Development of Microplate Screening System

Total Page:16

File Type:pdf, Size:1020Kb

Development of Microplate Screening System DEVELOPMENT OF MICROPLATE SCREENING SYSTEM AND CONSTRUCTION OF FLUORESCEIN-BASED LIBRARY FENG SUIHAN A THESIS SUMBITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements First of all, I would like to express my deep gratitude to my supervisor, Associate Professor Young-Tae Chang for his profound knowledge, invaluable guidance, constant support and inspiration throughout my graduate studies. The knowledge, both scientific and otherwise, that I accumulated under his supervision, will aid me greatly throughout my life. Next, I would like to give my sincere thanks to Dr. Marc Vendrell and Dr. Hyung-Ho Ha, for their warm support during my entire graduate studies. Besides, my sincere thinks goes to Miss Siqiang Yang, who helped me to set up the microplate screening platform. Also, I would like to thank all the graduate students of Chang lab, Animesh, Duanting, Ghosh, Jun-Seok, Yun-Kyung, Raj, for their cordiality and friendship. We had a great time together. I also benefited from all other lab members, particularly but not limited to, Siti, Yee Ling, Chew Yan, Xubin, Jeffrey, Shin Hui, Dr. Bi, Dr. Cho, Dr. Jun Li, Dr. Lees, Dr. Kang, Dr. Kim, Dr. Park, and etc. Thanks for making the working place an enjoyable one. I am grateful to Dr. Tan for recruiting me into NUS Medicinal Chemistry graduate program and I am also thankful to NUS for awarding me the research scholarship. At last, I would like to express greatest thanks to my family, particularly my wife, Bai Yang, whose encourage and understanding help me to finish my graduate study in NUS. i Table of Contents Chapter One Introduction 1 1.1 Chemical Genetics 1 1.1.1 Overview 1 1.2 Chemical Toolboxes 3 1.2.1 Diversity Oriented Synthesis 3 1.2.2 Tagged Library Approach 5 1.2.2.1 PNA Tagged Library 5 1.2.2.2 Click Chemistry Library Approach 6 1.2.2.3 Activity-Based Protein Profiling 8 1.2.2.4 Dynamic Combinatorial Library 9 1.3 Diversity Oriented Fluorescence Library Approach 10 1.3.1 Styryl Library 10 1.3.2 Hemicyanine Library 12 1.3.3 Rosamine Library 14 1.3.4 BODIPY library 15 1.4 Screening System 16 1.4.1 In vitro screening 16 1.4.2 Cell based screening 17 1.5 Conclusion and Perspectives 18 Reference 19 ii Chapter Two Development of microplate screening system and discovery of a green DNA probe 27 2.1 Introduction 27 2.2 Development of the microplate screening system 28 2.3 Discovery of a Green DNA Probe for Live-Cell Imaging 31 2.4 Experimental Section 39 2.4.1 Development of the microplate screening system 39 2.4.1.1 Preliminary Test 39 2.4.1.2 Analytes Information 40 2.4.2 Discovery of a Green DNA Probe for Live-Cell Imaging 41 2.4.2.1 General Information 41 2.4.2.2 C61 Characterization 41 2.5 Conclusion 42 Reference 43 Chapter Three Synthesis of fluorescein-based library 46 3.1 Introduction 46 3.2 Results and discussion 47 3.2.1 Synthesis of CF library 47 3.2.2 Cell screening of CF library 51 3.3 Experimental Section 52 3.4 Conclusion 54 Reference 55 iii Summary Chemical genetics studies the structures and functions of genes at the molecular level using small molecules. Probe development is thus of great interests in molecular biology, particularly in cell imaging study. Due to the simplicity and straight forwardness, fluorescence techniques are emerging recently to help elucidate and explain complicated biological phenomena in cells and animals. Furthermore, the green fluorescein protein (GFP) also facilitated the progress of fluorescence imaging research. However, novel fluorescent sensor design is still difficult and time consuming, as little knowledge is well understood in this field. There is a pressing need to development new approaches to design fluorescent sensors. Diversity Oriented Fluorescence Library Approach (DOFLA) provided an alternative strategy to generate large number of fluorescent compounds by combining solid phase chemistry and combinatorial chemistry. Although the obstacle of generating diversified fluorophores could be achieved, it is crucial to design a practical platform to select fluorescent sensors. Chapter 2 describes a novel biological screening system to find potential sensors. Besides, one green DNA probe, C61, to stain live and dead cells is presented. Compare with available green fluorescent sensors, C61 showed dramatic DNA selectivity over RNA. Chapter 3 presents one chloro-fluorescein library synthesis and its biological exploration in melanoma and skill cancer cells. iv List of abbreviation CDCl3 Deuterated chloroform DCM Dichloromethane DIC N,N'-Diisopropylcarbodiimide DMF N, N-Dimethylformamide DMSO Dimethyl sulfoxide DMSO-d6 Deuterated Dimethyl Sulfoxide EA Ethyl acetate Et2O Diethyl ether EtOH Ethanol HATU 2-(1H-7-Azabenzotriazol-1-yl)--1,1,3,3-tetramethyl uronium hexafluorophosphate Methanaminium HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid HOBt Hydroxybenzotriazole KOH Potassium hydroxide MeOH Methanol NMR Nuclear Magnetic Resonance RBF Round bottom flask p-TsOH p-Toluenesulfonic acid v List of Figures Figure 1.1 Forward genetics and reverse genetics 1 Figure 1.2 Forward chemical genetics and reverse chemical genetics 2 Figure 1.3 Diversity Oriented Synthesis (DOS) 4 Figure 1.4 The chemical structure of Peptide Nucleic Acid (PNA) 6 Figure 1.5 Activity-Based Protein Profiling (ABPP) probes 7 Figure 1.6 target identification using ABPP probes 8 Figure 1.7 Dynamic combinatorial libraries 9 Figure 1.8 Application of styryl library; (a) Images of representative localizations (bar = 10 mm), (b) localization distribution of styryl sensors 11 Figure 1.9 Confocal images and chemical structures of amyloid sensors 12 Figure 1.10 Constructuion of hemicyanine library 13 Figure 1.11 Fluorescence spectra and CCD images of GTP Green 13 Figure 1.12 Chemical structures of heparin sensors and the corresponding CCD images 13 Figure 1.13 Confocal images (A) and fluorescence emission spectra (B) of Glucagon Yellow 16 Figure 2.1 The hydrogen peroxide sensor designed by cleavage of carbon-arylboronate bond 27 Figure 2.2 Analyte map for high throughput screening 28 Figure 2.3 Liquid handling automated system 29 Figure 2.4 DOFL screening database 30 Figure 2.5 Absorbance and emission spectra of C61 in ethanol 32 Figure 2.6 (a) Fluorescence response of C61 (5 µM) with dsDNA (green line) vi and total RNA (red line) at different concentrations. (b) Fluorescence emission spectra (excitation: 420nm, cutoff: 495 nm) of C61 (5 µM) with dsDNA at different concentrations in HEPES buffer (20mM, pH 7.4) 33 Figure 2.7 DNA/RNA responses in vitro 34 Figure 2.8 Live and fixed cell staining of C61 in A549 and HeLa cell lines 35 Figure 2.9 The DNase and RNase digest experiments 36 Figure 2.10 DNA cell cycle analysis of C61 37 Figure 2.11 Cytotoxicity measurement 38 vii List of Schemes Scheme 1.1 Click chemistry reaction 6 Scheme 1.2 Synthesis of styryl library 10 Scheme 1.3 Synthetic routine of rosamine library 14 Scheme 1.4 Synthetic routine of BODIPY library 15 Scheme 1.5 The chemical structure of pluripotin 17 Scheme 2.1 The chemical structure of C61 31 Scheme 3.1 The chemical structure of modified fluorescein derivatives 46 Scheme 3.2 Synthetic routine of dichlorofluorsecein 47 Scheme 3.3 Synthesis routine of fluorescein-based library (CF) 48 Scheme 3.4 Chemical structures of amine build blocks 49 viii List of Tables Table 2.1 Fluorescence properties of C61 32 Table 3.1 Maximum absorbance and fluorescence wavelength of CF library 50 50 ix Chapter One Introduction 1.1 Chemical Genetics 1.1.1 Overview In molecular biology and cell biology, genetic study stresses on the structures and functions of genes at the molecular level. Based on the difference of investigative directions, genetic research can be divided into two approaches1: forward genetic and reverse genetics (Figure 1.1). Typically, forward genetic research starts from choosing the specific mutant, and then identifying the specific genes that are responsible for a particular phenotype of interest, which can be termed as ‘from phenotype to genotype’, while reverse genetics follows the opposite direction, i.e. from genotype to phenotype. Specifically, a target gene is first selected, and the consequences of the mutation are investigated after modification or deletion of this gene. Figure 1.1 Forward genetics and reverse genetics1 1 Chemical genetics, first proposed by Schrieber et al2., was defined as genetic study using small molecules to elucidate the biological processes. Similarly, chemical genetics is divided into two major research fields: forward chemical genetics, and reverse chemical genetics (Figure 1.2)2-3. In forward chemical genetics, typically the study starts from the phenotypes selection. With one specific phenotype, small molecules are screened under biological assays. Once the compounds demonstrated interested results or phenomena, the next step work is to identify the target that the small molecule binds inside the phenotype. Due to the complicity of the biological system, identification of the binding site always takes more time, and is tedious sometimes. On the other hand, reverse chemical genetics study starts from the interested proteins or other biological component, then the ligands were screened with small molecule libraries to find the hit compounds. Phenotype assay is the next step to test the feasibility of this compound with the ligand in vivo. But unlike classical genetics, chemical genetics focuses on analyzing of proteins instead of genes. Figure 1.2 Forward chemical genetics and reverse chemical genetics3a 2 In classical genetics, genetic techniques are relatively difficult to proceed and is time consuming. But chemical genetics, by using libraries of compounds, avoids the shortcomings of genetic techniques, and it can be conducted on the cellular, tissue, and animal models in a relative short time.
Recommended publications
  • Drug-Like Properties and ADME of Xanthone Derivatives: the Antechamber of Clinical Trials Ana Sara Gomes, Pedro Brandão, Carla
    Drug-like properties and ADME of xanthone derivatives: the antechamber of clinical trials Ana Sara Gomes, Pedro Brandão, Carla Fernandes, Marta Correia-da-Silva, Emília Sousa*, Madalena Pinto# # all authors contributed equally to this work *corresponding author Abstract Xanthone derivatives have been described as compounds with privileged scaffolds that exhibited diverse interesting biological activities, such as antitumor activity, directing the interest to pursue the development of these derivatives into drug candidates. Nevertheless, to achieve this purpose it is crucial to study their pharmacokinetics and toxicity (PK/tox) as decision endpoints to continue or interrupt the development investment. This review aims to expose the most relevant analytical methods used in physicochemical and PK/tox studies in order to detect, quantify and identify different bioactive xanthones. Also the methodologies used in the mentioned studies, and the main obtained results, are referred to understand the drugability of xanthones derivatives through in vitro and in vivo systems towards ADME/tox properties, such as physicochemical and metabolic stability and biovailability. The last section of this review focus on a case-study of the development of the drug candidate DMXAA, which has reached clinical trials, to understand the paths and the importance of PK/tox studies. In the end, the data assembled in this review intends to facilitate the design of potential drug candidates with a xanthonic scaffold. Xanthone; analytical method; drug-like; pharmacokinetics; toxicity; drug development; preclinical; metabolism; chromatography. 1. Introduction The xanthone nucleus or 9H-xanthen-9-one (dibenzo-γ-pirone 1, Fig. 1) comprises an important class of oxygenated heterocycles and is considered a privileged structure 1.
    [Show full text]
  • Acetylcholinesterase
    AChE Acetylcholinesterase Acetylcholinesterase (AChE or acetylhydrolase) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine. AChE is found at mainly neuromuscular junctions and cholinergic brain synapses, where its activity serves to terminate synaptic transmission. It belongs tocarboxylesterase family of enzymes. It is the primary target of inhibition by organophosphorus compounds such as nerve agents and pesticides. AChE has a very high catalytic activity - each molecule of AChE degrades about 25000 molecules ofacetylcholine (ACh) per second, approaching the limit allowed by diffusion of the substrate. ACh is released from the nerve into the synaptic cleft and binds to ACh receptors on the post-synaptic membrane, relaying the signal from the nerve. AChE, also located on the post-synaptic membrane, terminates the signal transmission by hydrolyzing ACh. The liberated choline is taken up again by the pre-synaptic nerve and ACh is synthetized by combining with acetyl-CoA through the action of choline acetyltransferase. www.MedChemExpress.com 1 AChE Inhibitors & Activators (+)-Phenserine (-)-Corynoxidine Cat. No.: HY-16009 Cat. No.: HY-N7010 (+)-Phenserine is a novel selective cholinesterase (-)-Corynoxidine is an acetylcholinesterase noncompetitive inhibitor with an IC50 of 45.3 μM. inhibitor with an IC50 value of 89.0 μM, isolated from the aerial parts of Corydalis speciosa. (-)-Corynoxidine exhibits antibacterial activities against Staphylococcus aureus and methicillin-resistant S. Purity: 98.09% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 5 mg, 10 mg, 50 mg Size: 1 mg, 5 mg (-)-Huperzine A (R)-Rivastigmine D6 tartrate (Huperzine A) Cat. No.: HY-17387 Cat. No.: HY-11017AS (-)-Huperzine A (Huperzine A) is an alkaloid (R)-Rivastigmine D6 tartrate is the deuterium isolated from a Chinese club moss, with labeled (R)-Rivastigmine, which is an neuroprotective activity.
    [Show full text]
  • WO 2015/017328 A2 5 February 2015 (05.02.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/017328 A2 5 February 2015 (05.02.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A 57/20 (2006.01) A61K 31/661 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A 57/12 (2006.01) A61N 5/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/662 (2006.01) HN, HR, HU, ID, JL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US20 14/048420 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 28 July 2014 (28.07.2014) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/859,572 29 July 2013 (29.07.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 61/861,072 1 August 2013 (01 .08.2013) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 61/953,290 14 March 2014 (14.03.2014) u s EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventor; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (71) Applicant : SPALLITTA, Frank Anthony [US/US]; KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Human & Experimental Toxicology
    Human & Experimental Toxicology http://het.sagepub.com/ Environmental toxins: Alarming impacts of pesticides on male fertility Pallav Sengupta and Rajdeb Banerjee Hum Exp Toxicol 2014 33: 1017 originally published online 17 December 2013 DOI: 10.1177/0960327113515504 The online version of this article can be found at: http://het.sagepub.com/content/33/10/1017 Published by: http://www.sagepublications.com Additional services and information for Human & Experimental Toxicology can be found at: Email Alerts: http://het.sagepub.com/cgi/alerts Subscriptions: http://het.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Oct 15, 2014 OnlineFirst Version of Record - Dec 17, 2013 What is This? Downloaded from het.sagepub.com by guest on October 15, 2014 Article Human and Experimental Toxicology 2014, Vol. 33(10) 1017–1039 ª The Author(s) 2013 Environmental toxins: Alarming Reprints and permission: sagepub.co.uk/journalsPermissions.nav impacts of pesticides on male fertility DOI: 10.1177/0960327113515504 het.sagepub.com Pallav Sengupta1 and Rajdeb Banerjee2 Abstract This review comprehensively summarizes the effects of more than 15 mostly used pesticides on male repro- ductive physiology, as recent experimental and epidemiological research have indicated their alarming impact on overall human health. Mechanisms have described that pesticide exposure damages spermatozoa, alter Ser- toli or Leydig cell function, both in vitro and in vivo and thus affects semen quality. But, the literature suggests a need for more intricate research in those pesticides that are defined as mutagens or carcinogens and directly affect the hypothalamic–pituitary–gonadal axis.
    [Show full text]
  • A Journey Through the World of Xanthones
    molecules Review From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones Madalena M. M. Pinto 1,2,* , Andreia Palmeira 1,2,†, Carla Fernandes 1,2,† , Diana I. S. P. Resende 1,2,† , Emília Sousa 1,2,† , Honorina Cidade 1,2,† , Maria Elizabeth Tiritan 1,2,3,† , Marta Correia-da-Silva 1,2,† and Sara Cravo 1,2,† 1 Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; [email protected] (A.P.); [email protected] (C.F.); [email protected] (D.I.S.P.R.); [email protected] (E.S.); [email protected] (H.C.); [email protected] (M.E.T.); [email protected] (M.C.-d.-S.); [email protected] (S.C.) 2 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal 3 CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal * Correspondence: [email protected]; Tel.: +351-966-092-514 † These authors (by alphabetic order) contributed equally to this work. Abstract: This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has Citation: Pinto, M.M.M.; Palmeira, been in the xanthone family.
    [Show full text]
  • Mosier, Oregon – June 3, 2016 Derailment Site Assessment Report
    Mosier, Oregon – June 3, 2016 Derailment Site Assessment Report Union Pacific Railroad Company Prepared for Oregon Department of Environmental Quality October 28, 2016 2020 SW 4th Ave, Suite 300 Portland, OR 97201 Contents Section Page Acronyms and Abbreviations ............................................................................................................... v 1 Introduction ......................................................................................................................... 1-1 1.1 Site Description ................................................................................................................ 1-2 1.2 Nature of Release ............................................................................................................ 1-2 2 Emergency Response Procedures .......................................................................................... 2-1 2.1 Columbia River Response Actions.................................................................................... 2-1 2.2 Derailed Tank Car Removal and Track Repair .................................................................. 2-1 2.3 City of Mosier Wastewater Treatment Plant Response Actions ..................................... 2-1 3 Incident Command Sampling ............................................................................................... 3-1 3.1 Surface Water Sampling .................................................................................................. 3-1 3.1.1 Surface Water Grab Sampling ...........................................................................
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Insect Problems That Develop on Alfalfa Following Treatment with Certain Insecticides1
    INSECT PROBLEMS THAT DEVELOP ON ALFALFA FOLLOWING TREATMENT WITH CERTAIN INSECTICIDES1 M. CURTIS WILSON AND RALPH L. DAVIS Departments of Entomology and Agronomy, Purdue University Agricultural Experiment Station, Lafayette, Indiana Since the close of World War II many new organic insecticides have been developed and released by manufacturers. In experimental tests, many have proved to give more effective control of certain insect pests than do materials previously recommended. Others need further investigation of their effects on Insects, on plants, and on man before their use can be recommended. The indiscriminate use of many of the new organic insecticides may create more serious problems than is generally recognized. DDT had been used only a short time when investigators began reporting such strange effects as the buildup of certain insect populations, creating new problems more serious than the problem before treatment. This was particularly true with certain aphids and mites. Serious aphid Increases have been reported by Stevenson et aL (1944), Loft in (1944), Baker, Howard, and Porter (1945), Eberling (1945), Hervey (1946), Newcomer, Dean, and Carlson (1946), Wheeler and LaPlante (1946), and Sylvester (1949) following the use of DDT. Mite increases have been reported by Loftin (1944), Eberling (1945), Gray (1945), Hough (1946), Driggers (1946), Michelbacker et al. (1946), Wheeler and LaPlante (1946), and DeBach (1947). Increases in scale insects have been reported by Woglum (1946), Middlekauff et al. (1947), and Michel- backer et al. (1947). Wilson (1949) reported increased populations of potato leafhoppers, Empoasca fabae (Harris), following treatment with chlordane. DDT and other new organics are not the first insecticides reported to effect an increase in the population of certain insects following their use.
    [Show full text]
  • Mangosteen Pericarp and Its Bioactive Xanthones
    International Journal of Molecular Sciences Review Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer’s Disease, Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Profiles Ha Thi Thu Do and Jungsook Cho * College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea; [email protected] * Correspondence: [email protected] Received: 27 July 2020; Accepted: 25 August 2020; Published: 27 August 2020 Abstract: Alzheimer’s disease (AD), Parkinson’s disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression.
    [Show full text]
  • EICG-Hot Spots: EICG Appendix C
    [Note: The pre-existing regulation text is set forth below in normal type. The original proposed amendments are shown in underline to indicate additions and strikethrough to indicate deletions. Additional proposed modifications are shown in double underline to indicate additions and double strikethrough to indicate deletions. The square brackets “[ ]” are used to indicate minor adjustments to text (e.g., page numbers and adoption dates) that will be updated upon adoption of the proposed amendments.] APPENDIX C FACILITY GUIDELINE INDEX (FACILITY "LOOK-UP" TABLE) This Page Intentionally Left Blank APPENDIX C - I RESPONSIBILITIES OF ALL FACILITIES NOTES FOR APPENDIX CFACILITY GUIDELINE INDEX APPENDIX C‑I RESPONSIBILITIES OF ALL FACILITIES NOTHING IN THIS APPENDIX SHALL BE CONSTRUED AS REQUIRING THAT SOURCE TESTING BE CONDUCTED FOR SUBSTANCES SET FORTH IN THIS APPENDIX. FURTHER, IN CASES WHERE A SUBSTANCE SET FORTH HEREIN IS NOT PRESENT AT A PARTICULAR FACILITY, THE FACILITY OPERATOR SHALL NOT ATTEMPT TO QUANTIFY THE EMISSIONS OF SUCH SUBSTANCE, BUT SHALL PROVIDE ADEQUATE DOCUMENTATION TO DEMONSTRATE TO THE DISTRICT THAT THE POSSIBLE PRESENCE OF THE SUBSTANCE AT THE FACILITY HAS BEEN ADDRESSED AND THAT THERE ARE NO EMISSIONS OF THE SUBSTANCE FOR SPECIFIED REASONS. Substances emitted by a particular device or process may not be limited to those listed in this Facility Guideline Index. THIS APPENDIX IS NOT AN EXHAUSTIVE LIST. ALL FACILITIES ARE RESPONSIBLE FOR IDENTIFYING AND ACCOUNTING FOR ANY LISTED SUBSTANCE USED, MANUFACTURED, FORMULATED, OR RELEASED. This Facility Guideline Index is arranged in alphabetical order. The first part of the index, Appendix C‑I, lists devices common to many industries and the second part of the index, Appendix C‑II, lists industry types.
    [Show full text]
  • Xanthone and Flavone Derivatives As Potential Dual Agents for Alzheimer’S Disease
    Xanthone and Flavone Derivatives as Potential Dual Agents for Alzheimer’s Disease Maria Inês Alves de Sousa Cruz Dissertation presented to the Faculdade de Farmácia da Universidade do Porto, to obtain the degree of Master in Pharmaceutical Chemistry Work developed under the scientific supervision of Professor Madalena Maria de Magalhães Pinto and Professor Honorina Maria de Matos Cidade July 2015 IN ACCORDANCE WITH THE APPLICABLE LAW, IS NOT ALLOWED TO REPRODUCE ANY PART OF THIS THESIS. ii This work was developed in the “Centro de Química Medicinal-Universidade do Porto” (CEQUIMED-UP), Laboratório de Química Orgânica e Farmacêutica, Departamento de Química, Faculdade de Farmácia, Universidade do Porto. This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020 and by the Project PEst-OE/SAU/UI4040/2014(FCT). iii Poster Communications - Original research Some results presented in this dissertation are part of the following abstracts and poster communications: Maria Inês S. Cruz*, Sara M. Cravo, Honorina Cidade, Madalena Pinto, “Xanthone derivatives with potential dual mode of action for Alzheimer’s Disease”, XX Encontro Luso -Galego de Química, Porto, Portugal, 26-28 November, 2014, P-29, p. 361. Maria Inês S. Cruz*, Sara M. Cravo, Honorina Cidade, Madalena Pinto, “Xanthone Mannich base derivatives with potential dual mode of action for Alzheimer’s Disease”, III ENEQUI - 3º Encontro Nacional de Estudantes de Química, Aveiro, Portugal, 27-29 March, 2015. Maria Inês S. Cruz*, Sara M. Cravo, Honorina Cidade, Madalena Pinto, “Synthesis of xanthone derivatives with potential dual mode of action for Alzheimer’s Disease”, IJUP15 - 5th Meeting of Young Researchs of U.
    [Show full text]
  • Recent Progress in Biologically Active Xanthones
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2016, 8(1):75-131 ISSN : 0975-7384 Review Article CODEN(USA) : JCPRC5 Recent progress in biologically active xanthones a b a a Arshdeep Singh , Navdeep Kaur , Sahil Sharma * and Preet Mohinder Singh Bedi aDepartment of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India bDepartment of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India _____________________________________________________________________________________________ ABSTRACT Xanthone is a novel and pharmacologically important oxygen containing hetrocyclic ring exhibiting variety of potent biological activities. This fused tricyclic ring is derived naturally from the plants of Bonnetiaceae and Clusiaceae family as well as synthesized by employing various synthetic protocols. Their wide range of reported therapeutic attributes include α-glucosidase inhibition, anti-cancer, anti-oxidant, anti-asthmatic, anti-convulsant, xanthine oxidase inhibition and anti-microbial. Among these attributes, anti-cancer and anti-oxidant potential are comprehensively studied as evidenced by number of research papers. Although, there is no marketed formulation containing xanthone derivatives except some herbal formulations, their medicinal properties can not be neglected at all. Promising activities revealed by these compounds chains their use and places them ahead as potential drug candidates for the future studies. Therefore, the present review article is entirely an assemblage of
    [Show full text]