A Note on Gibbs and Markov Random Fields with Constraints and Their Moments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures
Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures Leandro Cioletti Artur O. Lopes Departamento de Matem´atica - UnB Departamento de Matem´atica - UFRGS 70910-900, Bras´ılia, Brazil 91509-900, Porto Alegre, Brazil [email protected] [email protected] Manuel Stadlbauer Departamento de Matem´atica - UFRJ 21941-909, Rio de Janeiro, Brazil [email protected] October 25, 2019 Abstract In this work we study the Ruelle Operator associated to a continuous potential defined on a countable product of a compact metric space. We prove a generaliza- tion of Bowen’s criterion for the uniqueness of the eigenmeasures. One of the main results of the article is to show that a probability is DLR-Gibbs (associated to a continuous translation invariant specification), if and only if, is an eigenprobability for the transpose of the Ruelle operator. Bounded extensions of the Ruelle operator to the Lebesgue space of integrable functions, with respect to the eigenmeasures, are studied and the problem of exis- tence of maximal positive eigenfunctions for them is considered. One of our main results in this direction is the existence of such positive eigenfunctions for Bowen’s potential in the setting of a compact and metric alphabet. We also present a version of Dobrushin’s Theorem in the setting of Thermodynamic Formalism. Keywords: Thermodynamic Formalism, Ruelle operator, continuous potentials, Eigenfunc- tions, Equilibrium states, DLR-Gibbs Measures, uncountable alphabet. arXiv:1608.03881v6 [math.DS] 24 Oct 2019 MSC2010: 37D35, 28Dxx, 37C30. 1 Introduction The classical Ruelle operator needs no introduction and nowadays is a key concept of Thermodynamic Formalism. -
Probabilistic and Geometric Methods in Last Passage Percolation
Probabilistic and geometric methods in last passage percolation by Milind Hegde A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alan Hammond, Co‐chair Professor Shirshendu Ganguly, Co‐chair Professor Fraydoun Rezakhanlou Professor Alistair Sinclair Spring 2021 Probabilistic and geometric methods in last passage percolation Copyright 2021 by Milind Hegde 1 Abstract Probabilistic and geometric methods in last passage percolation by Milind Hegde Doctor of Philosophy in Mathematics University of California, Berkeley Professor Alan Hammond, Co‐chair Professor Shirshendu Ganguly, Co‐chair Last passage percolation (LPP) refers to a broad class of models thought to lie within the Kardar‐ Parisi‐Zhang universality class of one‐dimensional stochastic growth models. In LPP models, there is a planar random noise environment through which directed paths travel; paths are as‐ signed a weight based on their journey through the environment, usually by, in some sense, integrating the noise over the path. For given points y and x, the weight from y to x is defined by maximizing the weight over all paths from y to x. A path which achieves the maximum weight is called a geodesic. A few last passage percolation models are exactly solvable, i.e., possess what is called integrable structure. This gives rise to valuable information, such as explicit probabilistic resampling prop‐ erties, distributional convergence information, or one point tail bounds of the weight profile as the starting point y is fixed and the ending point x varies. -
Processes on Complex Networks. Percolation
Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation. -
The Dobrushin Comparison Theorem Is a Powerful Tool to Bound The
COMPARISON THEOREMS FOR GIBBS MEASURES∗ BY PATRICK REBESCHINI AND RAMON VAN HANDEL Princeton University The Dobrushin comparison theorem is a powerful tool to bound the dif- ference between the marginals of high-dimensional probability distributions in terms of their local specifications. Originally introduced to prove unique- ness and decay of correlations of Gibbs measures, it has been widely used in statistical mechanics as well as in the analysis of algorithms on random fields and interacting Markov chains. However, the classical comparison theorem requires validity of the Dobrushin uniqueness criterion, essentially restricting its applicability in most models to a small subset of the natural parameter space. In this paper we develop generalized Dobrushin comparison theorems in terms of influences between blocks of sites, in the spirit of Dobrushin- Shlosman and Weitz, that substantially extend the range of applicability of the classical comparison theorem. Our proofs are based on the analysis of an associated family of Markov chains. We develop in detail an application of our main results to the analysis of sequential Monte Carlo algorithms for filtering in high dimension. CONTENTS 1 Introduction . .2 2 Main Results . .4 2.1 Setting and notation . .4 2.2 Main result . .6 2.3 The classical comparison theorem . .8 2.4 Alternative assumptions . .9 2.5 A one-sided comparison theorem . 11 3 Proofs . 12 3.1 General comparison principle . 13 3.2 Gibbs samplers . 14 3.3 Proof of Theorem 2.4................................. 18 3.4 Proof of Corollary 2.8................................. 23 3.5 Proof of Theorem 2.12................................ 25 4 Application: Particle Filters . -
Probability on Graphs Random Processes on Graphs and Lattices
Probability on Graphs Random Processes on Graphs and Lattices GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 44 Figures c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Contents Preface ix 1 Random walks on graphs 1 1.1 RandomwalksandreversibleMarkovchains 1 1.2 Electrical networks 3 1.3 Flowsandenergy 8 1.4 Recurrenceandresistance 11 1.5 Polya's theorem 14 1.6 Graphtheory 16 1.7 Exercises 18 2 Uniform spanning tree 21 2.1 De®nition 21 2.2 Wilson's algorithm 23 2.3 Weak limits on lattices 28 2.4 Uniform forest 31 2.5 Schramm±LownerevolutionsÈ 32 2.6 Exercises 37 3 Percolation and self-avoiding walk 39 3.1 Percolationandphasetransition 39 3.2 Self-avoiding walks 42 3.3 Coupledpercolation 45 3.4 Orientedpercolation 45 3.5 Exercises 48 4 Association and in¯uence 50 4.1 Holley inequality 50 4.2 FKGinequality 53 4.3 BK inequality 54 4.4 Hoeffdinginequality 56 c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 vi Contents 4.5 In¯uenceforproductmeasures 58 4.6 Proofsofin¯uencetheorems 63 4.7 Russo'sformulaandsharpthresholds 75 4.8 Exercises 78 5 Further percolation 81 5.1 Subcritical phase 81 5.2 Supercritical phase 86 5.3 Uniquenessofthein®nitecluster 92 5.4 Phase transition 95 5.5 Openpathsinannuli 99 5.6 The critical probability in two dimensions 103 5.7 Cardy's formula 110 5.8 The -
Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. -
Continuum Percolation for Gibbs Point Processes Dominated by a Poisson Process, and Then We Use the Percolation Results Available for Poisson Processes
Electron. Commun. Probab. 18 (2013), no. 67, 1–10. ELECTRONIC DOI: 10.1214/ECP.v18-2837 COMMUNICATIONS ISSN: 1083-589X in PROBABILITY Continuum percolation for Gibbs point processes∗ Kaspar Stuckiy Abstract We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. Keywords: Gibbs point process; Percolation; Boolean model; Conditional intensity. AMS MSC 2010: 60G55; 60K35. Submitted to ECP on May 29, 2013, final version accepted on August 1, 2013. Supersedes arXiv:1305.0492v1. 1 Introduction Let Ξ be a point process in Rd, d ≥ 2, and fix a R > 0. Consider the random S B B set ZR(Ξ) = x2Ξ R(x), where R(x) denotes the open ball with radius R around x. Each connected component of ZR(Ξ) is called a cluster. We say that Ξ percolates (or R-percolates) if ZR(Ξ) contains with positive probability an infinite cluster. In the terminology of [9] this is a Boolean percolation model driven by Ξ and deterministic radius distribution R. It is well-known that for Poisson processes there exists a critical intensity βc such that a Poisson processes with intensity β > βc percolates a.s. and if β < βc there is a.s. no percolation, see e.g. [17], or [14] for a more general Poisson percolation model. For Gibbs point processes the situation is less clear. In [13] it is shown that for some | downloaded: 28.9.2021 two-dimensional pairwise interacting models with an attractive tail, percolation occurs if the activity parameter is large enough, see also [1] for a similar result concerning the Strauss hard core process in two dimensions. -
Mean-Field Monomer-Dimer Models. a Review. 3
Mean-Field Monomer-Dimer models. A review. Diego Alberici, Pierluigi Contucci, Emanuele Mingione University of Bologna - Department of Mathematics Piazza di Porta San Donato 5, Bologna (Italy) E-mail: [email protected], [email protected], [email protected] To Chuck Newman, on his 70th birthday Abstract: A collection of rigorous results for a class of mean-field monomer- dimer models is presented. It includes a Gaussian representation for the partition function that is shown to considerably simplify the proofs. The solutions of the quenched diluted case and the random monomer case are explained. The presence of the attractive component of the Van der Waals potential is considered and the coexistence phase coexistence transition analysed. In particular the breakdown of the central limit theorem is illustrated at the critical point where a non Gaussian, quartic exponential distribution is found for the number of monomers centered and rescaled with the volume to the power 3/4. 1. Introduction The monomer-dimer models, an instance in the wide set of interacting particle systems, have a relevant role in equilibrium statistical mechanics. They were introduced to describe, in a simplified yet effective way, the process of absorption of monoatomic or diatomic molecules in condensed-matter physics [15,16,39] or the behaviour of liquid solutions composed by molecules of different sizes [25]. Exact solutions in specific cases (e.g. the perfect matching problem) have been obtained on planar lattices [24,26,34,36,41] and the problem on regular lattices is arXiv:1612.09181v1 [math-ph] 29 Dec 2016 also interesting for the liquid crystals modelling [1,20,27,31,37]. -
Universal Scaling Behavior of Non-Equilibrium Phase Transitions
Universal scaling behavior of non-equilibrium phase transitions Sven L¨ubeck Theoretische Physik, Univerit¨at Duisburg-Essen, 47048 Duisburg, Germany, [email protected] December 2004 arXiv:cond-mat/0501259v1 [cond-mat.stat-mech] 11 Jan 2005 Summary Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions become identical near the critical point. It is known that the scaling functions vary more widely between different uni- versality classes than the exponents. Thus, universal scaling functions offer a sensitive and accurate test for a system’s universality class. On the other hand, universal scaling functions demonstrate the robustness of a given universality class impressively. Unfor- tunately, most studies focus on the determination of the critical exponents, neglecting the universal scaling functions. In this work a particular class of non-equilibrium critical phenomena is considered, the so-called absorbing phase transitions. Absorbing phase transitions are expected to occur in physical, chemical as well as biological systems, and a detailed introduc- tion is presented. The universal scaling behavior of two different universality classes is analyzed in detail, namely the directed percolation and the Manna universality class. Especially, directed percolation is the most common universality class of absorbing phase transitions. The presented picture gallery of universal scaling functions includes steady state, dynamical as well as finite size scaling functions. -
Percolation Theory Are Well-Suited To
Models of Disordered Media and Predictions of Associated Hydraulic Conductivity A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By L AARON BLANK B.S., Wright State University, 2004 2006 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Novermber 6, 2006 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY L Blank ENTITLED Models of Disordered Media and Predictions of Associated Hydraulic Conductivity BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________ Allen Hunt, Ph.D. Thesis Advisor _______________________ Lok Lew Yan Voon, Ph.D. Department Chair _______________________ Joseph F. Thomas, Jr., Ph.D. Dean of the School of Graduate Studies Committee on Final Examination ____________________ Allen Hunt, Ph.D. ____________________ Brent D. Foy, Ph.D. ____________________ Gust Bambakidis, Ph.D. ____________________ Thomas Skinner, Ph.D. Abstract In the late 20th century there was a spill of Technetium in eastern Washington State at the US Department of Energy Hanford site. Resulting contamination of water supplies would raise serious health issues for local residents. Therefore, the ability to predict how these contaminants move through the soil is of great interest. The main contribution to contaminant transport arises from being carried along by flowing water. An important control on the movement of the water through the medium is the hydraulic conductivity, K, which defines the ease of water flow for a given pressure difference (analogous to the electrical conductivity). The overall goal of research in this area is to develop a technique which accurately predicts the hydraulic conductivity as well as its distribution, both in the horizontal and the vertical directions, for media representative of the Hanford subsurface. -
Markov Random Fields and Gibbs Measures
Markov Random Fields and Gibbs Measures Oskar Sandberg December 15, 2004 1 Introduction A Markov random field is a name given to a natural generalization of the well known concept of a Markov chain. It arrises by looking at the chain itself as a very simple graph, and ignoring the directionality implied by “time”. A Markov chain can then be seen as a chain graph of stochastic variables, where each variable has the property that it is independent of all the others (the future and past) given its two neighbors. With this view of a Markov chain in mind, a Markov random field is the same thing, only that rather than a chain graph, we allow any graph structure to define the relationship between the variables. So we define a set of stochastic variables, such that each is independent of all the others given its neighbors in a graph. Markov random fields can be defined both for discrete and more complicated valued random variables. They can also be defined for continuous index sets, in which case more complicated neighboring relationships take the place of the graph. In what follows, however, we will look only at the most appro- achable cases with discrete index sets, and random variables with finite state spaces (for the most part, the state space will simply be {0, 1}). For a more general treatment see for instance [Rozanov]. 2 Definitions 2.1 Markov Random Fields Let X1, ...Xn be random variables taking values in some finite set S, and let G = (N, E) be a finite graph such that N = {1, ..., n}, whose elements will 1 sometime be called sites. -
Percolation Theory Applied to Financial Markets: a Cluster Description of Herding Behavior Leading to Bubbles and Crashes
Percolation Theory Applied to Financial Markets: A Cluster Description of Herding Behavior Leading to Bubbles and Crashes Master's Thesis Maximilian G. A. Seyrich February 20, 2015 Advisor: Professor Didier Sornette Chair of Entrepreneurial Risk Department of Physics Department MTEC ETH Zurich Abstract In this thesis, we clarify the herding effect due to cluster dynamics of traders. We provide a framework which is able to derive the crash hazard rate of the Johannsen-Ledoit-Sornette model (JLS) as a power law diverging function of the percolation scaling parameter. Using this framework, we are able to create reasonable bubbles and crashes in price time series. We present a variety of different kinds of bubbles and crashes and provide insights into the dynamics of financial mar- kets. Our simulations show that most of the time, a crash is preceded by a bubble. Yet, a bubble must not end with a crash. The time of a crash is a random variable, being simulated by a Poisson process. The crash hazard rate plays the role of the intensity function. The headstone of this thesis is a new description of the crash hazard rate. Recently dis- covered super-linear relations between groups sizes and group activi- ties, as well as percolation theory, are applied to the Cont-Bouchaud cluster dynamics model. i Contents Contents iii 1 Motivation1 2 Models & Methods3 2.1 The Johanson-Ledoit-Sornette (JLS) Model........... 3 2.2 Percolation theory.......................... 6 2.2.1 Introduction......................... 6 2.2.2 Percolation Point and Cluster Number......... 7 2.2.3 Finite Size Effects...................... 8 2.3 Ising Model ............................