The Random Geometry of Equilibrium Phases

Total Page:16

File Type:pdf, Size:1020Kb

The Random Geometry of Equilibrium Phases The random geometry of equilibrium phases Hans-Otto Georgii, Mathematisches Institut, Ludwig-Maximilians-Universit¨at, D-80333 M¨unchen, Germany. Email: [email protected] Olle H¨aggstr¨om, Department of Mathematics, Chalmers University of Technology, S-412 96 G¨oteborg, Sweden. Email: [email protected] Christian Maes, Instituut voor Theoretische Fysica, K.U.Leuven, B-3001 Leuven, Belgium. Email: [email protected] Contents 1 Introduction 3 2 Equilibrium phases 6 2.1 Thelattice .................................. 6 2.2 Configurations ................................ 6 2.3 Observables.................................. 7 2.4 Randomfields................................. 8 2.5 TheHamiltonian ............................... 8 2.6 Gibbsmeasures................................ 9 2.7 Phasetransitionandphases . 11 arXiv:math/9905031v1 [math.PR] 5 May 1999 3 Some models 14 3.1 TheferromagneticIsingmodel . 14 3.2 TheantiferromagneticIsingmodel . 15 3.3 ThePottsmodel ............................... 16 3.4 Thehard-corelatticegasmodel. 17 3.5 The Widom–Rowlinson lattice model . 18 4 Coupling and stochastic domination 19 4.1 Thecouplinginequality . 19 4.2 Stochasticdomination . 20 4.3 ApplicationstotheIsingmodel . 23 4.4 Applicationtoothermodels . 26 1 5 Percolation 28 5.1 Bernoullipercolation . 28 5.2 Dependent percolation: the role of the density . ....... 32 5.3 Examples of dependent percolation . 34 5.4 Thenumberofinfiniteclusters . 37 6 Random-cluster representations 41 6.1 Random-clusterandPottsmodels . 41 6.2 Infinite-volumelimits. 44 6.3 PhasetransitioninthePottsmodel . 47 6.4 Infinite volume random-cluster measures . ..... 50 6.5 An application to percolation in the Ising model . ...... 55 6.6 Cluster algorithms for computer simulation . ...... 56 6.7 Random-cluster representation of the Widom–Rowlinson model ..... 58 7 Uniqueness and exponential mixing from non-percolation 61 7.1 Disagreementpaths.............................. 61 7.2 Stochastic domination by random-cluster measures . ........ 66 7.3 Exponential mixing at low temperatures . 70 8 Phase transition and percolation 76 8.1 Agreement percolation from phase coexistence . ....... 77 8.2 Plus-clustersfortheIsingferromagnet . ...... 78 8.3 Constant-spin clusters in the Potts model . ..... 82 8.4 Further examples of agreement percolation . ...... 84 8.5 Percolation of ground-energy bonds . 86 9 Random interactions 93 9.1 Diluted and random Ising and Potts ferromagnets . ..... 94 9.2 Mixing properties in the Griffiths regime . 96 10 Continuum models 102 10.1 Continuumpercolation. 102 10.2 The continuum Widom–Rowlinson model . 103 2 1 Introduction Equilibrium statistical mechanics intends to describe and explain the macroscopic be- havior of systems in thermal equilibrium in terms of the microscopic interaction between their great many constituents. As a typical example, let us take some ferromagnetic ma- terial like iron; the constituents are then the spins of elementary magnets at the sites of some crystal lattice. Or we may think of a lattice approximation to a real gas, in which case the constituents are the particle numbers in the elementary cells of any partition of space. The central object is the Hamiltonian describing the interaction between these constituents. This interaction determines the relative energies between configurations that differ only microscopically. The equilibrium states with respect to the given interac- tion are described by the associated Gibbs measures. These are probability measures on the space of configurations which have prescribed conditional probabilities with respect to fixed configurations outside of finite regions. These conditional probabilities are given by the Boltzmann factor, the exponential of the inverse temperature times the relative energy. This allows one to compute, at least in principle, equilibrium expectations and spatial correlation functions following the standard Gibbs formalism. Most important are the so called extremal Gibbs measures since they describe the possible macrostates of our physical system. In such a state, macroscopic observables do not fluctuate while the correlation between local observations made far apart from each other decays to zero. Since the early days of statistical mechanics, geometric notions have played a role in elucidating certain aspects of the theory. This has taken many different forms. Ar- guably, the thermodynamic formalism, as first developed by Gibbs, already admits some geometric interpretations primarily related to convexity. For example, entropy is a concave function of the specific energy, the pressure is convex as a function of the interaction potential, the Legendre–Fenchel transformation relates various fundamental thermodynamic quantities to each other, and the set of Gibbs measures for an interac- tion is a simplex with vertices corresponding to the physically realized macrostates, the equilibrium phases. Here, however, we will not be concerned with this kind of convex geometry which is described in detail e.g. in the books by Israel [138] and Georgii [96]. Rather, the geometry considered here is a way of visualizing the structure in the typical realizations of the system’s constituents. To be more specific let us consider for a moment the case of the standard ferromagnetic Ising model on the square lattice. At each site we have a spin variable taking only two possible values, +1 and 1. The interaction is nearest- − neighbor and tends to align neighboring spins in the same direction. By the ingenious arguments first formulated in 1936 by Peierls [187] (see also [63, 213, 96]), the phase transition in this model can be understood from looking at the typical configurations of contours, i.e., the broken lines separating the domains with plus resp. minus spins. The plus phase (the positively magnetized phase) is realized by an infinite ocean of plus spins with finite islands of minus spins (which in turn may contain lakes of plus spins, and so on). On the other hand, above the Curie temperature (first computed by Onsager) there is no infinite path joining nearest neighbors with the same spin value. So, for this model the geometric picture is rather complete (as we will show later). In general, however, much less is known, and much less is true. Still, certain aspects of this geometric analysis have wide applications, at least in certain regimes of the phase diagram. These ‘certain regimes’ are, on the one hand, the high-temperature (or, in a 3 lattice gas setting, low-density) regime and, to the other extreme, the low temperature behavior. At high temperatures, all thermodynamic considerations are based on the fact that entropy dominates over energy. That is, the interaction between the constituents is not effective enough to enforce a macroscopic ordering of the system. As a result, every constituent is more or less free to behave at random, not much influenced by other constituents which are far apart. So, the system’s behavior is almost like that of a free system with independent components. This means, in particular, that in the center of a large box we will typically encounter more or less the same configurations no matter what boundary conditions outside this box are imposed. That is, if we compare two independent realizations of the system in the box with different boundary conditions outside then, still at high temperatures, the difference between the boundary conditions cannot be felt by the spins in the center of the box; specifically, there should not exist any path from the boundary to the central part of the box along which the spins of the two realizations disagree. This picture is rather robust and can for example also be applied when the interaction is random; see Sections 7 and 9. At low temperatures, or large densities (when the interaction is sufficiently strong), the picture above no longer holds. Rather, the specific characteristics of the interaction will come into play and determine the specific features of the low temperature phase. In many cases, the low temperature behavior can be described as a random perturbation of a ground state, i.e., of a fixed configuration of minimal energy. Then we can expect that at low temperatures, and sometimes even up to the critical temperature, the equilibrium phases are realized as a deterministic ground state configuration, perturbed by finite random islands on which the configuration disagrees with the ground state. This means that the ground state pattern can percolate through the space to infinity. One prominent way of confirming this picture is provided by the so called Pirogov–Sinai theory which is described in detail e.g. in [230]. In Section 8 we will discuss some other techniques of establishing the same geometric picture. It is evident from the above that percolation theory will play an important role in this text. In fact, we will mainly be concerned with dependent percolation, but one can say that independent percolation stands as a prototype for the study of statistical equilibrium properties in geometric terms. In independent percolation, the model is extremely simple: the components are binary-valued and independent from each other. What is hard is the type of question one asks, namely the question of existence of infinite paths of 1’s and their geometry. We will introduce percolation below but refer to other publications (such as the book by Grimmett [108]) for a systematic account of the theory. Percolation will come into play here on various levels. Its concepts like clusters, open paths, connectedness
Recommended publications
  • Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures
    Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures Leandro Cioletti Artur O. Lopes Departamento de Matem´atica - UnB Departamento de Matem´atica - UFRGS 70910-900, Bras´ılia, Brazil 91509-900, Porto Alegre, Brazil [email protected] [email protected] Manuel Stadlbauer Departamento de Matem´atica - UFRJ 21941-909, Rio de Janeiro, Brazil [email protected] October 25, 2019 Abstract In this work we study the Ruelle Operator associated to a continuous potential defined on a countable product of a compact metric space. We prove a generaliza- tion of Bowen’s criterion for the uniqueness of the eigenmeasures. One of the main results of the article is to show that a probability is DLR-Gibbs (associated to a continuous translation invariant specification), if and only if, is an eigenprobability for the transpose of the Ruelle operator. Bounded extensions of the Ruelle operator to the Lebesgue space of integrable functions, with respect to the eigenmeasures, are studied and the problem of exis- tence of maximal positive eigenfunctions for them is considered. One of our main results in this direction is the existence of such positive eigenfunctions for Bowen’s potential in the setting of a compact and metric alphabet. We also present a version of Dobrushin’s Theorem in the setting of Thermodynamic Formalism. Keywords: Thermodynamic Formalism, Ruelle operator, continuous potentials, Eigenfunc- tions, Equilibrium states, DLR-Gibbs Measures, uncountable alphabet. arXiv:1608.03881v6 [math.DS] 24 Oct 2019 MSC2010: 37D35, 28Dxx, 37C30. 1 Introduction The classical Ruelle operator needs no introduction and nowadays is a key concept of Thermodynamic Formalism.
    [Show full text]
  • The Ising Model
    The Ising Model Today we will switch topics and discuss one of the most studied models in statistical physics the Ising Model • Some applications: – Magnetism (the original application) – Liquid-gas transition – Binary alloys (can be generalized to multiple components) • Onsager solved the 2D square lattice (1D is easy!) • Used to develop renormalization group theory of phase transitions in 1970’s. • Critical slowing down and “cluster methods”. Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000. Atomic Scale Simulation 1 The Model • Consider a lattice with L2 sites and their connectivity (e.g. a square lattice). • Each lattice site has a single spin variable: si = ±1. • With magnetic field h, the energy is: N −β H H = −∑ Jijsis j − ∑ hisi and Z = ∑ e ( i, j ) i=1 • J is the nearest neighbors (i,j) coupling: – J > 0 ferromagnetic. – J < 0 antiferromagnetic. • Picture of spins at the critical temperature Tc. (Note that connected (percolated) clusters.) Atomic Scale Simulation 2 Mapping liquid-gas to Ising • For liquid-gas transition let n(r) be the density at lattice site r and have two values n(r)=(0,1). E = ∑ vijnin j + µ∑ni (i, j) i • Let’s map this into the Ising model spin variables: 1 s = 2n − 1 or n = s + 1 2 ( ) v v + µ H s s ( ) s c = ∑ i j + ∑ i + 4 (i, j) 2 i J = −v / 4 h = −(v + µ) / 2 1 1 1 M = s n = n = M + 1 N ∑ i N ∑ i 2 ( ) i i Atomic Scale Simulation 3 JAVA Ising applet http://physics.weber.edu/schroeder/software/demos/IsingModel.html Dynamically runs using heat bath algorithm.
    [Show full text]
  • The Dobrushin Comparison Theorem Is a Powerful Tool to Bound The
    COMPARISON THEOREMS FOR GIBBS MEASURES∗ BY PATRICK REBESCHINI AND RAMON VAN HANDEL Princeton University The Dobrushin comparison theorem is a powerful tool to bound the dif- ference between the marginals of high-dimensional probability distributions in terms of their local specifications. Originally introduced to prove unique- ness and decay of correlations of Gibbs measures, it has been widely used in statistical mechanics as well as in the analysis of algorithms on random fields and interacting Markov chains. However, the classical comparison theorem requires validity of the Dobrushin uniqueness criterion, essentially restricting its applicability in most models to a small subset of the natural parameter space. In this paper we develop generalized Dobrushin comparison theorems in terms of influences between blocks of sites, in the spirit of Dobrushin- Shlosman and Weitz, that substantially extend the range of applicability of the classical comparison theorem. Our proofs are based on the analysis of an associated family of Markov chains. We develop in detail an application of our main results to the analysis of sequential Monte Carlo algorithms for filtering in high dimension. CONTENTS 1 Introduction . .2 2 Main Results . .4 2.1 Setting and notation . .4 2.2 Main result . .6 2.3 The classical comparison theorem . .8 2.4 Alternative assumptions . .9 2.5 A one-sided comparison theorem . 11 3 Proofs . 12 3.1 General comparison principle . 13 3.2 Gibbs samplers . 14 3.3 Proof of Theorem 2.4................................. 18 3.4 Proof of Corollary 2.8................................. 23 3.5 Proof of Theorem 2.12................................ 25 4 Application: Particle Filters .
    [Show full text]
  • Arxiv:1511.03031V2
    submitted to acta physica slovaca 1– 133 A BRIEF ACCOUNT OF THE ISING AND ISING-LIKE MODELS: MEAN-FIELD, EFFECTIVE-FIELD AND EXACT RESULTS Jozef Streckaˇ 1, Michal Jasˇcurˇ 2 Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Saf´arikˇ University, Park Angelinum 9, 040 01 Koˇsice, Slovakia The present article provides a tutorial review on how to treat the Ising and Ising-like models within the mean-field, effective-field and exact methods. The mean-field approach is illus- trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean- field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate a change of continuous phase transitions to discontinuous ones at a tricritical point. A con- tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic field is also explored within the mean-field method. The effective-field theory is elaborated within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap- proximate method, which affords superior approximate results with respect to the mean-field results. The long-standing problem of this method concerned with a self-consistent deter- mination of the free energy is also addressed in detail. More specifically, the effective-field theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel model in a longitudinal field and the spin-1/2 Ising model in a transverse field.
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html.
    [Show full text]
  • Lecture 8: the Ising Model Introduction
    Lecture 8: The Ising model Introduction I Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation) I Common to them: No interactions I Add interactions now, with significant role I Immediate consequence: much richer structure in model, in particular: phase transitions I Simulate interactions with RNG (Monte Carlo method) I Include the impact of temperature: ideas from thermodynamics and statistical mechanics important I Simple system as example: coupled spins (see below), will use the canonical ensemble for its description The Ising model I A very interesting model for understanding some properties of magnetic materials, especially the phase transition ferromagnetic ! paramagnetic I Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other I Ising model a superb toy model to understand this dynamics I Has been invented in the 1920's by E.Ising I Ever since treated as a first, paradigmatic model The model (in 2 dimensions) I Consider a square lattice with spins at each lattice site I Spins can have two values: si = ±1 I Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1=r 3) I Energy of the system: P E = −J si sj hiji I Here: exchange constant J > 0 (for ferromagnets), and hiji denotes pairs of nearest neighbours. I (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy Eα. I Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel Adding temperature I Without temperature T : Story over.
    [Show full text]
  • Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
    Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals.
    [Show full text]
  • Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales
    Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales Michel Bauer a, Denis Bernard a 1, Kalle Kyt¨ol¨a b [email protected]; [email protected]; [email protected] a Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´ede recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France. b Department of Mathematics, P.O. Box 68 FIN-00014 University of Helsinki, Finland. Abstract A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at critical- ity. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general arXiv:math-ph/0503024v2 21 Mar 2005 ideas on concrete computations, with applications to percolation and the Ising model. 1Member of C.N.R.S 1 Contents 1 Introduction 3 2 Basics of Schramm-L¨owner evolutions: Chordal SLE 6 3 A proposal for multiple SLEs 7 3.1 Thebasicequations ....................... 7 3.2 Archprobabilities......................... 8 4 First comments 10 4.1 Statistical mechanics interpretation . 10 4.2 SLEasaspecialcaseof2SLE. 10 4.3 Makingsense ........................... 12 4.4 A few martingales for nSLEs .................. 13 4.5 Classicallimit........................... 14 4.6 Relations with other work . 15 5 CFT background 16 6 Martingales from statistical mechanics 19 6.1 Tautological martingales .
    [Show full text]
  • Continuum Percolation for Gibbs Point Processes Dominated by a Poisson Process, and Then We Use the Percolation Results Available for Poisson Processes
    Electron. Commun. Probab. 18 (2013), no. 67, 1–10. ELECTRONIC DOI: 10.1214/ECP.v18-2837 COMMUNICATIONS ISSN: 1083-589X in PROBABILITY Continuum percolation for Gibbs point processes∗ Kaspar Stuckiy Abstract We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. Keywords: Gibbs point process; Percolation; Boolean model; Conditional intensity. AMS MSC 2010: 60G55; 60K35. Submitted to ECP on May 29, 2013, final version accepted on August 1, 2013. Supersedes arXiv:1305.0492v1. 1 Introduction Let Ξ be a point process in Rd, d ≥ 2, and fix a R > 0. Consider the random S B B set ZR(Ξ) = x2Ξ R(x), where R(x) denotes the open ball with radius R around x. Each connected component of ZR(Ξ) is called a cluster. We say that Ξ percolates (or R-percolates) if ZR(Ξ) contains with positive probability an infinite cluster. In the terminology of [9] this is a Boolean percolation model driven by Ξ and deterministic radius distribution R. It is well-known that for Poisson processes there exists a critical intensity βc such that a Poisson processes with intensity β > βc percolates a.s. and if β < βc there is a.s. no percolation, see e.g. [17], or [14] for a more general Poisson percolation model. For Gibbs point processes the situation is less clear. In [13] it is shown that for some | downloaded: 28.9.2021 two-dimensional pairwise interacting models with an attractive tail, percolation occurs if the activity parameter is large enough, see also [1] for a similar result concerning the Strauss hard core process in two dimensions.
    [Show full text]
  • Markov Random Fields and Stochastic Image Models
    Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i.
    [Show full text]
  • Mean-Field Monomer-Dimer Models. a Review. 3
    Mean-Field Monomer-Dimer models. A review. Diego Alberici, Pierluigi Contucci, Emanuele Mingione University of Bologna - Department of Mathematics Piazza di Porta San Donato 5, Bologna (Italy) E-mail: [email protected], [email protected], [email protected] To Chuck Newman, on his 70th birthday Abstract: A collection of rigorous results for a class of mean-field monomer- dimer models is presented. It includes a Gaussian representation for the partition function that is shown to considerably simplify the proofs. The solutions of the quenched diluted case and the random monomer case are explained. The presence of the attractive component of the Van der Waals potential is considered and the coexistence phase coexistence transition analysed. In particular the breakdown of the central limit theorem is illustrated at the critical point where a non Gaussian, quartic exponential distribution is found for the number of monomers centered and rescaled with the volume to the power 3/4. 1. Introduction The monomer-dimer models, an instance in the wide set of interacting particle systems, have a relevant role in equilibrium statistical mechanics. They were introduced to describe, in a simplified yet effective way, the process of absorption of monoatomic or diatomic molecules in condensed-matter physics [15,16,39] or the behaviour of liquid solutions composed by molecules of different sizes [25]. Exact solutions in specific cases (e.g. the perfect matching problem) have been obtained on planar lattices [24,26,34,36,41] and the problem on regular lattices is arXiv:1612.09181v1 [math-ph] 29 Dec 2016 also interesting for the liquid crystals modelling [1,20,27,31,37].
    [Show full text]
  • Markov Random Fields and Gibbs Measures
    Markov Random Fields and Gibbs Measures Oskar Sandberg December 15, 2004 1 Introduction A Markov random field is a name given to a natural generalization of the well known concept of a Markov chain. It arrises by looking at the chain itself as a very simple graph, and ignoring the directionality implied by “time”. A Markov chain can then be seen as a chain graph of stochastic variables, where each variable has the property that it is independent of all the others (the future and past) given its two neighbors. With this view of a Markov chain in mind, a Markov random field is the same thing, only that rather than a chain graph, we allow any graph structure to define the relationship between the variables. So we define a set of stochastic variables, such that each is independent of all the others given its neighbors in a graph. Markov random fields can be defined both for discrete and more complicated valued random variables. They can also be defined for continuous index sets, in which case more complicated neighboring relationships take the place of the graph. In what follows, however, we will look only at the most appro- achable cases with discrete index sets, and random variables with finite state spaces (for the most part, the state space will simply be {0, 1}). For a more general treatment see for instance [Rozanov]. 2 Definitions 2.1 Markov Random Fields Let X1, ...Xn be random variables taking values in some finite set S, and let G = (N, E) be a finite graph such that N = {1, ..., n}, whose elements will 1 sometime be called sites.
    [Show full text]