Specific Determination of Airborne Sulfates and Sulfuric Acid

Total Page:16

File Type:pdf, Size:1020Kb

Specific Determination of Airborne Sulfates and Sulfuric Acid Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1977 Specific etD ermination of Airborne Sulfates and Sulfuric Acid. Purnendu Kumar Dasgupta Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Dasgupta, Purnendu Kumar, "Specific eD termination of Airborne Sulfates and Sulfuric Acid." (1977). LSU Historical Dissertations and Theses. 3152. https://digitalcommons.lsu.edu/gradschool_disstheses/3152 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor. Michigan 48106 USA St. Jo h n 's Road, Tyler's G reen High Wycombe. Bucks, England HP10 8HR I I 78-7543 DASGUPTA, Purnendu Kumar, 1949- SPECIFIC DETERMINATION OF AIRBORNE SULFATES AND SULFURIC ACID. The Louisiana S ta te U niversity and Agricultural and Mechanical College, Ph.D., 1977 Chemistry, analytical University Microfilms International,Ann Arbor, Michigan 48106 SPECIFIC DETERMINATION OF AIRBORNE SULFATES AND SUIFURIC ACID A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Purnendu Kumar Dasgupta M.Sc. U n iv e rsity o f Burdwan, 1970 December, 1977 PLEASE NOTE: This dissertation contains color photographs which will not reproduce wel1. UNIVERSITY MICROFILMS INTERNATIONAL. TO My MOTHER "...Every breeze that blows kindly is one crystal breath We exhale on the blue diamond heaven As gentle to touch as the hands of the healer As soft as the farewells whispered over the coffin We're poisoned with venom with each breath we take From the brown sulphur chimney And the black highway snake ...Every fish that swims silent, every bird that flies freely Every doe that steps softly, every crisp leaf that falls All the flowers that grow on this colorful tapestry Somehow they know that if man is allowed to destroy all we need He w ill soon have to pay with his life for his greed." - Don McLean, Tapestry. iii FOREWORD The work described in this dissertation is neither ground breaking nor earth shaking, it merely represents the efforts of a man with limited intellect and ability to solve a problem which sorely needs a solution. There are no pretensions towards disseminating some fundamental scientific truth. Based on a new reaction, a new analytical method has been developed to determine aqueous and airborne sulfate at levels not conveniently determinable previously and a few new compounds have been synthesized and characterized. As the computer scientist would say, the program is different and better, but neither the hardware nor the language i s new. The scope of this work is almost entirely environmental. Environmental chemistry is a relatively new subject, at least as far as most chemists are concerned, and this author has had to educate himself on this subject largely on his own. The study of the environment is multi-faceted; physics of the atmosphere, chemistry of trace substances in our air and water, toxicology at trace levels, health related epidemiological studies - these subjects are all intimately related. In the concerted effort the chemist's role is not any less important than that of anyone else. After all the supreme harmony is in complete interdependence. A great amount of time and effort has been spent to prepare the first part of the dissertation in which the nature of the problem is described. Extensive references that cover all the salient points have been given; some historical references have been given iv along with the scientific ones but the list of references Is not an exhaustive one except In Chapter V, where every effort has been made to cover In understandable detail, all the methods that are currently used to determine airborne sulfuric acid and sulfates. At the end of the reference section a bar graph depicts the frequency of the literature cited in this dissertation vs. the year of publication; if it does nothing else, this would serve to indicate mankind's increasing interest in the science of the environment. The effort to write such a detailed introductory part stems simply from the feeling that at the present time if there is any purpose in writing dissertations beyond binding an identical copy of the manuscript/s sent to journals between some other typed sheets, it must justify itself. This feeling does not imply that the experimental section does not take precedence. This is a disserta­ tion in analytical chemistry. And chemistry is an experimental sc ie n c e . The author wishes to acknowledge the man who made him truly understand that chemistry is still an experimental science. To paraphrase Dylan, the author gratefully acknowledges the very humane scientist Philip W. West because —- "He said, I 'll give you a shelter from the storm." He gave the author a chance to work independently on a challenging problem and offered help and sugges­ tions whenever it was needed. And above all, he irrevocably and undefinably touched the molding of the author's thought process. It is true that we pay a price for everything we do. The impact of Industrialization on the environment would never be a rectified positive wave. We should be ready to pay the price for necessary progress but the word progress sometimes Is difficult to d e fin e . A latest best-selling self-heating shave cream bears the following list of ingredients: water, stearic acid, trlethanolamlne, 1,5-diethyl-lt-hydroxy-2-mercapto-6-oxopyrimidine, isobutane, Laureth-23, potassium hydroxide, sorbitol, hydrogen peroxide, sodium lauryl sarcosinate, propane, fragrance, lauratnine oxide, potassium silicate, butane, ammonium molybdate, phenacetin, and sodium stannate. Even if a shaving cream that heats itself can be considered necessary progress, does anyone know what price he is really paying? The help, advice and the suggestions of many people made this work possible. Drs. K„ D. Reiszner and G. L. Lundquist were invaluable. The comradeship of D. L. McDermott and earlier, H. F. Merrick in the laboratory has been a great experience. Dr. W. D. P itts took the enormous trouble of reading and correcting the entire dissertation in its handwritten (hieroglyphic) form. The same magical reading ability was displayed by Betty Stubbs who managed to type it. There are few people in the Chemistry Department whom this author did not bother with his problems during one or another facet of this work. First, the help of Drs. G. R. Newkome and A. Nayak in structural studies must be cited. Our resident electronic experts G. H. Sexton and especially L. S. Edelen willingly provided their v i expertise whenever asked. Our talented computer programmer Alex Nicolson bore the main burden of formulation and execution of the computer programs used in this study. L. G. P. Hanley Jr. was of inestimable help in rechecking and gathering substantial amounts of reported data. S. Bhattacharya and G. Gor made possible the digitization of the data necessary for the first 3-D plot that involved some 2600 points. The author would also like to thank the Library personnel, especially Mrs. B. Brown, who went to a great amount of trouble to hunt obscure material. Further acknow­ ledgements for specific experimental help have been mentioned in the opening chapter of the experimental section. The author wishes to acknowledge his debt to the Department of Chemistry for granting a teaching assistantship which made his pursuit of a doctoral degree possible in the first place and also to the Coates Memorial Fund which bore a part of the cost of prepa­ ration of this dissertation.
Recommended publications
  • Ate Complexes for Catalytic C-C Bond Forming Reaction 1/13
    2007/09/08 Literature seminer Tomoyuki Mashiko (M1 part) Ate Complexes for Catalytic C-C Bond Forming Reaction 1/13 Organometallics R Lewis acid Lewis base - B R B R Li+ R-Li + Ate complex R Al R-MgX etc R-Na etc Zn etc • Central metal is anionic. Cu The reaction proceeds as anionic character is lost. Generalization of Reaction Pathways for Ate Complexes 1) Non-Oxidative Charge Cancellation (Ligand Transfer) R R <representative example> M- (n) M(n) R R R LiAlH , NaBH .. R- M = B, Al, Zn etc 4 4. 2) Oxidative Charge Cancellation (Non-Ligand Transfer) <representative example> R + E R Gilman reagent M- (n) (n+2) R R M M = Cu R E LiCuR , R Cu(CN)Li .. R 2 2 2. O- Ⅱ + + [LiCuR2] - Ⅰ - O + LiCuR2 O Ⅰ O Li + RCu O R Ⅲ Ⅰ R CuR CuR2 0 Today's contents 1. Grignard Reaction for the Synthesis of 3°-Alcohol with Ate Complex 1-0 Introduction about Grignard Reaction of Ketone 1-1 Grignard Reaction of Ketone with Mg Ate Complex/ Zn Ate Complex (Prof. Ishihara and Dr. Hatano's work) O RMgX+ 2RLi or RMgCl+ ZnCl2 (cat) OH R R1 R2 R1 R2 1-2 History About Zn Ate Complex 1-3 Perspective of Catalytic Synthesis of 3°-alcohol with Grignard Reaction 2. Cross Coupling Reaction of Alkyl Halide Catalyzed by Ate Complex 2-0 Introduction about the Relation between Cross Coupling and Ate Complex 2-1 Cross Coupling with Ni or Pd Ate Complex (Prof. Kambe and Dr. Terao's work) NiCl2 (cat) Alkyl-R Alkyl-X + Ⅱ R-m Ni 2-2 Cross Coupling with Cu Ate Complex (Prof.
    [Show full text]
  • Clark, Hobart, and Neu 1995
    Waste Isolation Pilot Plant Compliance Certification Application Reference 135 Clark, D.L., D.E. Hobart, and M.P. Neu. 1995. Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry, Chem Revs. Vol. 95; 25-48. Submitted in accordance with 40 CFR $194.13, Submission of Reference Materials. Carera, ;., Neurcan. 3.p.. - 986 "Est~rncaonoi ?x:ier Parcrneters L'nae; Panslent anc' S:eadu Sco:z ~oi~icions,2. Unlacaness, Stc;z.:ird, and solucion ftiqo:ithrns." 9. Clark, D.L.. Floba~.D.E., Neu, M.P.. 1995 '9ctinicz Carbonate Complexes ana Thslr Irnporcccca in Ect;nide Environmencai G,~mrsny."=?em Revs. ',Jot. 05, 25-48. ON ' ; x 28.C3 398.00 Cleveland, J.M.. i 9* nGit:calRevleu of Plutonium Eov~lbrioof Environrnencal Concern. In Moueirng in Equmus S;lstms: Smrct:on, So~ubrlrtuanu tlnq of t9e Emencan Chernrcc~Societu, Pdiarnr Beacn, Fi, Series: 3521 -336. Cti~- ; x CLO.CC 220.30 . - , I. 2av1s.G.B.. Jcnnsco i 984 'Ccxxenc on Cmcamincnc Tianspor: :n fracturad PONS Media: fcr s Sjscern cS ~rciielFrcc:vres" 5y SLG~C~U,C.A., and Fmd, E.O.,' Rasc~rcesRzsecrcn, \jot. 23,i\.'o. 9. s?. : 321 - 1 322, Szpt. ., -- ? 984. 1 Qtl; I i x i 3.:: ' 48.50 , , -. - 4 Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry I David L. Clark,'~~~David E. Hobart,lb and Mary P. Neda Chemical Science and Technology Division, Los Alamas National Laboratory, Los Alamos, Mw Me& 87545, l?eThe Sciems DMm, Lawrence Berkeley Laboratory, BeBerky, California 94720, and UE G. T. Seabog imWe for Transactinium Scienae, I Livemre, California 94551 I Received May 16, 1994 (Revised Manuscript ReceM September 16, 1994) Table 1.
    [Show full text]
  • Development of Novel Methodologies in Organic Synthesis Based on Ate Complex Formation
    No.171 No.171 ResearchResearch ArticleArticle Development of Novel Methodologies in Organic Synthesis Based on Ate Complex Formation Keiichi Hirano1* and Masanobu Uchiyama1,2* 1 Graduate School of Pharmaceutical Sciences, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 2 Elements Chemistry Laboratory, RIKEN,2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan E-mail: [email protected]; [email protected] Abstract: We have been focusing on development of novel synthetic methodologies based on ate complex formation. By fine-tuning of coordination environments of various main-group metals (Zn, Al, and B) as well as transition metal (Cu), a wide range of carbon-carbon bond and carbon-heteroatom bond (C–I, C–O, C–N, C–H, C–Si, and C–B) formation reactions have been realized in highly regio- and chemoselective manner taking advantage of characteristics of the elements. Keywords: Ate complex, Halogen-metal exchange, Deprotonative metalation, Chemoselectivity, Regioselectivity 1. Introduction 2. Ate Complexes Ate complexes are known to be anionic organometallic Discovery of the first mono-anion type zincate, Na[ZnEt3], complexes, whose central metals have increased valence by by James A. Wanklyn dates back to 1859,1) and even di-anion accepting Lewis basic ligands to their vacant orbitals. They type zincate, Li2[ZnMe4], was already reported by Dallas T. are attractive chemical species offering tunable reactivity due Hurd in 1948.2) Zincates experienced a long blank after these to their flexible choices of central metals, counter cations, important findings before they started to attract attentions and coordination environments.
    [Show full text]
  • Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation
    molecules Article Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation Uwe Bayer, Adrian Jenner, Jonas Riedmaier, Cäcilia Maichle-Mössmer and Reiner Anwander * Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; [email protected] (U.B.); [email protected] (A.J.); [email protected] (J.R.); [email protected] (C.M.-M.) * Correspondence: [email protected] Abstract: Homoleptic ceric pyrazolates (pz) Ce(RR’pz)4 (R = R’ = tBu; R = R’ = Ph; R = tBu, R’ = Me) were synthesized by the protonolysis reaction of Ce[N(SiHMe2)2]4 with the corresponding pyrazole derivative. The resulting complexes were investigated in their reactivity toward CO2, revealing a significant influence of the bulkiness of the substituents on the pyrazolato ligands. The efficiency of the CO2 insertion was found to increase in the order of tBu2pz < Ph2pz < tBuMepz < Me2pz. For comparison, the pyrrole-based ate complexes [Ce2(pyr)6(m-pyr)2(thf)2][Li(thf)4]2 (pyr = pyrro- lato) and [Ce(cbz)4(thf)2][Li(thf)4] (cbz = carbazolato) were obtained via protonolysis of the cerous ate complex Ce[N(SiHMe2)2]4Li(thf) with pyrrole and carbazole, respectively. Treatment of the pyrrolate/carbazolate complexes with CO2 seemed promising, but any reversibility could not be observed. Keywords: cerium; pyrazoles; pyrroles; carbazoles; carbon dioxide Citation: Bayer, U.; Jenner, A.; Riedmaier, J.; Maichle-Mössmer, C.; Anwander, R. Effect of Substituents of 1. Introduction Cerium Pyrazolates and Pyrrolates on Rare-earth–metal complexes are capable of efficiently activating carbonylic com- Carbon Dioxide Activation.
    [Show full text]
  • Exposing the Hidden Complexity of Stoichiometric and Catalytic Metathesis Reactions by Elucidation of Mg-Zn Hybrids
    Exposing the hidden complexity of stoichiometric and catalytic metathesis reactions by elucidation of Mg-Zn hybrids Eva Hevia1, Jonathan Z. Chua, Pablo García-Álvarez, Alan R. Kennedy, and Matthew D. McCall WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK, G1 1XL Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved January 14, 2010 (received for review November 17, 2009) Studying seemingly simple metathesis reactions between ZnCl2 role in these vital, new synthetic methodologies. In fact, the num- and t BuMgCl has, surprisingly, revealed a much more complex ber of organometallic compounds combining magnesium and chemistry involving mixed magnesium-zinc compounds that could zinc within the same molecule is scarce (7, 8), contrasting with be regarded as Mg-Zn hybrids. Thus, the reaction of equimolar the numerous reports on the synthesis of mixed-metal com- t amounts of ZnCl2 and BuMgCl reveals the formation of the unpre- pounds (ates) containing an alkali-metal with either magnesium μ t cedented mixed Mg-Zn complex [ðTHFÞ4Mgð -ClÞ2Znð BuÞðClÞ] (1), (magnesiates), or zinc (zincates), that show enhanced reactivity as a result of the co-complexation of the two anticipated exchange beyond the confines of the monometallic reagents from which products of the metathesis. This magnesium zincate adopts a con- they are derived (9–11). tacted ion-pair structure, closely related to Knochel’s pioneering In situ metathetical approaches are by far the most common “Turbo” Grignard reagents. Furthermore, a second coproduct iden- vehicles of choice to prepare either these mixed magnesium-zinc tified in this reaction is the solvent-separated mixed magnesium- putative intermediates or neutral organozinc reagents.
    [Show full text]
  • Lithium, Sodium and Potassium Magnesiate Chemistry: a Structural
    Lithium, Sodium and Potassium Magnesiate Chemistry: A Structural Overview Antonio J. Martínez-Martínez and Charles T. O’Hara WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK Until recently, deprotonative metalation reactions have been performed using organometallic compounds that contain only a single metal (e.g., organolithium reagents). Since the turn of the millennium, bimetallic compounds such as alkali metal magnesiates have begun to emerge as a new class of complementary metalating reagents. These have many benefits over traditional lithium compounds, including their enhanced stability at ambient temperatures, their tolerance of reactive functional groups and their stability in common reaction solvents. In recent years lots of attention has been focused on understanding the structure of alkali metal magnesiates in an effort to maximize synthetic efficiency and thus shed insight into approaches for future rational design. In this chapter, the diverse structural chemistry of alkali metal magnesiate compounds reported since 2007 will be summarized. KEY WORDS: Lithium, Sodium, Potassium, Magnesium, Magnesiate, X-ray Crystallography, Inverse Crowns 1.1 Introduction 1.2 Lithium magnesiate complexes 1.2.1 Alkyl/Aryl lithium magnesiate complexes 1.2.2 Amido lithium magnesiate complexes 1.2.3 Heteroleptic lithium magnesiate complexes 1.3 Sodium magnesiate complexes 1.3.1 Donor-free homo- and heteroleptic sodium magnesiate complexes 1.3.2 Introducing donors to sodium magnesiate
    [Show full text]
  • A Field Method for the Determination of Tungsten in Soils
    GEOLOGICAL SURVEY CIRCULAR 119 August 1951 A FIELD METHOD FOR THE DETERMINATION OF TUNGSTEN IN SOILS By F. N. Ward UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. W\l"ather, Director Washington, D. C. Free on application to the Geological Survey, Washington 25, D. C. A FIELD METHOD FOR THE DETERMINATION OF TUNGSTEN IN SOILS CONTENTS Page Abstract. ___1 Discussion..... • . 3 Introduction. .. • . l References cited . • . 4 Reagents and apparatus . • . 1 Procedures. • . 2 Table 1................................. 4 ABSTRACT to meet various needs (Fernjan~H~, 1934; Fer 1yanchich, 1947; Sandell, 1946). Still other The thiocyanate-stannous chloride method for changes have been made in attempts to shorten the the determination of small quantities of tungsten method and/or obtain better precision (Geld and has been modified for use on soils in geochemical Carroll, 1949; Gentry and Sherrington, 1948). prospecting. A 0. 25 g sample of soil is fused Extraction of the tungsten thiocyanate complex ion with a modified carbonate flux in a pyrex test with an immiscible solvent results in increased tube, extracted with water, and an aliquot of the sensitivity (Sandell, 1950), and heating the re­ aqueous extract is treated with stannous chloride action mixture decreases the time required to .and: potassium thiocyanate in moderately concen­ form the complex ion (Poluektov, 1941). Accord­ trated hydrochloric acid. The tungsten thiocyan­ ingly the proposed procedure calls for a rapid ate complex ion, formed rapidly at a tempera­ . formation of the tungsten thiocyanate complex ion ·ture of 90C to lOOC, is extracted with a small at a temperature of 90C to 95C followed by an iso­ volume of isopropyl ether, and tungsten determi­ propyl ether extraction of the complex ion from nations are made by comparing the yellowish­ the cool aqueous solution.
    [Show full text]
  • Principles of Chemical Recognition and Transport in Extractive
    2011 Separations and Heavy Element Chemistry Research Meeting Hyatt Regency, Baltimore, MD April 26 - 29, 2011 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division Program and Abstracts for the 2011 Separations and Heavy Element Chemistry Research Meeting Hyatt Regency Baltimore, MD April 26–29, 2011 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover Graphics: The cover artwork is used by permission from the authors and journals for the associated covers. These covers are related to recently published papers by PIs speaking in this meeting’s program. From left to right and top to bottom they are: Christopher Cahill on p. 19 of this book. Also see C. E. Rowland and C. L. Cahill (2010) "Capturing Hydrolysis Products in the Solid State: Effects of pH on Uranyl Squarates under Ambient Conditions." Inorganic Chemistry, 49(19), 8668–8673. Wibe A. de Jong on p. 77 of this book. Also see V.A. Glezakou and W.A. de Jong, "Cluster-models for Uranyl(VI) adsorption on α-alumina." J. Phys. Chem. A 2011, 115, 1257 (2011). Jaqueline Kiplinger on p. 9 of this book. Also see Thomson, R. K.; Graves, C. R.; Scott, B. L.; Kiplinger, J. L. “Noble Reactions for the Actinides: Safe Gold-Based Access to Organouranium and Azide Complexes,” Eur. J. Inorg. Chem. 2009, 1451–1455. Jaqueline Kiplinger on p. 9 of this book. Also see Cantat, T.; Graves, C. R.; Scott, B. L.; Kiplinger, J. L. “Challenging the Metallocene Dominance in Actinide Chemistry with a Soft PNP Pincer Ligand: New Uranium Structures and Reactivity Patterns,” Angew.
    [Show full text]
  • Part 1: Study Toward the Total Synthesis of Acutumine
    PART 1: STUDY TOWARD THE TOTAL SYNTHESIS OF ACUTUMINE PART 2: ASYMMETRIC INTRAMOLECULAR HYDROAMINATION CATALYZED BY GROUP 3 METAL COMPLEXES by Khoi Quang Huynh A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry MONTANA STATE UNIVERSITY Bozeman, Montana October 2014 ©COPYRIGHT by Khoi Quang Huynh 2014 All Rights Reserved ii ACKNOWLEDGEMENTS I would like to express my gratitude and sincere appreciation to Professor Tom Livnghouse for his advice, assistance, and encouragement. His insight and creative thinking and enthusiasm to chemistry have inspired me. I would like to thank Professor Trevor Rainey for his generous advice and discussion. I am also grateful for the degree of independence, which he has allowed me to learn chemistry. To the members of my committee: Professor Paul Grieco, Mary Cloninger, Martin Teinzte, Stephanie Wettstein, I want to extend my appreciation for the time, effort, and valuable instructions I received in your courses. iii TABLE OF CONTENTS 1. ACUTUMINE INTRODUCTION ..................................................................................1 Background ......................................................................................................................1 Discovery .........................................................................................................................2 Biological Activity of Acutumine ....................................................................................3 Biosynthesis .....................................................................................................................4
    [Show full text]
  • Exceptionally Facile Conversion of Carboxylic Acid Salts to Aldehydes by Reductive Oxidation with Borane and Pyridinium Chlorochromate
    Notes Bull. Korean Chem. Soc. 2001, Vol. 22, No. 3 325 Exceptionally Facile Conversion of Carboxylic Acid Salts to Aldehydes by Reductive Oxidation with Borane and Pyridinium Chlorochromate Jin Soon Cha,* Jae Hyung Park, and Dae Yon Lee Department of Chemistry and Institute of Natural Science, Yeungnam University, Gyongsan 712-749, Korea Received December 13, 2000 Keywords : Carboxylic acid salts, Reductive oxidation, Borane, PCC, Aldehyde synthesis. Some ten years ago, we reported that carboxylic acid form. metal salts are converted to the corresponding aldehydes in Actually carboxylate readily reacts with borane in THF to moderate to high yields by two equivalents of thexylbromo- form ate complex (acyloxyborohydride 1), the equilibrium borane-methyl sulfide1 or 9-borabicyclo[3.3.1]nonane (9- being driven over to the right by the reaction with dimethyl BBN).2 Although these procedures provided promising sulfate and hence evolution of methane gas to yield acyloxy­ routes to convert carboxylic acid salts to the corresponding borane 2. Finally, the oxidation of the resultant boroxine 3 aldehydes, a really clean conversion has escaped us. Thus, with PCC yields aldehydes (eq 2). the yields of aromatic aldehydes are significantly lower than those in the aliphatic series and appear to be influenced by substituents on the aromatic ring. Recently, we have found that the reductive oxidation method provides an apparently (2) ideal procedure for conversion of carboxylic acid deriva­ tives, such as free carboxylic acids,3 esters4 and acid chlorides5 to the corresponding aldehydes. This procedure This procedure converts both sodium and lithium salts of involves the complete reduction of such derivatives to an most aliphatic carboxylic acids to aldehydes in essentially alcohol stage with a suitable reducing agent, followed by quantitative yields, as shown in Table 1, except a,Q-unsatu- oxidation of the resultant intermediate with pyridinium chloro­ rated acids such as cinnamic and crotonic acids.
    [Show full text]
  • The Uranato-Malate Complex
    Proceedings of the Iowa Academy of Science Volume 32 Annual Issue Article 39 1925 The Uranato-Malate Complex Launcelot W. Andrews Let us know how access to this document benefits ouy Copyright ©1925 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Andrews, Launcelot W. (1925) "The Uranato-Malate Complex," Proceedings of the Iowa Academy of Science, 32(1), 299-320. Available at: https://scholarworks.uni.edu/pias/vol32/iss1/39 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Andrews: The Uranato-Malate Complex THE URANATO-MALATE COMPLEX LAUNCELOT w. ANDREWS INTRODUCTION ':rhe inirtial object of this research was the elaboration of an exact polariscopic method for the analytical determination of malic acid. The results, however, turned out to have a wider interest. A number of years ago, Walden called attention to the fact 1 that uranyl salts enhance in a remarkable degree the optical rota­ tion of optically active organic compounds of certain classes, par­ ticularly of polybasic oxyacids of the aliphatic series. This enhancement does not extend to carbohydrates in a degree suffi­ cient to interfere appreciably, according to observations of Gross­ mann2 and others. Yoder3 has laid the foundation of an analytical method based on the facts alluded to. REAGENTS Uranyl Acetate. The uranyl acetate used in this investigation was labelled "Ura­ nium Acetate.
    [Show full text]
  • Transition-Metal-Free Borylation of Alkyl Iodides Via a Radical
    Letter Cite This: Org. Lett. XXXX, XXX, XXX−XXX pubs.acs.org/OrgLett Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism † † † ‡ ‡ ‡ § Qianyi Liu, Junting Hong, Beiqi Sun, Guangcan Bai, Feng Li, Guoquan Liu, Yang Yang, † ∥ and Fanyang Mo*, , † Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China ‡ State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China § Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States ∥ Donghai High-tech Industrial Development Zone, Donghai County, Jiangsu Province 222000, China *S Supporting Information ABSTRACT: We describe an operationally simple transition-metal- free borylation of alkyl iodides. This method uses commercially available diboron reagents as the boron source and exhibits excellent functional group compatibility. Furthermore, a diverse range of primary and secondary alkyl iodides could be effectively transformed to the corresponding alkylboronates in excellent yield. Mechanistic investigations suggest that this borylation reaction proceeds through a single-electron transfer mechanism featuring the generation of an alkyl radical intermediate. lkylboronic acids and esters represent highly versatile Scheme 1. Borylation of Alkyl Halides A building blocks in transition-metal-catalyzed cross-cou- pling reactions and various functional group transformations.1,2 Additionally, the alkylboronic acid motif itself is frequently found in clinically important drugs (e.g., bortezomib)3 as well as agents used in boron neutron capture therapy (BNCT) of cancer.4 Conventional methods for the preparation of these compounds include electrophilic borylation of organolithium 5 6 from https://pubs.acs.org/doi/10.1021/acs.orglett.9b01951.
    [Show full text]