Therapy of Advanced B-Lymphoma Xenografts with a Combination of 90Y-Anti-CD22 Igg (Epratuzumab) and Unlabeled Anti-CD20 Igg (Veltuzumab) M

Total Page:16

File Type:pdf, Size:1020Kb

Therapy of Advanced B-Lymphoma Xenografts with a Combination of 90Y-Anti-CD22 Igg (Epratuzumab) and Unlabeled Anti-CD20 Igg (Veltuzumab) M Cancer Therapy: Preclinical Therapy of Advanced B-Lymphoma Xenografts with a Combination of 90Y-anti-CD22 IgG (Epratuzumab) and Unlabeled Anti-CD20 IgG (Veltuzumab) M. Jules Mattes,1Robert M. Sharkey,1Habibe Karacay,1Myron S. Czuczman,2 and David M. Goldenberg1 Abstract Purpose: Antibodies are effective therapeutic agents in cancer, but cures are rarely if ever obtained. Combination therapies are likely to be more effective than a single agent. In this study, the combination of a new unconjugated humanized anti-CD20 IgG, veltuzumab, with a 90Y-conjugated humanized antibody to CD22 (epratuzumab) was evaluated for the treatment of B-cell lymphoma in a nude mouse model system. Experimental Design: Nude mice were grafted with the Ramos human B-lymphoma and treatment initiated when tumors were >0.1cm3. In most experiments, mice were injected first with unconjugated anti-CD20, then with 90Y-anti-CD22 1day later. Additional weekly injections of the unconjugated veltuzumab were administered for 3 weeks. Controls included a single agent only and a nonreactive control radiolabeled antibody. Results: Unconjugated anti-CD20 veltuzumab alone did not have a significant therapeutic effect, even at a total dose of 2.5 mg per mouse.The 90Y-anti-CD22 epratuzumab alone induced marked regressions of all tumors, but they regrew in a few weeks. The combination of these agents cured f80% of the mice. A nonreactive control antibody labeled with 90Y, used without veltuzumab, had no therapeutic effect. The therapeutic effect of 90Y-epratuzumab required the maximum tolerated dose of radioactivity, which was 160 ACi per mouse. Conclusions: These studies illustrate how combinations of unconjugated and radioconjugated antibodies against different B-cell markers can improve therapeutic outcome, and offer a new therapeutic paradigm for the treatment of B-cell lymphomas. Treatment of non–Hodgkin’s lymphoma with rituximab role in non–Hodgkin’s lymphoma management as rituximab. constitutes a paradigm shift in therapy. Rituximab therapy A potential limitation of current protocols for the use of results in a f50% initial response rate (f10% complete radiolabeled anti-CD20 IgG is that a large dose of unlabeled response) in patients with previously treated follicular non– anti-CD20 Ab is injected before the radioconjugate, called Hodgkin’s lymphoma, and although it is not curative, disease predosing. This was found to be necessary to improve uptake of progression can be forestalled with retreatment or maintenance the radiolabeled Ab in the tumor (8), presumably because it therapy (1–3). As with other antibodies (Ab) in current clinical blocks the large amount of antigen present on normal B cells use, rituximab is most effective when combined with other in patients. However, despite careful selection of the dose of therapeutic modalities, such as chemotherapy (4), and may the unconjugated Ab used, it is evident that predosing may also also be complemented by other biologicals, such as the anti- inhibit uptake into the tumor of the subsequently injected CD22 Ab, epratuzumab (5), and the anti-CD80 Ab, galiximab radiolabeled Ab. For example, in a mouse model, Gopal et al. (6). CD20-based radioimmunotherapy, with 90Yor131I (9) showed that a predose of rituximab inhibited the binding conjugates, has shown better objective response rates than of and therapy with radiolabeled rituximab, but not with a naked anti-CD20 Abs (3, 7), yet has not achieved as extensive a radiolabeled anti-CD45 IgG. Clinical studies have shown encouraging antitumor responses with an 90Y-labeled anti- CD22 Ab, epratuzumab (10, 11), which has a more restricted specificity for B cells than an anti-CD45 Ab. Therefore, we Authors’Affiliations: 1Garden State Cancer Center, Center for Molecular Medicine evaluated the combination of an anti-CD20 Ab, veltuzumab, and Immunology, Belleville, NewJersey and 2Roswell Park Cancer Institute, Buffalo, with a radiolabeled anti-CD22 Ab, epratuzumab. In vitro NewYork studies suggested that tumor CD22 expression can be up- Received 2/14/08; revised 4/23/08; accepted 5/7/08. regulated by prior treatment with rituximab (5), which might Grant support: NIH grant PO1CA103985 from the National Cancer Institute. The costs of publication of this article were defrayed in part by the payment of page enhance uptake of the radiolabeled epratuzumab. charges. This article must therefore be hereby marked advertisement in accordance Other factors make this combination promising. The high- with 18 U.S.C. Section 1734 solely to indicate this fact. energy h-particle emitted by 90Y has a long tissue path length, Requests for reprints: David M. Goldenberg, Center for Molecular Medicine and enabling cell killing even if the Ab does not fully penetrate the Immunology, 520 Belleville Avenue, Belleville, NJ 07109. Phone: 973-844-7000; Fax: 973-844-7020; E-mail: [email protected]. tumor, and even if there are antigen-negative subpopulations. F 2008 American Association for Cancer Research. However, also because of the long path length of the radiation doi:10.1158/1078-0432.CCR-08-0404 emitted, single cells or micrometastases are not good targets for ClinCancerRes2008;14(19)October1,2008 6154 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on October 2, 2021. © 2008 American Association for Cancer Research. Therapy with 90Y-Anti-CD22 and Unlabeled Anti-CD20 Abs 90Y-Ab therapy (12). In contrast, single cells are suitable targets therapy seems to be advantageous, and potentially curative, in for unconjugated Abs because they are readily accessible. Thus, this animal model. the two forms of treatment can act cooperatively in reducing larger disease burdens, as well as scavenging smaller pockets of disease. Materials and Methods The mechanism of action of unconjugated anti-CD20 Abs, including veltuzumab, has been extensively investigated, but Cell lines, Abs, and radiolabeling. Ramos cells were obtained from is not fully resolved (2, 4, 13), probably partly because the the American Type Culture Collection and propagated as described different animal models used by various investigators may previously (16). While these studies were ongoing, their identity was depend on different mechanisms. In humans, an important confirmed by DNA ‘‘fingerprinting’’ done by DSMZ. They were also tested routinely for Mycoplasma contamination, with the Mycotect kit role for Ab-dependent cellular cytotoxicity has been estab- (Invitrogen), and found to be negative. The humanized IgG1 Abs lished, there is evidence that complement activation may be veltuzumab (5), epratuzumab (17), and labetuzumab (hMN-14) were in vitro important (13, 14), and data suggest that apoptosis provided by Immunomedics, Inc. Epratuzumab and labetuzumab were induction may play a role. In any case, for our present purpose, conjugated to the metal chelator 1,4,7,10-tetra-azacyclododecane and it is sufficient to note that the mechanism of action of the labeled with 90Y at a ratio of 5.0 mCi 90Y/1.0 mg IgG by methods that 90 veltuzumab is certainly different from that of the Y- have been previously reported in detail (18). The product was prepared epratuzumab. Even unconjugated, these two Abs seem to have on the day of its use with yields usually of >95%. Excess diethylene- different mechanisms of action (15). triaminepentaacetic acid was added to scavenge any residual unbound 90 The unconjugated Ab used was the humanized veltuzumab, Y. Each product was analyzed by instant TLC and size-exclusion which has the epratuzumab backbone and similar hyper- high performance liquid chromatography (19). Representative radio- conjugates were also tested for immunoreactivity using an anti-idiotype variable regions to rituximab (5). As the radiolabeled Ab, we 90 selected an anti-CD22 humanized Ab, epratuzumab, because Ab (20) and were >95% reactive. The activity of Y was determined in a Capintec CRC-15R dose calibrator (Capintec). Containers and other this has been found to be an effective investigational conditions were carefully controlled to ensure accurate readings of 90Y therapeutic in patients (10). The model used was Ramos activity (21). The same conjugate was labeled with 111In, following the lymphoma cells growing s.c. in nude mice, and the mice were same procedure, except with 2.5 mCi/mg IgG. treated when the tumors were established. Because these Ab therapy and biodistribution experiments. All animal experiments tumors grow very rapidly, this is a challenging model for were approved by the institutional animal welfare committee. Male therapy. The data presented show that this type of combination BALB/c nude mice were obtained from the National Cancer Institute Fig. 1. Therapy of s.c. Ramos tumors in nude mice with 90Y-epratuzumab. Groups of 11mice were injected with 100 or 175 ACi of radiolabeled Ab on day 22 after tumor inoculation. Tumors ranged in size from 0.2 to 1.0 cm3 (mean, 0.49 cm3).The growth rate of individual tumors is shown for control untreated mice (A), mice treated with 100 ACi (B), or mice treated with 175 ACi (C). Untreated control tumors were found to regress occasionally after reaching a size of >1.0 cm 3. D, a step graph of the same experiment, showing the time required for tumors to reach a size of 3.0 cm3. ., control; o,100ACi; !,175ACi. E, body weights of the mice for 5 wk after injection of the higher dose of radioactivity,175 ACi. www.aacrjournals.org 6155 Clin Cancer Res 2008;14(19) October 1,2008 Downloaded from clincancerres.aacrjournals.org on October 2, 2021. © 2008 American Association for Cancer Research. Cancer Therapy: Preclinical Fig. 2. Therapy of s.c. Ramos tumors in nude mice with a combination of 90Y-epratuzumab and unconjugated veltuzumab. Tumors were measured, ranked by size, and then the mice bearing tumors at least 0.1cm3 were distributed sequentially into5groupsof13to15mice.To p l e f t , the time course of Ab injections. Unconjugated veltuzumab (1.0 mg) was injected on day 0, and 90Y-epratuzumab was injected on day 1, into the appropriate groups.
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Antibody Drug Conjugate Development in Gastrointestinal Cancers: Hopes and Hurdles from Clinical Trials
    Wu et al. Cancer Drug Resist 2018;1:204-18 Cancer DOI: 10.20517/cdr.2018.16 Drug Resistance Review Open Access Antibody drug conjugate development in gastrointestinal cancers: hopes and hurdles from clinical trials Xiaorong Wu, Thomas Kilpatrick, Ian Chau Department of Medical oncology, Royal Marsden Hospital NHS foundation trust, Sutton SM2 5PT, UK. Correspondence to: Dr. Ian Chau, Department of Medical Oncology, Royal Marsden Hospital NHS foundation trust, Downs Road, Sutton SM2 5PT, UK. E-mail: [email protected] How to cite this article: Wu X, Kilpatrick T, Chau I. Antibody drug conjugate development in gastrointestinal cancers: hopes and hurdles from clinical trials. Cancer Drug Resist 2018;1:204-18. http://dx.doi.org/10.20517/cdr.2018.16 Received: 31 Aug 2018 First Decision: 8 Oct 2018 Revised: 13 Nov 2018 Accepted: 16 Nov 2018 Published: 19 Dec 2018 Science Editors: Elisa Giovannetti, Jose A. Rodriguez Copy Editor: Cui Yu Production Editor: Huan-Liang Wu Abstract Gastrointestinal (GI) cancers represent the leading cause of cancer-related mortality worldwide. Antibody drug conjugates (ADCs) are a rapidly growing new class of anti-cancer agents which may improve GI cancer patient survival. ADCs combine tumour-antigen specific antibodies with cytotoxic drugs to deliver tumour cell specific chemotherapy. Currently, only two ADCs [brentuximab vedotin and trastuzumab emtansine (T-DM1)] have been Food and Drug Administration approved for the treatment of lymphoma and metastatic breast cancer, respectively. Clinical research evaluating ADCs in GI cancers has shown limited success. In this review, we will retrace the relevant clinical trials investigating ADCs in GI cancers, especially ADCs targeting human epidermal growth receptor 2, mesothelin, guanylyl cyclase C, carcinogenic antigen-related cell adhesion molecule 5 (also known as CEACAM5) and other GI malignancy specific targets.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • New Biological Therapies: Introduction to the Basis of the Risk of Infection
    New biological therapies: introduction to the basis of the risk of infection Mario FERNÁNDEZ RUIZ, MD, PhD Unit of Infectious Diseases Hospital Universitario “12 de Octubre”, Madrid ESCMIDInstituto de Investigación eLibraryHospital “12 de Octubre” (i+12) © by author Transparency Declaration Over the last 24 months I have received honoraria for talks on behalf of • Astellas Pharma • Gillead Sciences • Roche • Sanofi • Qiagen Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Paul Ehrlich (1854-1915) • “side-chain” theory (1897) • receptor-ligand concept (1900) • “magic bullet” theory • foundation for specific chemotherapy (1906) • Nobel Prize in Physiology and Medicine (1908) (together with Metchnikoff) Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author 1981: B-1 antibody (tositumomab) anti-CD20 monoclonal antibody 1997: FDA approval of rituximab for the treatment of relapsed or refractory CD20-positive NHL 2001: FDA approval of imatinib for the treatment of chronic myelogenous leukemia Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Functional classification of targeted (biological) agents • Agents targeting soluble immune effector molecules • Agents targeting cell surface receptors
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies Et Al
    US009 161992B2 (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies et al. (45) Date of Patent: Oct. 20, 2015 (54) P97 FRAGMENTS WITH TRANSFER 4,683.202 A 7, 1987 Mullis ACTIVITY 4,704,362 A 11/1987 Itakura et al. 4,766,075 A 8, 1988 Goeddeletal. (71) Applicant: biosis Technologies, Inc., Richmond 4,800,1594,784.950 A 11/19881/1989 MullisHagen et al. (CA) 4,801,542 A 1/1989 Murray et al. 4.866,042 A 9, 1989 Neuwelt (72) Inventors: Wilfred Jefferies, South Surrey (CA); 4,935,349 A 6/1990 McKnight et al. Mei Mei Tian, Coquitlam (CA): 4.946,778 A 8, 1990 Ladner et al. Timothy Vitalis, Vancouver (CA) 5,091,513 A 2f1992 Huston et al. 5,132,405 A 7, 1992 Huston et al. (73) Assignee: biOasis Technologies, Inc., British 5, 186,941 A 2f1993 Callahan et al. Columbia (CA) 5,672,683 A 9, 1997 Friden et al. 5,677,171 A 10, 1997 Hudziak et al. c - r 5,720,937 A 2f1998 Hudziak et al. (*) Notice: Subject to any disclaimer, the term of this 5,720,954. A 2f1998 Hudziak et al. patent is extended or adjusted under 35 5,725,856 A 3, 1998 Hudziak et al. U.S.C. 154(b) by 0 days. 5,770,195 A 6/1998 Hudziak et al. 5,772,997 A 6/1998 Hudziak et al. (21) Appl. No.: 14/226,506 5,844,093 A 12/1998 Kettleborough et al. 5,962,012 A 10, 1999 Lin et al.
    [Show full text]
  • Veltuzumab, an Anti-CD20 Mab for the Treatment of Non-Hodgkin's
    Current Opinion in Molecular Therapeutics 2009 11(2):200-207 Thomson Reuters (Scientific) Ltd ISSN 2040-3445 DRUG PROFILE Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and immune thrombocytopenic purpura Cannon Milani & Jorge Castillo* Address Brown University Warren Alpert Medical School, The Miriam Hospital, Division of Hematology and Oncology, 164 Summit Ave, Fain Building, Providence, RI 02906, USA Email: [email protected] *To whom correspondence should be addressed Veltuzumab is a humanized, second-generation anti-CD20 mAb currently under development by Immunomedics Inc for the potential treatment of B-cell non-Hodgkin’s lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Licensee Nycomed is developing veltuzumab for the potential treatment of rheumatoid arthritis and immune thrombocytopenic purpura (ITP). Veltuzumab contains 90 to 95% human antibody sequences with identical antigen framework regions to epratuzumab (a humanized anti-CD22 mAb) and similar antigen-binding determinants to rituximab (chimeric, anti-CD20 mAb and the first-line treatment of aggressive and indolent NHL). In vitro studies have demonstrated that veltuzumab has enhanced binding avidities and a stronger effect on complement-dependent cytotoxicity compared with rituximab in selected cell lines. In dose-finding phase I/II clinical trials in patients with low-grade NHL, intravenous veltuzumab demonstrated a substantial rate of complete responses in concurrence with shorter and more tolerable infusions compared with rituximab. Currently there has been no evidence of an immune response to repeated administrations, and no serious adverse events related to veltuzumab treatment in patients with NHL. Veltuzumab is undergoing clinical trials using a low-dose subcutaneous formulation in patients with NHL, CLL and ITP.
    [Show full text]
  • Sacituzumab Govitecan
    Patient-Centric Science-Based Performance-Driven Corporate Overview May 2018 Forward-Looking Statements This presentation, in addition to historical information, contains certain forward- looking statements made pursuant to the Private Securities Litigation Reform Act of 1995. Such statements may involve significant risks and uncertainties, and actual results could differ materially from those expressed or implied herein. Factors that could cause such differences include, but are not limited to, new product development (including clinical trials outcome and regulatory requirements/actions); competitive risks to marketed products; forecasts of future operating results; availability of required financing and other sources of funds on acceptable terms, if at all; as well as those discussed in the Company's filings with the Securities and Exchange Commission. 2 Our Company Vision for Value Creation “ Immunomedics is deeply committed to become the leading antibody-drug conjugate (ADC) company worldwide delivering breakthrough therapies to treat complex cancers and transform patient outcomes.” 3 Broad Pipeline of Antibody-Based Therapies Research/Preclinical Phase 1 Phase 2 Phase 3 Registration First-in-Class Antibody-Drug Conjugate (ADC) Programs Sacituzumab govitecan/IMMU-132 (anti-Trop-2-SN-38 ADC) Metastatic triple-negative breast cancer (FDA granted BTD) BLA Metastatic urothelial cancer Metastatic HR+/HER2- breast cancer Solid tumors IITs Labetuzumab govitecan/IMMU-130 (anti-CEACAM5-SN-38 ADC) Metastatic colorectal cancer IMMU-140 (anti-HLA-DR-SN-38 ADC) Solid and liquid cancers Other Product Candidates Epratuzumab (anti-CD22) for relapsed pediatric acute lymphoblastic leukemia Veltuzumab (anti-CD20) for cancer and autoimmune diseases Milatuzumab (anti-CD74) for autoimmune diseases IMMU-114 (anti-HLA-DR) for hematologic malignancies (E1)-3s (bispecific antibody) First-in-class Antibody-Drug Conjugate Platform Potential to address approximately 90% of all human cancers Suite of Humanized Antibodies for Creating ADCs 1.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • One Target, Different Effects: a Comparison of Distinct Therapeutic Antibodies Against the Same Targets
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 10, 539-549, October 2011 One target, different effects: a comparison of distinct therapeutic antibodies against the same targets Hyunbo Shim ple, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and Department of Life Science certolizumab pegol -- with many more in clinical and Division of Life and Pharmaceutical Sciences preclinical development. The situation is similar for Ewha Womans University HER2, CD20, EGFR, and VEGF, each having one or Seoul 120-750, Korea more approved antibodies and many more under Correspondence: Tel, 82-2-3277-4240; development. This review discusses the different bind- Fax, 82-2-3277-3760; E-mail, [email protected] ing characteristics, mechanisms of action, and bio- http://dx.doi.org/10.3858/emm.2011.43.10.063 logical and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and Accepted 2 August 2011 provides insights into the development of therapeutic Available Online 3 August 2011 antibodies. Abbreviations: ADC, antibody-drug conjugate; ADCC, antibody- dependent cellular cytotoxicity; CD20, cluster of differentiation Keywords: antibodies, monoclonal; antigens, CD20; 20; CDC, complement dependent cytotoxicity; CLL, chronic pharmacology; receptor, epidermal growth factor; re- lymphocytic leukemia; ECD, extracellular domain; EGFR, epi- ceptor, erbB-2; tumor necrosis factor-α dermal growth factor receptor; EpCAM, epithelial cell adhe- sion molecule; FcγR, Fc gamma receptor;
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]