Distribution Dependent Stochastic Differential Equations∗ Xing Huanga), Panpan Renb), Feng-Yu Wanga) a) Center for Applied Mathematics, Tianjin University, Tianjin 300072, China b) Department of Mathematics, City University of HongKong, HongKong, China
[email protected],
[email protected],
[email protected] December 29, 2020 Abstract Due to their intrinsic link with nonlinear Fokker-Planck equations and many other applications, distribution dependent stochastic differential equations (DDSDEs for short) have been intensively investigated. In this paper we summarize some recent progresses in the study of DDSDEs, which include the correspondence of weak solutions and nonlinear Fokker-Planck equations, the well-posedness, regularity estimates, exponential ergodicity, long time large deviations, and comparison theorems. AMS subject Classification: 60B05, 60B10. Keywords: DDSDE, nonlinear Fokker-Planck equation, Bismut formula, Wasserstein distance, gradient estimate. arXiv:2012.13656v1 [math.PR] 26 Dec 2020 1 Introduction To characterize nonlinear PDEs in Vlasov’s kinetic theory, Kac [27, 28] proposed the “propagation of chaos” of mean field particle systems, which stimulated McKean [33] to study nonlinear Fokker-Planck equations using stochastic differential equations with distribution dependent drifts, see [45] for a theory on mean field particle systems and applications. In general, a nonlinear Fokker-Planck equation can be characterized by the following distri- bution dependent stochastic differential equations (DDSDEs for short): L L (1.1) dXt = b(t, Xt, Xt )dt + σ(t, Xt, Xt )dWt, ∗Supported in part by NNSFC (11771326, 11831014, 11921001, 11801406). 1 where Wt is an m-dimensional Brownian motion on a complete filtration probability space (Ω, F , P), L is the distribution (i.e.