented in before they are discovered and formally described—a phe- the United States, with nearly 10,000 known from the state nomenon described by Wilson (1992) as “centinelan extinc- of Tennessee alone (Niemiller and Zigler 2013), and some tions.” Moreover, several other knowledge gaps impede our 25,000 caves are estimated solely for the Dinarides, a 60,000 ability to protect and conserve subterranean biodiversity square kilometers European karst region that is considered (table 1). The distribution (i.e., the Wallacean shortfall) and to be the world’s most significant area of subterranean fauna the life history of most described subterranean species are radiation (Zagmajster et al. 2010). However, subterranean virtually unknown. Acquiring basic knowledge about bio- ecosystems are by no means restricted to those subterra- logical and functional diversity of subterranean organisms nean voids that we have mapped and listed in speleological (i.e., the Raunkiæran shortfall), their phylogenetic relation- cadasters (i.e., caves). ships (i.e., the Darwinian shortfall), their interactions within First, most subterranean voids have no entrances that are different subterranean communities (i.e., the Eltonian short- accessible to humans (Curl 1958). The small and inacces- fall), and their sensitivity to environmental perturbations sible network of underground voids and fissures is almost (i.e., the Hutchinsonian shortfall), represent pivotal steps limitless, and this network (rather than caves) represents toward consolidating scientific knowledge to support con- the elective habitat for most subterranean species (Howarth servation planning (Cardoso et al. 2011A, Diniz-Filho et al. 1983). Second, groundwater (i.e., water in the voids in 2013, Hortal et al. 2015) and further understanding the consolidated and unconsolidated rocks) represents 95% of ecosystem services that the subterranean fauna provide. global unfrozen fresh water and hosts organisms special- ized to survive at limits of life (Fišer et al. 2014), as well as The importance of safeguarding subterranean more numerous species that are important to maintaining biodiversity groundwater quality (Griebler et al. 2014). Furthermore, The first argument emphasizing the importance of pro- anchialine ecosystems, represented by coastal, tidally influ- tecting subsurface ecosystems emerges when consider- enced, subterranean estuaries located within crevicular and ing the fascinating evolutionary changes many animals cavernous terrains, are a specialized habitat straddling the have undergone to become adapted to underground life. border between subterranean freshwater and marine envi- Subterranean species are astonishing and bizarre outcomes ronments and host a specialized subterranean fauna (Bishop of evolution (figure 1), and subterranean habitats represent et al. 2015). Also, a variety of superficial underground sources of unexpected—often serendipitous—scientific dis- habitats, collectively termed shallow subterranean habitats, coveries. The study of these remarkable species allows us to supports an extensive array of subterranean biota (Culver travel outside the limits of our own imagination, exploring and Pipan 2014). Finally, if one is keen to account also for unique biological adaptations (Soares and Niemiller 2013, microbial life, a large amount of continental prokaryotic bio- Yoshizawa et al. 2014, 2018a), learning about fundamen- mass and, as yet, an unknown prokaryote diversity is hidden tal ecoevolutionary processes (Juan et al. 2010, Mammola within these systems
Recommended publications
  • Hotspots of Subterranean Biodiversity in Caves and Wells
    ...J Oklahoma State Univ. Interlibrary Loan Call#: pdf w Location: pdf a:: Journal Title: Journal of cave and karst studies ; <( the National Speleological Society bulletin. Volume: 62 Issue: 1 ARIEL MonthNear: 2000 MaxCost: $501FM Pages: 11-17 Scanned by: Article Title: DC Culver and B Sket; Hotspots of Subterranean Shipped by: Biodiversity in Caves and Wells Ariel: 128.194.84.50 Article Author: Fax: 979-458-2032 or Borrower: TXA Shipping Address: Patron: Bandel, Micaela TAMU Libraries - College Station .. TAE z 41 HOU I- ILL Number: 85855670 Lending ~ String: *OKS,COD,IXA,TXH,VA@ ""0 The work from which this copy was made did not include a formal copyright notice. Copyright law may protect this work. Uses may be al lowed with permission from the rights holder, or if the copyright on the work has expired, or if the use is "fair use" or if it is within another exemption. The user of this work is responsible for determining its lawful uses. David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells . .Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, PO. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition ofthe terrestrial fauna varied, but Arachnida and Insecta together usually dominated.
    [Show full text]
  • Monitoring Methodology and Protocols for 20 Habitats, 20 Species and 20 Birds
    1 Finnish Environment Institute SYKE, Finland Monitoring methodology and protocols for 20 habitats, 20 species and 20 birds Twinning Project MK 13 IPA EN 02 17 Strengthening the capacities for effective implementation of the acquis in the field of nature protection Report D 3.1. - 1. 7.11.2019 Funded by the European Union The Ministry of Environment and Physical Planning, Department of Nature, Republic of North Macedonia Metsähallitus (Parks and Wildlife Finland), Finland The State Service for Protected Areas (SSPA), Lithuania 2 This project is funded by the European Union This document has been produced with the financial support of the European Union. Its contents are the sole responsibility of the Twinning Project MK 13 IPA EN 02 17 and and do not necessarily reflect the views of the European Union 3 Table of Contents 1. Introduction .......................................................................................................................................................... 6 Summary 6 Overview 8 Establishment of Natura 2000 network and the process of site selection .............................................................. 9 Preparation of reference lists for the species and habitats ..................................................................................... 9 Needs for data .......................................................................................................................................................... 9 Protocols for the monitoring of birds ....................................................................................................................
    [Show full text]
  • Revision of the Histopona Italica Group (Araneae: Agelenidae), with the Description of Two New Species
    Zootaxa 3640 (1): 023–041 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:2865EE2A-01A9-45D9-B299-AAF6E118D5C4 Revision of the Histopona italica group (Araneae: Agelenidae), with the description of two new species ANGELO BOLZERN1,2, PAOLO PANTINI3 & MARCO ISAIA4,5 1Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland 2American Museum of Natural History, Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024-5192, United States. E-mail: [email protected] 3Museo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10. I-24129 Bergamo, Italy. E-mail: [email protected] 4Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13. I-10123 Torino, Italy. E-mail: [email protected] 5Corresponding author Abstract During a large survey of agelenid spiders from different private and museum collections, a closer examination of material from all over Italy (including type material and fresh material) previously identified as Histopona italica Brignoli 1977, disclosed two new species for science, both belonging to the italica group. Based on the results of the present work, we describe Histopona leonardoi sp. n. and H. fioni sp. n. and revise the distribution pattern of H. italica group in Italy and Switzerland. Drawings and photographs of relevant structures and a table summary of the diagnostic characters allowing a fast separation of the species are provided. Key words: taxonomy, endemic fauna, biogeography, Alps, Apennines Introduction According to Platnick (2012) the genus Histopona Thorell 1869 currently includes 18 valid species, two of them, H.
    [Show full text]
  • Revision of the Histopona Italica Group (Araneae: Agelenidae), with the Description of Two New Species
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3640 (1): 023–041 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:2865EE2A-01A9-45D9-B299-AAF6E118D5C4 Revision of the Histopona italica group (Araneae: Agelenidae), with the description of two new species ANGELO BOLZERN1,2, PAOLO PANTINI3 & MARCO ISAIA4,5 1Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland 2American Museum of Natural History, Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024-5192, United States. E-mail: [email protected] 3Museo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10. I-24129 Bergamo, Italy. E-mail: [email protected] 4Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13. I-10123 Torino, Italy. E-mail: [email protected] 5Corresponding author Abstract During a large survey of agelenid spiders from different private and museum collections, a closer examination of material from all over Italy (including type material and fresh material) previously identified as Histopona italica Brignoli 1977, disclosed two new species for science, both belonging to the italica group. Based on the results of the present work, we describe Histopona leonardoi sp. n. and H. fioni sp. n. and revise the distribution pattern of H. italica group in Italy and Switzerland.
    [Show full text]
  • Hotspots of Subterranean Biodiversity in Caves and Wells
    David C. Culver and Boris Sket - Hotspots of Subterranean Biodiversity in Caves and Wells. Journal of Cave and Karst Studies 62(1):11-17. HOTSPOTS OF SUBTERRANEAN BIODIVERSITY IN CAVES AND WELLS DAVID C. CULVER Department of Biology, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA, [email protected] BORIS SKET Department of Biology, Biotechnical Faculty, University of Ljubljana, P.O. Box 2995, 1001 Ljubljana, SLOVENIA, [email protected] We documented 18 caves and two karst wells that have 20 or more stygobites and troglobites. Crustacea dominated the aquatic fauna. Taxonomic composition of the terrestrial fauna varied, but Arachnida and Insecta together usually dominated. Geographically, the sites were concentrated in the Dinaric Karst (6 caves). Sites tended to have high primary productivity or rich organic input from the surface, be large caves, or have permanent groundwater (phreatic water). Dokumentirala sva 18 jam in dva kraška vodnjaka, iz katerih je znanih 20 ali vec vrst troglobiontov in stigobiontov. V vodni favni preladujejo raki. Taksonomski sestav kopenske favne je raznolik, vendar pajkovci in zuzelke skupaj navadno prevladujejo. Najvec takšnih jam (šest) je v Dinarskem krasu. Nadpovprecno so zastopane jame z lastno primarno produkcijo ali bogatim vnosom hrane s površja, obsezne jame in jame, ki vkljucujejo tudi freatsko plast. Over the past few years, there has been a growing aware- terns at individual sites. Even though most subterranean bio- ness and concern with biodiversity worldwide. Books and diversity results from the accumulation of different species monographs with a focus on biodiversity have appeared (e.g., from nearby sites, there are some outstanding examples of high Wilson 1992; Master et al.
    [Show full text]
  • WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC.
    [Show full text]
  • Deeleman-Reinhold 1983 Histopona En.Pdf
    ~-,-------- ~------------- ~~~ I~(~' cJ~ tt---- f;;x.-&~ 325 THE GENUS fllSTOfliONA THORELL {J~raneae, t\gelen~dae) WITH DESCRIPTION OF T\NO NEVV CAVE-DWELLING SPECIES by Chrbt3 L. Dee!eman-Reinhold Sparrenlaan 8 Ossendrecht (Pays-Bas) The number of known species assigned to both Histopona Thorell and Roeweriana Kratochvil has in recent years been growing steadily. lvleanwhile, distinction between these genera is becoming vague, if existing at all. Thf genus Histopona was crea·:ed in 1869 for Tegenaria torpida (C.L. Koch), an epigean, agelenid spc('i(~s which, according to Thor·~ll (1 869) ·differs from other Tegenaria species by the slightly recurved posterior eye row and the distal ~ egment of the superior spinners longer than the basal segment. Later, T. /uxuriulls Kulczynski, T. conv,?nicns' KuJczynski, T. facta Kulczynski and T. sirlllata Kulczynski were added to Histopolla (Roewer, 19:)4; Lehtinen, 1967). Lehtinen also provided a diagno.;is of this genus. During the last decade, new species were assigned to Histopona by Brignoli (1976, 1977, J980) and Del­ tshev (1978). As the characters furnished by Thore!! do not always apply, many aut1Jor~ did not recogni­ ze the genus, among others Simon, Drensky, Bonnet, Wiehle and Loksa. Brignoli (1971 a) advocated the generic separation of H. torpida and related species from Tegenaria on the basis of the structure of the vulva: H. torpida is provided with an enlarged, membranous segment of the seminal duct, the «bursa copu!atrix», a conformation never found in any Tegenaria species and not unlike that found in the american genus Ageienopsis Giebel (Gering, 1953), but differing from t~Jat genus by the absence of " cOllpl:.ng cavity.
    [Show full text]
  • Gap Analysis Final Report
    University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies WWF Project Reference No 9Z1387.05 “Protected Areas for a Living Planet – Dinaric Arc Ecoregion Project” Protected Area Gap Analysis (Final Report) Peter Glasnovi ć, BSc Boris Krystufek, PhD Andrej Sovinc, MSc Mileta Bojovi ć, BSc Deni Porej, PhD December 2009 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis The Final Report by: University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies Garibaldijeva 1 6000 Koper Tel.: ++386 5 663 77 00, fax: ++386 5 663 77 10 E-mail: [email protected] Regional Scientific Coordinator: Peter Glasnovi ć, BSc; Boris Krystufek, PhD; Andrej Sovinc, MSc Cartography: Mileta Bojovi ć, BSc National Scientific Coordinators: Leon Kebe, BSc (Slovenia); Irina Zupan, MSc (Croatia); Senka Barudanovi ć, PhD (Bosnia and Herzegovina); Dragan Roganovi ć, PhD (Montenegro); Genti Kromidha, PhD (Albania) External experts: Boris Sket, PhD; Maja Zagmaister, PhD; Borut Štumberger, BSc WWF Mediterranean Programme Office: Director of Conservation Deni Porej, PhD Project Leader Stella Šatali ć, MSc Partners of the project: TNC (The Nature Conservancy), EuroNatur, Institute for Nature Conservation in Albania (Albania), University of Sarajevo – Faculty of Science (Bosnia and Herzegovina), State Institute for Nature Protection (Croatia), Institute for Nature Protection (Montenegro) 2 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis Acknowledgments: Dragan Kova čevi ć, Banja Luka
    [Show full text]
  • La Fauna Sotterranea
    LA FAUNA SOTTERRANEA LUCA DORIGO, FABIO STOCH LA FAUNA SOTTERRANEA Cenni di biospeleologia ricercano umidità e temperatura costanti. 81 Tra i più frequenti si possono trovare rane, Chiunque abbia potuto visitare delle cavi- salamandre, diverse specie di ragni, mille- tà naturali avrà notato come, a pochi metri piedi, lepidotteri, ditteri, gasteropodi ed altri dall’entrata, con il diminuire della luce, piccoli animali che possono trarre giova- cambino drasticamente le condizioni mento dal microclima umido presente nei ambientali e con esse scompaiono rapi- pressi dell’entrata, ma non sono in grado di damente le forme di vita vegetali, costitui- riprodursi e formare popolazioni stabili in te in prossimità dell’ingresso soprattutto questi habitat. da felci, muschi, epatiche e alghe. Altri organismi presentano invece una più È proprio l’assenza di luce il fattore limi- spiccata predilezione per gli ambienti ipo- tante in questi ambienti, nei quali il ciclo gei, trascorrendo intere stagioni o parte dei nutrienti si differenzia molto da quello della loro esistenza nel sottosuolo, pur degli ambienti di superficie. Gli organismi non presentando in genere particolari fotosintetici mancano totalmente in grotta adattamenti morfologici e funzionali. e il flusso di sostanza e di energia prove- Esempi di questa categoria di animali, niente prevalentemente dall’esterno, è definiti troglofili, possono essere alcuni soprattutto costituito da detrito di origine pipistrelli, alcune specie di cavallette e animale e vegetale. Gli organismi sapro- numerosi altri invertebrati, che trascorro- fagi (che si nutrono cioè di sostanza orga- no gran parte della loro esistenza in grot- nica morta) possono essere raschiatori, ta, ma possono sopravvivere e riprodursi trituratori oppure filtratori (se in acqua).
    [Show full text]
  • Bionomics and Distribution of the Stag Beetle, Lucanus Cervus (L.) Across Europe*
    Insect Conservation and Diversity (2011) 4, 23–38 Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe* DEBORAH J. HARVEY,1 ALAN C. GANGE,1 COLIN J. HAWES1 and 2 MARKUS RINK 1School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK and 2Bad Bertricher Str. 4, 56859 Alf, Germany Abstract. 1. The European stag beetle, Lucanus cervus, is thought to be widely dis- tributed across its range, but a detailed description of its occurrence is lacking. 2. Researchers in 41 countries were contacted and information sought on various life history characteristics of the insect. Data on adult body size were collected from seven countries. 3. Habitat associations differ between the United Kingdom and mainland Europe. Larvae are most commonly associated with oak, but the duration of the larval stage and the number of instars varies by up to 100% across Europe. 4. Adult size also varies; beetles from Spain, Germany, and the Netherlands are larger than those from Belgium or the UK. In the former countries, populations are composed mainly of large individuals, while in the UK, the majority of individuals are relatively small. Allometric relations between mandible size and total body length differ in Germany compared with the rest of Europe. 5. Distribution maps of the insect, split into records pre- and post-1970, from 24 countries are presented. While these inevitably suffer from recorder bias, they indi- cate that in only two countries, Croatia and Slovakia, does the insect seem to be increasing in range. 6. Our data suggest that the insect may be in decline across Europe, most likely due to habitat loss, and that conservation plans need to be produced that focus on the biology of the insect in the local area.
    [Show full text]
  • Leptodirini, Leiodidae, Coleoptera), from East Montenegro, with Notes on Its Phylogeny
    Arch. Biol. Sci., Belgrade, 59 (2), 145-150, 2007. DOI:10.2298/ABS0702145C ROZAJELLA JOVANVLADIMIRI GEN. N., SP. N. (LEPTODIRINI, LEIODIDAE, COLEOPTERA), FROM EAST MONTENEGRO, WITH NOTES ON ITS PHYLOGENY S. B. ĆURČIĆ1, M. M. BRAJKOVIĆ1, B. P. M. ĆURČIĆ1, andW. WAITZBAUER2 1Institute of Zoology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia 2 Department of Conservation Biology, Vegetation - and Landscape Ecology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria Abstract – A new genus and species of cave-dwelling leiodid beetles (Rozajella jovanvladimiri gen. n., sp. n.) has been diagnozed and described from the Pećina u Dubokom Potoku Cave, village of Donje Biševo, near Rožaje, Eastern Mon- tenegro. This new genus clearly differs from all other close genera in the following correlative traits: body size; shape of head; presence of occipital carina, length of antennae; morphometric ratios and form of certain antennomeres; head/pronotum width ratio; pronotum length/width ratio; form of lateral pronotal margins; pronotal/elytral base length ratio; form of femora and protarsi; presence of apical rows of spines on tibiae; form of elytra; existence of elytral shoul- ders; length of elytral setae; form of median lobe and its apex; form of inner sac; length of basal bulbus; form of para- meres and their apices; distribution of parameral setae; and distribution in the Balkan Peninsula. Rozajella gen. n. belongs to a separate phyletic lineage (série phylétique de “Leptodirus” - sensu Perreau2000) which includes five other genera, Leptostagus Z. Karaman (from Macedonia), Petkovskiella Guéorguiev (from Macedo- nia), Astagobius Reitter (from Slovenia and Croatia), Albanodirus Giachino & Vailati (from Albania), and Leptodirus Schmidt (from Slovenia, Croatia, and Italy).
    [Show full text]
  • Archduke Ludwig Salvator and Leptodirus
    ACTA CARSOLOGICA 32/2 24 289-298 LJUBLJANA 2003 COBISS: 1.01 ARCHDUKE LUDWIG SALVATOR AND LEPTODIRUS HOHENWARTI FROM POSTOJNSKA JAMA (CONSIDERATIONS ABOUT THE ENTOMOLOGICAL INTEREST AND COLLECTIONS OF THE AUSTRIAN ARCHDUKE LUDWIG SALVATOR) NADVOJVODA LUDVIK SALVATOR IN LEPTODIRUS HOHENWARTI IZ POSTOJNSKE JAME (O ZANIMANJU ZA ENTOMOLOGIJO IN O ZBIRKAH AVSTRIJSKEGA NADVOJVODE LUDVIKA SALVATORJA) BRIGITTA MADER1 1Kriehubergasse 25/11 AT-1050 WIEN, AUSTRIA Prejeto / received: 10. 3. 2003 289 Acta carsologica, 32/2 (2003) Abstract UDC: 551.44(091):595.7 Brigitta Mader: Archduke Ludwig Salvator and Leptodirus Hohenwarti from Postojnska jama The author presents a historic preparation of a Leptodirus hohenwarti Schmidt recently found in the house of Eugenio Sforza (1820-1894) in Toscana.Because of the fact that Sforza has been the tutor and equerry of the Austrian Archduke and natural scientist Ludwig Salvator (1847-1915) a connection is presumed between Ludwig Salvator’s natural history collections and the Leptodirus-specimen, which was in the author’s opinion acquired in Postojna in 1863 on the occasion of Ludwig Salvator’s first visit to the caves, accompagnied by Eugenio Sforza. Key words: Leptodirus Hohenwarti Schmidt, speleobiology, history of speleology, Ludwig Salvator, Eugenio Sforza, L.W.Schaufuss, L.Ganglbauer, F.v. Hohenwart, F.J. Schmidt, Postojna. Izvleèek UDK: 551.44(091):595.7 Brigitta Mader: Nadvojvoda Ludvik Salvator in Leptodirus hohenwarti iz Postojnske jame (O zanimanju za entomologijo in o zbirkah avstrijskega nadvojvode Ludvika Salvatorja) Avtor predstavi zgodovinski preparat hrošèka Leptodirus hohenwarti Schmidt, ki je bil nedavno najden v hiši Evgenija Sforze (1820-1894) v Toskani. Dejstvo, da je bil Sforza tutor in spremljevalec avstrijskega nadvojvode in naravoslovca Ludvika Salvatorja (1847-1915), navaja avtorico na domnevo, da je ta drobnovratnik v zvezi z njegovimi naravoslovnimi zbirkami.
    [Show full text]