Germany 298 Germany Germany

Total Page:16

File Type:pdf, Size:1020Kb

Germany 298 Germany Germany GERMANY 298 GERMANY GERMANY 1. GENERAL INFORMATION 1.1. General Overview The Federal Republic of Germany is situated in central Europe, in the north bordering on the North Sea, Denmark, and the Baltic Sea; in the east on Poland and the Czech Republic; in the south on Austria and Switzerland; and in the west on France, Luxembourg, Belgium, and the Netherlands. The climate is moderate and influenced by winds from the West, the eastern part has more continental character. In the lowlands of the northern part the average July temperature is 16 - 18°C, the average precipitation amounting to 600-750 mm per annum. Half of the territory is used for agricultural purpose, one third is covered by woods, settlements and traffic area take 12 %. As a result of World War II Germany was split. Until 1990 two parts named Germany existed, the Federal Republic of Germany (FRG - Bundesrepublik Deutschland, named West Germany) and the German Democratic Republic (GDR - Deutsche Demokratische Republik , known as East Germany). In October 1990, the GDR joined West Germany. After the reunification Berlin again became capital of Germany. Part of the government, however, still remains in the former (provisional) capital Bonn. Area and population development is shown in Table 1. TABLE 1. POPULATION INFORMATION Growth rate (%) 1980 1960 1970 1980 1990 1996 1997 1998 to 1998 Population (millions) 55.4 60.7 61.6 63.3 82.0 82.1 82.0 1.6 (17.2)* (17.1) (16.7) (16.1) Population density (inhabitants/km²) 223 244 247 254 229 230 230 -0.4 (159) (158) (154) (149) Urban population (>5000 inh.) in 1996 as percent of total 82.4 Area (1000 km²) 357.0 * Numbers in brackets refer to former GDR data Source: IAEA Energy and Economic Database; Country Information. 1.2. Economic Indicators The gross domestic product (GDP) statistics are given in Table 2, up to 1990 separately and later on for the unified republic. Reunification has turned out to be a lengthy and difficult process. Germany has to fund improvements in infrastructure, environment, and industry in the eastern part, while many eastern companies collapsed acting in unaccustomed western competition. 1.3. Energy Situation Germany imported 61 % of its primary energy supply in 1998, including oil, which accounts for 40 % of its energy consumption. There are substantial reserves of both hard coal and lignite, the amount in place is about 5 times the recoverable quantities mentioned in Table 3. However, domestic hard coal is much more expensive than imported coal and expansion of open cast lignite mining is restricted by environmental considerations. Hydro energy anyway contributes only a small amount, and GERMANY 299 possible places are already in use, so there are no considerable reserves left. Uranium extraction is tapered off since 1991 and has more or less stopped by now. Energy statistics are given in Table 4. TABLE 2. GROSS DOMESTIC PRODUCT (GDP) Growth rate (%) 1980 1970 1980 1990 1996(1) 1997(1) 1998(1) to 1998 GDP (millions of current DM) 675,300 1,472,000 2,426,000 3,541,500 3,641,800 3,758,100 5.3 GDP (millions of current US$) 185,200 810,600 1,501,200 2,354,700 2,099,000 2,136,500 5.5 (40,063)* (134,301) (170,821) GDP (millions of constant 1990 US$) 623,600 1,286,700 1,501,200 1,962,200 1,710,700 1,713,300 1.6 (134,900) (213,200) (170,821) GDP per capita (current US$/capita) 3,051 13,159 23,716 28,716 25,566 26,055 3.9 (2,343) (8,042) (10,610) GDP by sector (% 1997): -Agriculture 1.1 -Industry 39.9 -Services 59.0 * Numbers in brackets refer to former GDR data (1) preliminary data Source: IAEA Energy and Economic Data Base; Country Information. 1.4. Energy Policy A central intention of the German energy policy has been to shift electricity production away from imported oil and gas towards (previously domestic) coal and nuclear power. The share of oil and gas in electricity production was reduced from the peak of 30 % in 1975 to 8 % in 1994, while during the same period the share of nuclear has grown from 9 % to 36 %, whereas that of coal has remained at around 50 %. Since the 1990's all Federal Governments promoted the utilization of renewable energy. The utilities are required by law to buy energy generated by independent producers who use renewables. High minimum payments to the small producers for the transactions are determined, around 5 to 10 times - depending on the origin - the generation price of nuclear or coal plants. Also direct government subsidies for the erection of wind and photovoltaic generators are paid. Nevertheless large scale electricity production will, for the next time, continue to come from Germany’s coal and nuclear power plants. In the past, the Federal Governments encouraged the utilities to increasingly use domestic hard coal for electricity generation, this rose to 45 million tons of hard coal per year in 1995. Subsidies were paid and amounted to 10 billion DM per annum in 1994. Since then subsidies are reduced continuously. TABLE 3. ESTIMATED ENERGY RESERVES Exajoule Estimated energy reserves in 1998 Solid(1) Liquid(1) Gas(1) Uranium(1) Hydro(2) Total Total amount in place 1,081.5 1.6 10.2 0.0 0.8 1,094.1 (1) This total represents essentially recoverable reserves. (2) For comparison purposes a rough attempt is made to convert hydro capacity to energy by multiplying the gross theoretical annual capability by a factor of 10. Source: Country Information. The governing coalition (since September 1998) decided to phase out the use of nuclear power (see also Chapter 3.2). In connection with this, the Federal Government is involved in negotiations 300 GERMANY with the utilities on phasing out the operation of existing nuclear power plants and on an agreement for radioactive waste management. If a consensus can not be reached, the coalition has decided that phasing out will be regulated by law in such a manner that no claims on compensations can arise. The Federal Government intends to establish a new consensus in politics and society on an energy policy for the long term and apt for the future. An important contribution is the "energy dialogue 2000“ between politics, economy and society groups, suggested by the Federal Ministry for Economics and Engineering (BMWi) started in June 1999. For the Federal Government it is of considerable importance to develop systems for energy supply apt for the future and to implement effective measures for improving energy efficiency and savings. Renewable energy will be increasingly supported. Furthermore the framing conditions for raising energy efficiency will be improved. Nevertheless, within the changing scope of global markets and European energy trade, the liberalization of markets for electricity and natural gas and the commitments to reduce the emission of greenhouse gases have to be taken into account. TABLE 4. ENERGY STATISTICS (primary energy) Exajoule Average annual growth rate (%) 1960 1980 1960 1970 1980 1990 1996 1997 1998 to to 1980 1998 Energy consumption - Total(1) 6.3(2.9)* 9.9(3.1) 11.6(3.8) 14.91 14.75 14.57 14.42 2.6 -0.4 - Solids(2) 4.9(2.8) 4.0(2.6) 3.5(2.5) 5.51 3.76 3.63 3.55 -1.2 -2.9 - Liquids 1.3(0.1) 5.1(0.4) 5.4(0.8) 5.24 5.81 5.75 5.75 7.7 -0.4 - Gases N/A 0.6(0.0) 2.1(0.3) 2.32 3.16 3.02 3.03 - 1.3 - Primary electricity(3) 0.2(0.0) 0.3(0.0) 0.6(0.1) 1.85 2.02 2.16 2.08 6.46 6.2 Energy production - Total 5.6(2.6)* 5.2(2.4) 5.2(2.5) 7.88 5.93 5.95 5.58 -0.3 -1.8 - Solids 5.3(2.6) 4.3(2.3) 3.7(2.3) 5.23 3.09 2.96 2.72 -1.4 -4.3 - Liquids 0.2(0.0) 0.3(0.0) 0.2(0.0) 0.16 0.12 0.12 0.12 0.0 -2.8 - Gases N/A 0.5(0.0) 0.7(0.1) 0.59 0.68 0.70 0.66 - -1.1 - Primary electricity(3) 0.1(0.0) 0.2(0.0) 0.6(0.1) 1.85 2.04 2.17 2.08 10.2 6.2 Net import (import - export) - Total(4) 0.6(0.3)* 4.8(0.7) 6.8(1.2) 7.03 8.82 8.62 8.84 11.5 0.6 - Solids -0.5(0.2) -0.4(0.3) -0.2(0.2) 0.23 0.67 0.67 0.83 -17.7 13.7 - Liquids 1.2(0.1) 5.1(0.4) 5.6(0.8) 5.08 5.69 5.63 5.63 8.3 0.6 - Gases N/A 0.1(0.0) 1.4(0.2) 1.73 2.48 2.32 2.37 - 1.8 (1) Energy consumption = Primary energy production + Net import (2) Solid fuels include coal, lignite and commercial wood. (3) Primary electricity = Hydro + Geothermal + Nuclear + Wind. (4) Electricity losses are not deducted. * Numbers in brackets refer to former GDR data Source: IAEA Energy and Economic Database; Country Information. 2. ELECTRICITY SECTOR 2.1. Structure of the Electricity Sector The total electricity industry covers the sectors "public electricity supply", "mining, processing industry and others" and "Deutsche Bahn".
Recommended publications
  • Nuclear Power Policy in China and Germany-A Comparative Case Study After Fukushima
    1 Nuclear Power Policy in China and Germany-A Comparative Case Study after Fukushima Draft paper by Sheng, Chunhong FFU ([email protected]) [Abstract]Nuclear power is a controversial topic surrounding by science and politics, is it an evidence for sustainable development? The different nuclear power policies in China and Germany provided a vivid picture. China has published the medium and long-term nuclear power developing plan (2005-2020) which in the name of engaging sustainable development, climate change policies and clean energy policies. While Germany just made a decision to phase out nuclear power by 2022 after the Fukushima event and was praised for the sustainable development and renewable policies. It is interesting to look at the scientific and political framework for the different polices in these two countries after Fukushima. My paper will use discourse theory, which will analyze academic, scientific works, governmental documents and different news resources to examine how they legitimate for their different nuclear policies in their countries and how these polices got passed in the decision-making process, especially after the Fukushima nuclear event. Then the paper will explain what lead to these different policies in the two different country contexts. The interaction and relations between science and politics in these two countries will be studied. Not only the interests and powers behind scientific research undermined the objective of scientific evidence, but also the uncertainty of scientific or unclear of cause and effects greatly reduced the power of science in politics. The process of policy-making including scientific evidence for sustainable development is greatly influenced by politics.
    [Show full text]
  • Statusbericht Zur Kernenergienutzung in Der Bundesrepublik Deutschland 2019
    Statusbericht zur Kernenergienutzung in der Bundesrepublik Deutschland 2019 Abteilung Nukleare Sicherheit und atomrechtliche Aufsicht in der Entsorgung Ines Bredberg Johann Hutter Andreas Koch Kerstin Kühn Katarzyna Niedzwiedz Klaus Hebig-Schubert Rolf Wähning BASE-KE-01/20 Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende URN: urn:nbn:de:0221-2020092123025 Zur Beachtung: Die BASE-Berichte und BASE-Schriften können von den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung unter http://www.base.bund.de kostenlos als Volltexte heruntergeladen werden. Salzgitter, September 2020 Statusbericht zur Kernenergie- nutzung in der Bundesrepublik Deutschland 2019 BASE Abteilung Nukleare Sicherheit und atomrechtliche Aufsicht in der Entsorgung Ines Bredberg Johann Hutter Andreas Koch Kerstin Kühn Katarzyna Niedzwiedz Klaus Hebig-Schubert Rolf Wähning Inhalt ABKÜRZUNGSVERZEICHNIS ......................................................................................................................... 6 1 ELEKTRISCHE ENERGIEERZEUGUNG IN DEUTSCHLAND .............................. 11 1.1 ALLGEMEINES .................................................................................................................................. 11 1.2 DAS ERNEUERBARE-ENERGIEN-GESETZ .................................................................................... 12 1.3 AUSSTIEG AUS DER STROMERZEUGUNG DURCH KERNENERGIE ......................................... 12 1.3.1 Stand der Atomgesetzgebung in Deutschland ..................................................................................
    [Show full text]
  • Socio-Spatial Dimensions in Energy Transitions: Applying the TPSN Framework to Case Studies in Germany
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Gailing, Ludger; Bues, Andrea; Kern, Kristine; Röhring, Andreas Article — Published Version Socio-spatial dimensions in energy transitions: Applying the TPSN framework to case studies in Germany Environment and Planning A: Economy and Space Provided in Cooperation with: Leibniz Institute for Research on Society and Space (IRS) Suggested Citation: Gailing, Ludger; Bues, Andrea; Kern, Kristine; Röhring, Andreas (2019) : Socio-spatial dimensions in energy transitions: Applying the TPSN framework to case studies in Germany, Environment and Planning A: Economy and Space, ISSN 1472-3409, Sage, London, Vol. 52, Iss. 6, pp. 1112-1130, http://dx.doi.org/10.1177/0308518X19845142 This Version is available at: http://hdl.handle.net/10419/222867 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Solar Energy Support in Germany: a Closer Look
    Solar Energy Support in Germany A Closer Look PREPARED FOR Solar Energy Industries Association PREPARED BY Jurgen Weiss, PhD July 2014 This report was prepared for the Solar Energy Industries Association (SEIA). All results and any errors are the responsibility of the author and do not represent the opinion of The Brattle Group, Inc. or its clients. Acknowledgement: We acknowledge the valuable contributions of many individuals to this report and to the underlying analysis, including Daniel Stetter and members of the Brattle Group for peer review. Copyright © 2014 The Brattle Group, Inc. Table of Contents Executive Summary .............................................................................................................................. 1 I. Introduction ................................................................................................................................. 6 II. The Cost of Solar PV and Germany’s FIT Program ................................................................... 9 III. The impact of the German solar PV generation on retail prices ............................................ 11 A. Renewable Support Represents a Moderate Portion of Rates ....................................... 11 B. Renewable Support Not Equally Split Across Rate Classes ........................................... 15 C. Renewable Support Increase Not Linear And Will Begin to Decline Soon .................. 19 D. Renewable Energy Contributes to Declining Wholesale Prices ................................... 22 IV. The impact
    [Show full text]
  • Case Study Report: Energiewende – Mission-Oriented R&I Policies
    Mission-oriented R&I policies: In-depth case studies Case Study Report Energiewende Hanna Kuittinen, Daniela Velte January 2018 Mission-oriented R&I policies: In-depth case studies European Commission Directorate-General for Research and Innovation Directorate A – Policy Development and coordination Unit A6 – Open Data Policy and Science Cloud Contact Arnold Weiszenbacher E-mail [email protected] [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in January 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2018 PDF ISBN 978-92-79-80159-4 doi: 10.2777/835267 KI-01-18-150-EN-N © European Union, 2018. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders EUROPEAN COMMISSION Mission-oriented R&I policies: In-depth case studies Case Study Report: Energiewende Hanna Kuittinen Daniela Velte 2018 Directorate-General for Research and Innovation Table of Contents 1 Summary of the case study ................................................................................... 3 2 Context and objectives of the initiative ................................................................... 5 2.1 Origins of initiative and the main contextual factors ........................................
    [Show full text]
  • The German Energiewende – History and Status Quo
    1 The German Energiewende – History and Status Quo Jürgen‐Friedrich Hake,1) Wolfgang Fischer,1) Sandra Venghaus,1) Christoph Weckenbrock1) 1) Forschungszentrum Jülich, Institute of Energy and Climate Research ‐ Systems Analysis and Technology Evaluation (IEK‐STE), D‐52425 Jülich, Germany Executive Summary Industrialized nations rely heavily on fossil fuels as an economic factor. Energy systems therefore play a special part in realizing visions of future sustainable societies. In Germany, successive governments have specified their ideas on sustainable development and the related energy system. Detailed objectives make the vision of the Energiewende – the transformation of the energy sector – more concrete. Many Germans hope that the country sets a positive example for other nations whose energy systems also heavily rely on fossil fuels. A glance at the historical dimensions of this transformation shows that the origins of German energy objectives lie more than thirty years in the past. The realization of these goals has not been free from tensions and conflicts. This article aims at explaining Germany’s pioneering role in the promotion of an energy system largely built on renewable energy sources by disclosing the drivers that have successively led to the Energiewende. To reveal these drivers, the historical emergence of energy politics in Germany was analyzed especially with respect to path dependencies and discourses (and their underlying power relations) as well as exogenous events that have enabled significant shifts in the political energy strategy of Germany. Keywords Energy transition, energy policy, energy security, nuclear power, renewables, Germany Contribution to Energy, 2nd revision 4/14/2015 2 I Introduction In light of the global challenges of climate change, increasing greenhouse gas emissions, air pollution, the depletion of natural resources and political instabilities, the transition of national energy systems has become a major challenge facing energy policy making in many countries [e.g., Shen et al., 2011, Al‐Mansour, 2011].
    [Show full text]
  • Disposal of Spent Fuel from German Nuclear Power Plants - Paper Work Or Technology?
    DISPOSAL OF SPENT FUEL FROM GERMAN NUCLEAR POWER PLANTS - PAPER WORK OR TECHNOLOGY? R. GRAF GNS mbH Hollestrafie 7A, 45127 Essen - Germany W. FILBERT D5E 7ECHNOZOGT GmbH Eschenstrafie 55, 31224 Peine - Germany ABSTRACT The reference concept “direct disposal of spent fuel” was developed as an alternative to spent fuel reprocessing and vitrified HLW disposal. The technical facilities necessary for the implementation of this reference concept - the so called POLLUX-concept, e.g. interim storages for casks containing spent fuel, a pilot conditioning facility, and a special cask “POLLUX” for final disposal have been built. With view to a geological salt formation all handling procedures for the repository were tested aboveground in a test facility at a 1:1 scale. To optimise the concept all operational steps are reviewed for possible improvement. Most promising are a concept using canisters (BSK 3) instead of POLLUX casks, and the direct disposal of transport and storage casks (DIREGT-concept) which is the most recent one and has been designed for the direct disposal of large transport and storage casks. The final exploration of the pre-selected repository site is still pending, from the industries point of view due to political reasons only. The present paper describes the main concepts and their status as of today. 1. Introduction Since the late seventies the German industry has been developing an alternative to spent fuel reprocessing and vitrified HLW disposal. It is called "direct disposal of spent fuel". The feasibility was examined and safety aspects were evaluated. The Federal Government concluded that the technology of direct disposal had to be developed.
    [Show full text]
  • The German Government's Environmental Report 2019
    Draft: The German government’s Environmental Report 2019 (Environmental Status Report pursuant to Section 11 of the Environmental Information Act) Environment and nature – the basis of social cohesion 1 von 301 | www.bmu.de Table of contents Table of contents ...................................................................................................................... 2 Introduction: The integrity of nature and the environment as a basis for freedom, democracy and social cohesion .................................................................................................................. 5 A. Protecting the natural resources that sustain life ............................................................ 21 A.1 Water ....................................................................................................................... 21 A.1.1 Management of inland and coastal waters ....................................................... 21 A.1.2 Living by water – flood control .......................................................................... 29 A.1.3 Fracking ............................................................................................................ 31 A.1.4 Marine conservation and fisheries .................................................................... 32 A.1.5 International cooperation and global water protection policy ............................ 37 A.2 Soil ........................................................................................................................... 41 A.2.1
    [Show full text]
  • The Landscape of Climate Finance in Germany Climate Policy Initiative
    The Landscape of Climate Finance in Germany Climate Policy Initiative Ingmar Juergens Hermann Amecke Rodney Boyd Barbara Buchner Aleksandra Novikova Anja Rosenberg Kateryna Stelmakh Alexander Vasa November 2012 A CPI Report Descriptors Sector Finance Region Germany, Europe Climate finance, renewable energy Keywords finance, energy efficiency finance Related CPI Buchner et al. 2011b Reports Contact Ingmar Juergens, Berlin Office [email protected] About CPI Climate Policy Initiative (CPI) is a policy effectiveness analysis and advisory organization whose mission is to assess, diag- nose, and support the efforts of key governments around the world to achieve low-carbon growth. CPI is headquartered in San Francisco and has offices around the world, which are affiliated with distinguished research institutions. Offices include: CPI Beijing affiliated with the School of Public Policy and Management at Tsinghua Uni- versity; CPI Berlin; CPI Hyderabad, affiliated with the Indian School of Business; CPI Rio, affiliated with Pontifical Catholic University of Rio (PUC-Rio); and CPI Venice, affiliated with Fondazione Eni Enrico Mattei (FEEM). CPI is an independent, not-for-profit organization that receives long-term funding from George Soros. Copyright © 2012 Climate Policy Initiative www.climatepolicyinitiative.org All rights reserved. CPI welcomes the use of its material for noncommercial purposes, such as policy discussions or educational activities, under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
    [Show full text]
  • The Anti-Nuclear Movement in Germany
    The Anti-Nuclear Movement in Germany Joachim Radkau translated by Lucas Perkins from a lecture delivered at the Université Paris 7—Denis Diderot on February 25, 2009 When I began researching the history of nuclear technol- ogy 35 years ago, it never occurred to me to give a lecture on today’s subject. At that time there was strong resistance, rooted in a broad swath of the French (or more precisely, Alsatian) population to nuclear energy projects, more read- ily recognizable than in Germany. This is important to re- member. Beyond that, I was also at that time an enthusiastic supporter of nuclear energy, and my original goal was to use the example of nuclear technology to expose the sluggish- ness of West Germany’s government, which wasn’t promot- ing the technology of the future energetically enough. As I gathered more and more information on the risks of nucle- ar technology soon thereafter, I came upon today’s subject. Then it all seemed so simple: nuclear technology is very risky, and thus it’s no wonder that heavy resistance was mounted against it. This doesn’t really require much explanation. What does need to be explained, on the contrary, is why re- sistance is weaker in other countries than it is in Germany. In the 70s and 80s, sociologists tended to subsume the anti- nuclear movement under the “new social movements” cate- gory—a concept then imported from the U.S.—and to throw it on the same pile with the new women’s movement, the new peace movement, and movements seeking the equality and inclusion of marginalized groups.
    [Show full text]
  • Detaillierte Karte (PDF, 4,0 MB, Nicht
    Neuwerk (zu Hamburg) Niedersachsen NORDSEE Schleswig-Holstein Organisation der ordentlichen Gerichte Balje Krummen- Flecken deich Freiburg Nordseebad Nordkehdingen (Elbe) Wangerooge CUXHAVEN OTTERNDORF Belum Spiekeroog Flecken und Staatsanwaltschaften Neuhaus Oederquart Langeoog (Oste) Cadenberge Minsener Oog Neuen- kirchen Oster- Wisch- Nordleda bruch Baltrum hafen NORDERNEY Bülkau Oberndorf Stand: 1. Juli 2017 Mellum Land Hadeln Wurster Nordseeküste Ihlienworth Wingst Osten Inselgemeinde Wanna Juist Drochtersen Odis- Hemmoor Neuharlingersiel heim HEMMOOR Großenwörden Steinau Hager- Werdum ESENS Stinstedt marsch Dornum Mittelsten- Memmert Wangerland Engelschoff Esens ahe Holtgast Hansestadt Stedesdorf BORKUM GEESTLAND Lamstedt Hechthausen STADE Flecken Börde Lamstedt Utarp Himmel- Hage Ochtersum Burweg pforten Hammah Moorweg Lütets- Hage Schwein- Lütje Hörn burg Berum- dorf Nenn- Wittmund Kranen-Oldendorf-Himmelpforten Hollern- bur NORDEN dorf Holtriem Dunum burg Düden- Twielenfleth Großheide Armstorf Hollnseth büttel Halbemond Wester- Neu- WITTMUND WILHELMS- Oldendorf Grünen- Blomberg holt schoo (Stade) Stade Stein-deich Fries- Bremer- kirchen Evers- HAVEN Cuxhaven Heinbockel Agathen- Leezdorf Estorf Hamburg Mecklenburg-Vorpommern meer JEVER (Stade) burg Lühe Osteel Alfstedt Mitteln- zum Landkreis Leer Butjadingen haven (Geestequelle) Guder- kirchen Flecken Rechts- hand- Marienhafe SCHORTENS upweg Schiffdorf Dollern viertel (zu Bremen) Ebersdorf Neuen- Brookmerland AURICH Fredenbeck Horneburg kirchen Jork Deinste (Lühe) Upgant- (Ostfriesland)
    [Show full text]
  • “Exploratory” Mine in Gorleben
    Information on the “Exploratory” Mine in Gorleben Near Gorleben, a village of about 700 inhabitants on the Elbe River, lying in the far north-east of the state of Lower Saxony, are two surface interim repositories for radioactive waste. Further, there is a conditioning plant and a mine in a salt deposit partially explored for and planned as a final repository. By road, Gorleben lies 124 km southeast of Hamburg (Germany’s second largest city with 1.7 million inhabitants), 155 km northeast of Hanover (516,000). It was named as the location for a “nuclear disposal center”on 22 February 1977 . Imaginative resistance by locals and people from all over Germany scuttled the plan to build a nuclear reprcessing plant in the region known as Wendland. Since 1983 weakly and highly radioactive waste has been stored in the interim repositories, since 1995 highly radioactive waste (c) Federal Office for Radiation Protection has been brought there and parked in caskets called Castor (acronym for cask for storage and transport of radioactive material). Time Line ! 1977 Decision for a 12 km² Nuclear Disposal Center Gorleben. The site area had been "prepared" in 1975 by an arson causing a devastating forest fire. Two years later a proposed reprocessing unit was taken out the plans. ! 1983 Due to the negative results the federal government stops the exploration on the surface, excludes the exploration of alternative sites and starts the underground exploration. ! 1984 First reposition of atomic waste barrels to the above-ground interim storage (ALG) for low and medium level radioactive waste. ! 1987 Serious accident during the deepening of shaft 1 of the exploration mine.
    [Show full text]