Tire Model with Temperature Effects for Formula SAE Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Tire Model with Temperature Effects for Formula SAE Vehicle applied sciences Article Tire Model with Temperature Effects for Formula SAE Vehicle Diwakar Harsh 1 and Barys Shyrokau 2,* 1 Rimac Automobili d.o.o., 10431 Sveta Nedelja, Croatia; [email protected] 2 Department of Cognitive Robotics, Delft University of Technology, 2628CD Delft, The Netherlands * Correspondence: [email protected] Received: 22 October 2019; Accepted: 4 December 2019; Published: 6 December 2019 Abstract: Formula Society of Automotive Engineers (SAE) (FSAE) is a student design competition organized by SAE International (previously known as the Society of Automotive Engineers, SAE). Commonly, the student team performs a lap simulation as a point mass, bicycle or planar model of vehicle dynamics allow for the design of a top-level concept of the FSAE vehicle. However, to design different FSAE components, a full vehicle simulation is required including a comprehensive tire model. In the proposed study, the different tires of a FSAE vehicle were tested at a track to parametrize the tire based on the empirical approach commonly known as the magic formula. A thermal tire model was proposed to describe the tread, carcass, and inflation gas temperatures. The magic formula was modified to incorporate the temperature effect on the force capability of a FSAE tire to achieve higher accuracy in the simulation environment. Considering the model validation, the several maneuvers, typical for FSAE competitions, were performed. A skidpad and full lap maneuvers were chosen to simulate steady-state and transient behavior of the FSAE vehicle. The full vehicle simulation results demonstrated a high correlation to the measurement data for steady-state maneuvers and limited accuracy in highly dynamic driving. In addition, the results show that neglecting temperature in the tire model results in higher root mean square error (RMSE) of lateral acceleration and yaw rate. Keywords: tire model; tire temperature; FSAE vehicle 1. Introduction Formula SAE (FSAE) also known as formula student (FS) is a competition in which students design a single seat formula race car to compete against other FS teams from all over the world [1]. The competition motivates the students for innovative solutions to demonstrate their engineering talent and obtain new skills. It also allows the students to apply theoretical knowledge into practice in a dynamic and competitive environment. Since 2001 students have joined Formula Student Team Delft [2] on an annual basis to participate in the FSAE competition, earlier in the combustion class and electric class from 2011. Aiming to improve the FSAE vehicle performance, the team collaborated with Apollo Vredestein B.V. (Enschede, The Netherlands) to develop original tires. The FSAE vehicle (2017 version) from FS Team Delft equipped with such tires is shown in Figure1. Appl. Sci. 2019, 9, 5328; doi:10.3390/app9245328 www.mdpi.com/journal/applsci Appl. Sci. 2019, 9, 5328 2 of 21 Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 21 Figure 1. DUT17 Formula Society of Automotive Engin Engineerseers (FSAE) vehicle at the Formula Student Germany competition [[2].2]. To achieveachieve thethe bestbest FSAEFSAE vehiclevehicle performance,performance, the team developed various tools to evaluate vehicle dynamics and to predict its behavior. Howe However,ver, predictions are based on estimated friction coefficient, neglecting the thermal e ffect on the tire performance. Freq Frequently,uently, lap simulation is based on a point massmass oror simplifiedsimplified vehicle vehicle models models allowing allowing for for the the development development of of the the top-level top-level concept concept of theof the new new vehicle. vehicle. It canIt can quantify quantify vehicle vehicle parameters parameters such such as theas the height height of theof the center center of gravityof gravity and and lift coelift fficoecient.fficient. However, However, to design to design various various vehicle vehicle components components and, and, specifically, specifically, control control algorithms, algorithms, a full vehiclea full vehicle simulation simulation including including a comprehensive a comprehensive tire model tire model is required. is required. For an accurate modeling of tire forces and moments, a physical, semi- or empirical tire model can be used [[3].3]. The physical a approachpproach provides more insights re regardinggarding tire behavior and better represents the whole operation range; however, it lacks accuracy, specificallyspecifically consideringconsidering camber influence,influence, conicity, plysteer,plysteer, andand otherother phenomenaphenomena [[4,5].4,5]. The empirical approachapproach provides a higher modeling accuracy in in the the predefined predefined tested tested range range bu butt requires requires extensive extensive special special tests. tests. According According to to[6,7] [6 ,7the] the tire tire temperature, temperature, especially especially for for racing racing application application [8], [8], has has a a significant significant e effffectect on on the force capability of the tire. Several advanced tire modelsmodels using the brush element approach incorporated with thermalthermal eeffectsffects have have been been proposed proposed [9 –[9–11];11]; however, however, their their parametrization parametrization requires requires intensive intensive test sessions,test sessions, commonly commonly unfeasible unfeasible for FS teams.for FS For team a FSAEs. For vehicle, a FSAE less vehicle, complex less models complex incorporating models temperatureincorporating e fftemperatureect are proposed effectusing are proposed the physical using approach the physical based approach on the brushbased modelon the [brush12,13]. model They demonstrate[12,13]. They a demonstrate good correlation a good with correlation the experimental with the tire dataexperimental collected usingtire data the indoorcollected flat using track tirethe testindoor machine flat track [14 ].tire Also, test themachine proposed [14]. physical-basedAlso, the proposed models physical-based were compared models to thewere original compared magic to formulathe original demonstrating magic formula close demonstrating accuracy; however, close accuracy; original magic however, formula original does magic not include formula the does effect not of temperatureinclude the effect on the of forcetemperature capability on of the the force tire. capability of the tire. Thus, the goal of the proposed study was to develop an empirical tire modelmodel incorporatingincorporating thermal eeffectsffects and and to to evaluate evaluate its its performance performance compared compared to the to experimentalthe experimental measurements. measurements. The main The contributionmain contribution of the of study the study is the is improvement the improvement of the of accuracy the accuracy of the of empiricalthe empirical tire modeltire model using using the proposedthe proposed thermal thermal model model andmodification and modification of the magicof the formulamagic formula to incorporate to incorporate temperature temperature effects. effects.The paper is structured as follows. Section2 describes the experimental setup, test program, and experimentalThe paper is structured results. A thermalas follows. tire Section model 2 is desc proposedribes the in experimental Section3 discussing setup, thetest basicprogram, thermal and equationsexperimental and results. comparing A thermal them totire well-established model is proposed thermal in Section models. 3 Sectiondiscussing4 presents the basic the thermal widely usedequations magic and formula comparing with the them extension to well-established related to the thermal temperature models. effect. Section The complete 4 presents vehicle the widely model includingused magic thermal formula and with modified the extens magicion formularelated to is the presented temperature in Section effect.5; itThe includes complete the vehicle whole modelmodel simulationincluding thermal for steady-state and modified and transient magic formula maneuvers is presented compared in to Section real tests 5; it and includes simulation the whole without model the temperaturesimulation for eff steady-stateect. The paper and concludes transient withmaneuver a discussions compared of the to work real andtests the and recommendations simulation without for futurethe temperature research presented effect. The in paper Section concludes6. with a discussion of the work and the recommendations for future research presented in Section 6. 2. Experimental Setup and Results 2.1. Setup and Test Program Appl. Sci. 2019, 9, 5328 3 of 21 2. Experimental Setup and Results 2.1. Setup and Test Program Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 21 The experimental tests were performed at Dynamic Test Center AG [15] located in Vaufellin, Switzerland.The experimental The test program tests were is shownperformed in Table at Dynamic1 covering Test uncombined Center AG [15] slip located testing in using Vaufellin, sweep testsSwitzerland. of slip angle Theα testand program wheel slipis shownκ under in Table various 1 covering normal loadsuncombinedFz for threeslip testing tires: using Apollo sweep Single Compound,tests of slip Apollo angle Doubleα and wheel Compound, slip κ under and Hoosier. various normal loads Fz for three tires: Apollo Single Compound, Apollo Double Compound, and Hoosier. Table 1. Tire test program. Table 1. Tire test program. Measurement Type α (rad) κ (–) Fz (N) Measurement type α (rad) κ (–) Fz (N) Pure corneringPure cornering sweepsweep
Recommended publications
  • MICHELIN® X® TWEEL® TURF™ the Airless Radial Tire™ & Wheel Assembly
    MICHELIN® X® TWEEL® TURF™ The Airless Radial Tire™ & wheel assembly. Designed for use on zero turn radius mowers. ✓ NO MAINTENANCE ✓ NO COMPROMISE ✓ NO DOWNTIME MICHELIN® X® TWEEL® TURF™ No Maintenance – MICHELIN® X® TWEEL® TURF™ is one single unit, replacing the current tire/wheel/valve assembly. Once they are bolted on, there is no air pressure to maintain, and the common problem of unseated beads is completely eliminated. No Compromise – MICHELIN X TWEEL TURF has a consistent hub height which ensures the mower deck produces an even cut, while the full-width poly-resin spokes provide excellent lateral stability for outstanding side hill performance. The unique design of the spokes helps dampen the ride for enhanced operator comfort, even when navigating over curbs and other bumps. High performance compounds and an effi cient contact patch offer a long wear life that is two to three times that of a pneumatic tire at equal tread depth. No Downtime – MICHELIN X TWEEL TURF performs like a pneumatic tire, but without the risk and costly downtime associated with fl at tires and unseated beads. Zero degree belts and proprietary design provide great lateral stiffness, while resisting damage Multi-directional and absorbing impacts. tread pattern is optimized to provide excellent side hill stability and prevent turf High strength, damage. poly-resin spokes carry the load and absorb impacts, while damping the ride and providing a unique energy transfer that Michelin’s reduces “bounce.” proprietary Comp10 Cable™ forms a semi-rigid “shear beam”, Heavy gauge and allows the steel with 4 bolt load to hang hub pattern fi ts from the top.
    [Show full text]
  • Road & Track Magazine Records
    http://oac.cdlib.org/findaid/ark:/13030/c8j38wwz No online items Guide to the Road & Track Magazine Records M1919 David Krah, Beaudry Allen, Kendra Tsai, Gurudarshan Khalsa Department of Special Collections and University Archives 2015 ; revised 2017 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Road & Track M1919 1 Magazine Records M1919 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Road & Track Magazine records creator: Road & Track magazine Identifier/Call Number: M1919 Physical Description: 485 Linear Feet(1162 containers) Date (inclusive): circa 1920-2012 Language of Material: The materials are primarily in English with small amounts of material in German, French and Italian and other languages. Special Collections and University Archives materials are stored offsite and must be paged 36 hours in advance. Abstract: The records of Road & Track magazine consist primarily of subject files, arranged by make and model of vehicle, as well as material on performance and comparison testing and racing. Conditions Governing Use While Special Collections is the owner of the physical and digital items, permission to examine collection materials is not an authorization to publish. These materials are made available for use in research, teaching, and private study. Any transmission or reproduction beyond that allowed by fair use requires permission from the owners of rights, heir(s) or assigns. Preferred Citation [identification of item], Road & Track Magazine records (M1919). Dept. of Special Collections and University Archives, Stanford University Libraries, Stanford, Calif. Conditions Governing Access Open for research. Note that material must be requested at least 36 hours in advance of intended use.
    [Show full text]
  • Vehicle Dynamics and Performance Driving
    Vehicle Dynamics In the world of performance automobiles, speed does not rule everything. However, ask any serious enthusiast what the most important performance aspect of a car is, and he'll tell you it's handling. To those of you who know little to nothing about automobiles, handling determines the vehicle's ability to corner and maneuver. A good handling car will be able to maneuver with ease, zig-zag between cones, and frolic through windy roads. A poor handling car, however, will have trouble maneuvering, knock over cones, and will most likely end up in the ditch if trying to make its way through windy roads. Want to have fun while driving? Buy a good handling car. A car that can maneuver well will be safer and much more fun to drive. According to Racing Legend Mario Andretti, "handling is an automobile's soul." It determines the difference between a car that's enjoyable to drive and one that's simply a means for getting from Point A to Point B. According to their handling properties, cars such as the BMW M3, the Porsche 911 Carrera 4, and the Lotus Elise should bring the driver the most excitement (The Ultimate Driving Experience). While cars like the Dodge Viper may provide the driver with an abundance of power and speed, the poor handling may take away from driver excitement. So what makes a car handle well? A car's handling abilities are solely determined by how they obey the laws of physics. The physics of handling involves everything from forces to torque, so evaluating handling is an extremely complicated affair.
    [Show full text]
  • The Effect of Tyre Inflation Pressure on Fuel Consumption and Vehicle Handling Performance a Case of ANBESSA CITY BUS
    ADAMA SCIENCE AND TECHNOLOGY UNIVERSITY SCHOOL OF MECHANICAL, CHEMICAL AND MATERIALS ENGINEERING The Effect of Tyre Inflation Pressure on Fuel Consumption and vehicle Handling Performance a case of ANBESSA CITY BUS A thesis submitted in partial fulfillment of the requirements for the award of the Degree of Master of Science in Automotive Engineering By NIGATU BELAYNEH USAMO ADVISOR: - N. RAMESH BABU (Associate Professor) MECHANICAL SYSTEMS AND VEHICLE ENGINEERING PROGRAM June-2017 Adama-Ethiopia I CANDIDATE'S DECLARATION I hereby declare that the work which is being presented in the thesis titled ―The Effect of Tyre Inflation Pressure on Fuel Consumption and vehicle Handling Performance a case of ANBESSA CITY BUS‖ in partial fulfillment of the requirements for the award of the degree of Master of Science in Automotive Engineering is an authentic record of my own work carried out from October 2016 to up June 2017, under the supervision of N. RAMESH BABU Department of Mechanical and Vehicle Engineering, Adama Science and Technology University, Ethiopia. The matter embodied in this thesis has not been submitted by me for the award of any other degree or diploma. All relevant resources of information used in this thesis have been duly acknowledged. Name Signature Date Nigatu Belayneh ………………… …………… Student This is to certify that the above statement made by the candidate is correct to the best of my knowledge and belief. This thesis has been submitted for examination with my approval. Name Signature Date N. Ramesh Babu ______________ ________________
    [Show full text]
  • Automotive Engineering II Lateral Vehicle Dynamics
    INSTITUT FÜR KRAFTFAHRWESEN AACHEN Univ.-Prof. Dr.-Ing. Henning Wallentowitz Henning Wallentowitz Automotive Engineering II Lateral Vehicle Dynamics Steering Axle Design Editor Prof. Dr.-Ing. Henning Wallentowitz InstitutFürKraftfahrwesen Aachen (ika) RWTH Aachen Steinbachstraße7,D-52074 Aachen - Germany Telephone (0241) 80-25 600 Fax (0241) 80 22-147 e-mail [email protected] internet htto://www.ika.rwth-aachen.de Editorial Staff Dipl.-Ing. Florian Fuhr Dipl.-Ing. Ingo Albers Telephone (0241) 80-25 646, 80-25 612 4th Edition, Aachen, February 2004 Printed by VervielfältigungsstellederHochschule Reproduction, photocopying and electronic processing or translation is prohibited c ika 5zb0499.cdr-pdf Contents 1 Contents 2 Lateral Dynamics (Driving Stability) .................................................................................4 2.1 Demands on Vehicle Behavior ...................................................................................4 2.2 Tires ...........................................................................................................................7 2.2.1 Demands on Tires ..................................................................................................7 2.2.2 Tire Design .............................................................................................................8 2.2.2.1 Bias Ply Tires.................................................................................................11 2.2.2.2 Radial Tires ...................................................................................................12
    [Show full text]
  • Development and Analysis of a Multi-Link Suspension for Racing Applications
    Development and analysis of a multi-link suspension for racing applications W. Lamers DCT 2008.077 Master’s thesis Coach: dr. ir. I.J.M. Besselink (Tu/e) Supervisor: Prof. dr. H. Nijmeijer (Tu/e) Committee members: dr. ir. R.M. van Druten (Tu/e) ir. H. Vun (PDE Automotive) Technische Universiteit Eindhoven Department Mechanical Engineering Dynamics and Control Group Eindhoven, May, 2008 Abstract University teams from around the world compete in the Formula SAE competition with prototype formula vehicles. The vehicles have to be developed, build and tested by the teams. The University Racing Eindhoven team from the Eindhoven University of Technology in The Netherlands competes with the URE04 vehicle in the 2007-2008 season. A new multi-link suspension has to be developed to improve handling, driver feedback and performance. Tyres play a crucial role in vehicle dynamics and therefore are tyre models fitted onto tyre measure- ment data such that they can be used to chose the tyre with the best characteristics, and to develop the suspension kinematics of the vehicle. These tyre models are also used for an analytic vehicle model to analyse the influence of vehicle pa- rameters such as its mass and centre of gravity height to develop a design strategy. Lowering the centre of gravity height is necessary to improve performance during cornering and braking. The development of the suspension kinematics is done by using numerical optimization techniques. The suspension kinematic objectives have to be approached as close as possible by relocating the sus- pension coordinates. The most important improvements of the suspension kinematics are firstly the harmonization of camber dependant kinematics which result in the optimal camber angles of the tyres during driving.
    [Show full text]
  • Final Report
    Final Report Reinventing the Wheel Formula SAE Student Chapter California Polytechnic State University, San Luis Obispo 2018 Patrick Kragen [email protected] Ahmed Shorab [email protected] Adam Menashe [email protected] Esther Unti [email protected] CONTENTS Introduction ................................................................................................................................ 1 Background – Tire Choice .......................................................................................................... 1 Tire Grip ................................................................................................................................. 1 Mass and Inertia ..................................................................................................................... 3 Transient Response ............................................................................................................... 4 Requirements – Tire Choice ....................................................................................................... 4 Performance ........................................................................................................................... 5 Cost ........................................................................................................................................ 5 Operating Temperature .......................................................................................................... 6 Tire Evaluation ..........................................................................................................................
    [Show full text]
  • Tire Building Drum Having Independently Expandable Center and End Sections
    Europäisches Patentamt *EP001295702A2* (19) European Patent Office Office européen des brevets (11) EP 1 295 702 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: B29D 30/24, B29D 30/20 26.03.2003 Bulletin 2003/13 (21) Application number: 02021255.1 (22) Date of filing: 19.09.2002 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Currie, William Dudley IE IT LI LU MC NL PT SE SK TR Stow, Ohio 44224 (US) Designated Extension States: • Reding, Emile AL LT LV MK RO SI 9163 Kehmen (LU) • Roedseth, John Kolbjoern (30) Priority: 21.09.2001 US 960211 7790 Bissen (LU) (71) Applicant: THE GOODYEAR TIRE & RUBBER (74) Representative: Leitz, Paul COMPANY Goodyear S.A., Akron, Ohio 44316-0001 (US) Patent-Department 7750 Colmar-Berg (LU) (54) Tire building drum having independently expandable center and end sections (57) A tire building drum has a center section (720) therebetween. In an embodiment of the invention, the and two end sections (722, 724). Each end section is bead lock assembly comprises a cylinder and two pis- provided with an expandable bead lock assembly (726). tons (P1, P2) disposed within the cylinder. The pistons The center section is preferably expandable. The ex- are free to move axially within the cylinder, in response pandable bead lock assembly comprises a carrier ring to pneumatic pressure. The first piston (P1) is con- (CR) and a plurality of elongate links (K) extending be- strained from moving axially inward by rods (R1P1, tween the carrier ring (CR) and a plurality of radially- R2P1, R3P1).
    [Show full text]
  • Nonlinear Finite Element Modeling and Analysis of a Truck Tire
    The Pennsylvania State University The Graduate School Intercollege Graduate Program in Materials NONLINEAR FINITE ELEMENT MODELING AND ANALYSIS OF A TRUCK TIRE A Thesis in Materials by Seokyong Chae © 2006 Seokyong Chae Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2006 The thesis of Seokyong Chae was reviewed and approved* by the following: Moustafa El-Gindy Senior Research Associate, Applied Research Laboratory Thesis Co-Advisor Co-Chair of Committee James P. Runt Professor of Materials Science and Engineering Thesis Co-Advisor Co-Chair of Committee Co-Chair of the Intercollege Graduate Program in Materials Charles E. Bakis Professor of Engineering Science and Mechanics Ashok D. Belegundu Professor of Mechanical Engineering *Signatures are on file in the Graduate School. iii ABSTRACT For an efficient full vehicle model simulation, a multi-body system (MBS) simulation is frequently adopted. By conducting the MBS simulations, the dynamic and steady-state responses of the sprung mass can be shortly predicted when the vehicle runs on an irregular road surface such as step curb or pothole. A multi-body vehicle model consists of a sprung mass, simplified tire models, and suspension system to connect them. For the simplified tire model, a rigid ring tire model is mostly used due to its efficiency. The rigid ring tire model consists of a rigid ring representing the tread and the belt, elastic sidewalls, and rigid rim. Several in-plane and out-of-plane parameters need to be determined through tire tests to represent a real pneumatic tire. Physical tire tests are costly and difficult in operations.
    [Show full text]
  • Vehicle Simulation to Drive Formula Sae Design Decisions
    VEHICLE SIMULATION TO DRIVE FORMULA SAE DESIGN DECISIONS STEVEN WEBB MONASH UNIVERSITY 2012 SUPERVISED BY DR SCOTT WORDLEY Final Year Project 2012 Final Report SUMMARY This report covers the creation of a simple program that approximates lap time and energy for Formula SAE cars. In 2010 it was decided that Monash Motorsport would do a “clean sheet” design, so the simulation was made in order to find the effect each aspect of the car has on the cars total performance. This report also shows how to correctly validate raw test data against the equations used to create the model in order to improve the accuracy and understanding of the model and to calculate suitable performance metrics for the car. TABLE OF CONTENTS Summary ......................................................................................................................................... 2 Table of Contents ............................................................................................................................ 2 1. Introduction ............................................................................................................................. 4 1.1 Goals and Performance Metrics ........................................................................................ 5 1.2 Variations between different Formula events. .................................................................. 6 1.2.1 Scoring...................................................................................................................... 6 1.2.2 Track Layout ............................................................................................................
    [Show full text]
  • Formula SAE Interchangeable Independent Rear Suspension Design
    Formula SAE Interchangeable Independent Rear Suspension Design Sponsored by the Cal Poly Formula SAE team A Final Report for Reid Olsen, FSAE Technical Director By: Suspension Solutions Design team Mike McCune - [email protected] Daniel Nunes - [email protected] Mike Patton - [email protected] Courtney Richardson - [email protected] Evan Sparer - [email protected] 2009 ME 428/481/470 Table of Contents Abstract ......................................................................................................................................................... 6 Chapter 1: Introduction ............................................................................................................................... 7 FSAE Team History and Opportunity ......................................................................................................... 8 Formal Problem Definition ...................................................................................................................... 10 Objectives/Specification Development ................................................................................................... 11 Chapter 2: Background ............................................................................................................................... 13 Solid Rear Axle Design ............................................................................................................................. 14 Tire Research ..........................................................................................................................................
    [Show full text]
  • Influência Da Estrutura Ímpar Em Pneus De Lonas Cruzadas
    Igor Zucato Influência da estrutura ímpar em pneus de lonas cruzadas (“Cross-Ply”) São Paulo 2006 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. Igor Zucato Influência da estrutura ímpar em pneus de lonas cruzadas (“Cross-Ply”) Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia Mecânica. Orientador: Prof. Dr. Marco Stipkovic Fº. São Paulo 2006 II Folha de Aprovação Igor Zucato Influência da estrutura ímpar em pneus lonas cruzadas (“Cross-Ply”) Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia Mecânica. Aprovado em: 21 de novembro de 2006 Banca Examinadora Prof. Dr. Marco Stipkovic Filho Instituição: EP – USP Assinatura :__________________ Prof. Dr. Gilberto Francisco Martha de Souza Instituição: EP – USP Assinatura :__________________ Prof. Dr. Renato Barbieri Instituição: PUC – PR (externo) Assinatura :__________________ III "Nosso maior desejo na vida é encontrar alguém que nos faça fazer o melhor que pudermos." Ralph Waldo Emerson Fabiana, obrigado minha esposa e companheira, com todo o amor de minha vida. IV Agradecimentos Primeiramente ao meu amigo e por acaso meu chefe, Eduardo Pinheiro, que me incentivou e apostou no desenvolvimento desse trabalho com suas sugestões e opiniões, bem como no desenvolvimento desta pós-graduação. Ao meu orientador e amigo que teve a paciência para suportar, guiar e me ajudar durante essa caminhada. À Pirelli Pneus S.A. pelo apoio e oportunidade de desenvolver e publicar este trabalho que reúne uma parte da minha experiência na área de pesquisa e desenvolvimento de pneus, e pelo suporte do R&D.
    [Show full text]