The Potts Model and Tutte Polynomial, and Associated Connections Between Statistical Mechanics and Graph Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tutte Polynomials for Trees
Tutte Polynomials for Trees Sharad Chaudhary DEPARTMENT OF MATHEMATICS DUKE UNIVERSITY DURHAM, NORTH CAROLINA Gary Gordon DEPARTMENT OF MATHEMATICS LAFAYETTE COLLEGE EASTON, PENNSYLVANIA ABSTRACT We define two two-variable polynomials for rooted trees and one two- variable polynomial for unrooted trees, all of which are based on the corank- nullity formulation of the Tutte polynomial of a graph or matroid. For the rooted polynomials, we show that the polynomial completely determines the rooted tree, i.e., rooted trees TI and T, are isomorphic if and only if f(T,) = f(T2).The corresponding question is open in the unrooted case, al- though we can reconstruct the degree sequence, number of subtrees of size k for all k, and the number of paths of length k for all k from the (unrooted) polynomial. The key difference between these three poly- nomials and the standard Tutte polynomial is the rank function used; we use pruning and branching ranks to define the polynomials. We also give a subtree expansion of the polynomials and a deletion-contraction recursion they satisfy. 1. INTRODUCTION In this paper, we are concerned with defining and investigating two-variable polynomials for trees and rooted trees that are motivated by the Tutte poly- nomial. The Tutte polynomial, a two-variable polynomial defined for a graph or a matroid, has been studied extensively over the past few decades. The fundamental ideas are traceable to Veblen [9], Birkhoff [l], Whitney [lo], and Tutte [8], who were concerned with colorings and flows in graphs. The chromatic polynomial of a graph is a special case of the Tutte polynomial. -
Image Segmentation Combining Markov Random Fields and Dirichlet Processes
ANR meeting Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO ANR meeting 1 / 28 ANR meeting Plan 1 Introduction 2 Segmentation using DP models Mixed MRF / DP model Inference : Swendsen-Wang algorithm 3 Hierarchical segmentation with shared classes Principle HDP theory 4 Conclusion and perspective Jessica SODJO ANR meeting 2 / 28 ANR meeting Introduction Segmentation – partition of an image in K homogeneous regions called classes – label the pixels : pixel i $ zi 2 f1;:::; K g Bayesian approach – prior on the distribution of the pixels – all the pixels in a class have the same distribution characterized by a parameter vector Uk – Markov Random Fields (MRF) : exploit the similarity of pixels in the same neighbourhood Constraint : K must be fixed a priori Idea : use the BNP models to directly estimate K Jessica SODJO ANR meeting 3 / 28 ANR meeting Segmentation using DP models Plan 1 Introduction 2 Segmentation using DP models Mixed MRF / DP model Inference : Swendsen-Wang algorithm 3 Hierarchical segmentation with shared classes Principle HDP theory 4 Conclusion and perspective Jessica SODJO ANR meeting 4 / 28 ANR meeting Segmentation using DP models Notations – N is the number of pixels – Y is the observed image – Z = fz1;:::; zN g – Π = fA1;:::; AK g is a partition and m = fm1;:::; mK g with mk = jAk j A1 A2 m1 = 1 m2 = 5 A3 m3 = 6 mK = 4 AK FIGURE: Example of partition Jessica SODJO ANR -
Lecturenotes 4 MCMC I – Contents
Lecturenotes 4 MCMC I – Contents 1. Statistical Physics and Potts Models 2. Sampling and Re-weighting 3. Importance Sampling and Markov Chain Monte Carlo 4. The Metropolis Algorithm 5. The Heatbath Algorithm (Gibbs Sampler) 6. Start and Equilibration 7. Energy Checks 8. Specific Heat 1 Statistical Physics and Potts Model MC simulations of systems described by the Gibbs canonical ensemble aim at calculating estimators of physical observables at a temperature T . In the following we choose units so that β = 1/T and consider the calculation of the expectation value of an observable O. Mathematically all systems on a computer are discrete, because a finite word length has to be used. Hence, K X (k) Ob = Ob(β) = hOi = Z−1 O(k) e−β E (1) k=1 K X (k) where Z = Z(β) = e−β E (2) k=1 is the partition function. The index k = 1,...,K labels all configurations (or microstates) of the system, and E(k) is the (internal) energy of configuration k. To distinguish the configuration index from other indices, it is put in parenthesis. 2 We introduce generalized Potts models in an external magnetic field on d- dimensional hypercubic lattices with periodic boundary conditions. Without being overly complicated, these models are general enough to illustrate the essential features we are interested in. In addition, various subcases of these models are by themselves of physical interest. Generalizations of the algorithmic concepts to other models are straightforward, although technical complications may arise. We define the energy function of the system by (k) (k) (k) −β E = −β E0 + HM (3) where (k) X (k) (k) (k) (k) 2 d N E = −2 J (q , q ) δ(q , q ) + (4) 0 ij i j i j q hiji N 1 for qi = qj (k) X (k) with δ(qi, qj) = and M = 2 δ(1, qi ) . -
Mathematisches Forschungsinstitut Oberwolfach Scaling Limits in Models of Statistical Mechanics
Mathematisches Forschungsinstitut Oberwolfach Report No. 41/2018 DOI: 10.4171/OWR/2018/41 Scaling Limits in Models of Statistical Mechanics Organised by Dmitry Ioffe, Haifa Gady Kozma, Rehovot Fabio Toninelli, Lyon 9 September – 15 September 2018 Abstract. This conference (part of a long running series) aims to cover the interplay between probability and mathematical statistical mechanics. Specific topics addressed during the 22 talks include: Universality and critical phenomena, disordered models, Gaussian free field (GFF), random planar graphs and unimodular planar maps, reinforced random walks and non-linear σ-models, non-equilibrium dynamics. Less stress is given to topics which have running series of Oberwolfach conferences devoted to them specifically, such as random matrices or integrable models and KPZ universality class. There were 50 participants, including 9 postdocs and graduate students, working in diverse intertwining areas of probability, statistical mechanics and mathematical physics. Subject classification: MSC: 60,82; IMU: 10,13. Introduction by the Organisers This workshop was a sequel to a MFO conference, by the same organizers, which took place in 2015. More broadly, it is a sequel to MFO conferences in 2006, 2009 and 2012, organised by Ken Alexander, Marek Biskup, Remco van der Hofstad and Vladas Sidoravicius. The main focus of the conference remained on probabilistic and analytic methods of non-integrable statistical mechanics. With respect to the previous editions, greater emphasis was put on statistical mechanics models on groups and general graphs, as a lot has happened in this arena recently. The list of 50 participants reflects our attempts to maintain an optimal balance between diverse fields, leading experts and promising young researchers. -
The Ising Model
The Ising Model Today we will switch topics and discuss one of the most studied models in statistical physics the Ising Model • Some applications: – Magnetism (the original application) – Liquid-gas transition – Binary alloys (can be generalized to multiple components) • Onsager solved the 2D square lattice (1D is easy!) • Used to develop renormalization group theory of phase transitions in 1970’s. • Critical slowing down and “cluster methods”. Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000. Atomic Scale Simulation 1 The Model • Consider a lattice with L2 sites and their connectivity (e.g. a square lattice). • Each lattice site has a single spin variable: si = ±1. • With magnetic field h, the energy is: N −β H H = −∑ Jijsis j − ∑ hisi and Z = ∑ e ( i, j ) i=1 • J is the nearest neighbors (i,j) coupling: – J > 0 ferromagnetic. – J < 0 antiferromagnetic. • Picture of spins at the critical temperature Tc. (Note that connected (percolated) clusters.) Atomic Scale Simulation 2 Mapping liquid-gas to Ising • For liquid-gas transition let n(r) be the density at lattice site r and have two values n(r)=(0,1). E = ∑ vijnin j + µ∑ni (i, j) i • Let’s map this into the Ising model spin variables: 1 s = 2n − 1 or n = s + 1 2 ( ) v v + µ H s s ( ) s c = ∑ i j + ∑ i + 4 (i, j) 2 i J = −v / 4 h = −(v + µ) / 2 1 1 1 M = s n = n = M + 1 N ∑ i N ∑ i 2 ( ) i i Atomic Scale Simulation 3 JAVA Ising applet http://physics.weber.edu/schroeder/software/demos/IsingModel.html Dynamically runs using heat bath algorithm. -
Computing Tutte Polynomials
Computing Tutte Polynomials Gary Haggard1, David J. Pearce2, and Gordon Royle3 1 Bucknell University [email protected] 2 Computer Science Group, Victoria University of Wellington, [email protected] 3 School of Mathematics and Statistics, University of Western Australia [email protected] Abstract. The Tutte polynomial of a graph, also known as the partition function of the q-state Potts model, is a 2-variable polynomial graph in- variant of considerable importance in both combinatorics and statistical physics. It contains several other polynomial invariants, such as the chro- matic polynomial and flow polynomial as partial evaluations, and various numerical invariants such as the number of spanning trees as complete evaluations. However despite its ubiquity, there are no widely-available effective computational tools able to compute the Tutte polynomial of a general graph of reasonable size. In this paper we describe the implemen- tation of a program that exploits isomorphisms in the computation tree to extend the range of graphs for which it is feasible to compute their Tutte polynomials. We also consider edge-selection heuristics which give good performance in practice. We empirically demonstrate the utility of our program on random graphs. More evidence of its usefulness arises from our success in finding counterexamples to a conjecture of Welsh on the location of the real flow roots of a graph. 1 Introduction The Tutte polynomial of a graph is a 2-variable polynomial of significant im- portance in mathematics, statistical physics and biology [25]. In a strong sense it “contains” every graphical invariant that can be computed by deletion and contraction. -
The Tutte Polynomial of Some Matroids Arxiv:1203.0090V1 [Math
The Tutte polynomial of some matroids Criel Merino∗, Marcelino Ram´ırez-Iba~nezy Guadalupe Rodr´ıguez-S´anchezz March 2, 2012 Abstract The Tutte polynomial of a graph or a matroid, named after W. T. Tutte, has the important universal property that essentially any mul- tiplicative graph or network invariant with a deletion and contraction reduction must be an evaluation of it. The deletion and contraction operations are natural reductions for many network models arising from a wide range of problems at the heart of computer science, engi- neering, optimization, physics, and biology. Even though the invariant is #P-hard to compute in general, there are many occasions when we face the task of computing the Tutte polynomial for some families of graphs or matroids. In this work we compile known formulas for the Tutte polynomial of some families of graphs and matroids. Also, we give brief explanations of the techniques that were use to find the for- mulas. Hopefully, this will be useful for researchers in Combinatorics arXiv:1203.0090v1 [math.CO] 1 Mar 2012 and elsewhere. ∗Instituto de Matem´aticas,Universidad Nacional Aut´onomade M´exico,Area de la Investigaci´onCient´ıfica, Circuito Exterior, C.U. Coyoac´an04510, M´exico,D.F.M´exico. e-mail:[email protected]. Supported by Conacyt of M´exicoProyect 83977 yEscuela de Ciencias, Universidad Aut´onoma Benito Ju´arez de Oaxaca, Oaxaca, M´exico.e-mail:[email protected] zDepartamento de Ciencias B´asicas Universidad Aut´onoma Metropolitana, Az- capozalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Azcapozalco 02200, M´exico D.F. -
Arxiv:1511.03031V2
submitted to acta physica slovaca 1– 133 A BRIEF ACCOUNT OF THE ISING AND ISING-LIKE MODELS: MEAN-FIELD, EFFECTIVE-FIELD AND EXACT RESULTS Jozef Streckaˇ 1, Michal Jasˇcurˇ 2 Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Saf´arikˇ University, Park Angelinum 9, 040 01 Koˇsice, Slovakia The present article provides a tutorial review on how to treat the Ising and Ising-like models within the mean-field, effective-field and exact methods. The mean-field approach is illus- trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean- field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate a change of continuous phase transitions to discontinuous ones at a tricritical point. A con- tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic field is also explored within the mean-field method. The effective-field theory is elaborated within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap- proximate method, which affords superior approximate results with respect to the mean-field results. The long-standing problem of this method concerned with a self-consistent deter- mination of the free energy is also addressed in detail. More specifically, the effective-field theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel model in a longitudinal field and the spin-1/2 Ising model in a transverse field. -
Random and Out-Of-Equilibrium Potts Models Christophe Chatelain
Random and Out-of-Equilibrium Potts models Christophe Chatelain To cite this version: Christophe Chatelain. Random and Out-of-Equilibrium Potts models. Statistical Mechanics [cond- mat.stat-mech]. Université de Lorraine, 2012. tel-00959733 HAL Id: tel-00959733 https://tel.archives-ouvertes.fr/tel-00959733 Submitted on 15 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Habilitation `aDiriger des Recherches Mod`eles de Potts d´esordonn´eset hors de l’´equilibre Christophe Chatelain Soutenance publique pr´evue le 17 d´ecembre 2012 Membres du jury : Rapporteurs : Werner Krauth Ecole´ Normale Sup´erieure, Paris Marco Picco Universit´ePierre et Marie Curie, Paris 6 Heiko Rieger Universit´ede Saarbr¨ucken, Allemagne Examinateurs : Dominique Mouhanna Universit´ePierre et Marie Curie, Paris 6 Wolfhard Janke Universit´ede Leipzig, Allemagne Bertrand Berche Universit´ede Lorraine Institut Jean Lamour Facult´edes Sciences - 54500 Vandœuvre-l`es-Nancy Table of contents 1. Random and Out-of-Equililibrium Potts models 4 1.1.Introduction................................. 4 1.2.RandomPottsmodels .......................... 6 1.2.1.ThepurePottsmodel ......................... 6 1.2.1.1. Fortuin-Kasteleyn representation . 7 1.2.1.2. From loop and vertex models to the Coulomb gas . -
Statistical Field Theory University of Cambridge Part III Mathematical Tripos
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html. -
Theory of Continuum Percolation I. General Formalism
Theory of continuum percolation I. General formalism Alon Drory Dipartimento di Fisica, Universit´a La Sapienza Piazzale Aldo Moro 2, Roma 00187, Italy Abstract The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A ba- sis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting s-state spins which are free to move in the continuum. In the s → 1 limit, the Potts magnetization, suscepti- bility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respec- tively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem. arXiv:cond-mat/9606195v1 26 Jun 1996 1 1 Introduction The theoretical basis of continuum percolation [1] changed drastically during the 1970’s. In their seminal 1970 paper, Scher and Zallen [2] considered continuum percolation as an extension of lattice models. Noting that the critical volume φc is approximately universal, i. e., essentially independent of the lattice structure, they suggested it might be carried over into continuum systems. Such a view of the continuum as the representation of what is lattice- independent sits well with the ideas of the renormalization group where the continuum often represents merely a scale at which the underlying lattice blurs and vanishes. Yet continuum percolation turned out to be much richer than suggested by this conception. -
Lecture 8: the Ising Model Introduction
Lecture 8: The Ising model Introduction I Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation) I Common to them: No interactions I Add interactions now, with significant role I Immediate consequence: much richer structure in model, in particular: phase transitions I Simulate interactions with RNG (Monte Carlo method) I Include the impact of temperature: ideas from thermodynamics and statistical mechanics important I Simple system as example: coupled spins (see below), will use the canonical ensemble for its description The Ising model I A very interesting model for understanding some properties of magnetic materials, especially the phase transition ferromagnetic ! paramagnetic I Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other I Ising model a superb toy model to understand this dynamics I Has been invented in the 1920's by E.Ising I Ever since treated as a first, paradigmatic model The model (in 2 dimensions) I Consider a square lattice with spins at each lattice site I Spins can have two values: si = ±1 I Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1=r 3) I Energy of the system: P E = −J si sj hiji I Here: exchange constant J > 0 (for ferromagnets), and hiji denotes pairs of nearest neighbours. I (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy Eα. I Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel Adding temperature I Without temperature T : Story over.