Automotive Engineering II Lateral Vehicle Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Automotive Engineering II Lateral Vehicle Dynamics INSTITUT FÜR KRAFTFAHRWESEN AACHEN Univ.-Prof. Dr.-Ing. Henning Wallentowitz Henning Wallentowitz Automotive Engineering II Lateral Vehicle Dynamics Steering Axle Design Editor Prof. Dr.-Ing. Henning Wallentowitz InstitutFürKraftfahrwesen Aachen (ika) RWTH Aachen Steinbachstraße7,D-52074 Aachen - Germany Telephone (0241) 80-25 600 Fax (0241) 80 22-147 e-mail [email protected] internet htto://www.ika.rwth-aachen.de Editorial Staff Dipl.-Ing. Florian Fuhr Dipl.-Ing. Ingo Albers Telephone (0241) 80-25 646, 80-25 612 4th Edition, Aachen, February 2004 Printed by VervielfältigungsstellederHochschule Reproduction, photocopying and electronic processing or translation is prohibited c ika 5zb0499.cdr-pdf Contents 1 Contents 2 Lateral Dynamics (Driving Stability) .................................................................................4 2.1 Demands on Vehicle Behavior ...................................................................................4 2.2 Tires ...........................................................................................................................7 2.2.1 Demands on Tires ..................................................................................................7 2.2.2 Tire Design .............................................................................................................8 2.2.2.1 Bias Ply Tires.................................................................................................11 2.2.2.2 Radial Tires ...................................................................................................12 2.2.3 Force Transmission in circumferential Direction...................................................14 2.2.4 Force Transmission in Lateral Direction ...............................................................19 2.2.4.1 Lateral Forces and aligning Torque by Tire Slip............................................19 2.2.4.2 Lateral Forces and aligning Torques generated by Wheel Camber ..............23 2.2.5 Superposition of lateral Forces and circumferential Forces..................................25 2.2.6 Transient Tire Behavior ........................................................................................27 2.3 Single Track Vehicle Model......................................................................................31 2.3.1 Steady State circular Course Driving....................................................................35 2.3.2 Transient Behavior................................................................................................40 2.3.3 Vehicle as a Control Loop Element ......................................................................45 2.3.3.1 Static Behavior of the controlled Travel Vehicle ............................................45 2.3.3.2 Dynamic Behavior of the Control Travel Vehicle ...........................................46 2.4 Four-Wheel Vehicle Model.......................................................................................53 2.4.1 Model Formulation................................................................................................53 2.4.2 Test Procedures and Assessment Criteria for Vehicle Handling ..........................55 2.4.3 Parametric Study on Steering Behavior (Automobile) ..........................................57 2.4.3.1 Center-of-Gravity Height................................................................................62 2.4.3.2 Center-of-Gravity Position .............................................................................67 2.4.3.3 Roll Axis.........................................................................................................67 2.4.3.4 Anti-roll Suspension Distribution....................................................................69 2.4.3.5 Camber and Toe Angle .................................................................................71 2 Contents 2.4.3.6 Traction (Drive Concept) ...............................................................................78 2.4.3.7 Rear-axle auxiliary Steering ..........................................................................80 2.4.4 Influence of Processes of longitudinal Dynamics on transverse Dynamics..........86 2.4.4.1 Accelerating during Cornering .......................................................................87 2.4.4.2 Load-Alteration during Cornering ..................................................................88 2.4.4.3 Braking during Cornering...............................................................................92 2.4.4.4 Braking on Roadways with Lanes of Different Friction Properties (µ- split) 93 2.5 Steering....................................................................................................................96 2.5.1 Specifications of Steering Systems ......................................................................97 2.5.1.1 Driver related Demands.................................................................................97 2.5.1.2 Vehicle-related Demands ..............................................................................99 2.5.2 Characteristic Values of the Front Wheel Adjustment ........................................100 2.5.3 Steering Kinematics............................................................................................109 2.5.3.1 Static Layout of the Steering Element .........................................................110 2.5.3.2 Real Layout of Steering Elements ...............................................................112 2.5.4 Steering Angle - Steering Torque Diagram.........................................................113 2.5.5 Steering Elasticity ...............................................................................................114 2.5.6 Components of the Steering System ..................................................................115 2.5.6.1 Steering Gearbox without auxiliary Power...................................................116 2.5.6.2 Power Steering............................................................................................118 2.6 Wheel Suspensions................................................................................................122 2.6.1 Basic Concepts of Wheel Suspension................................................................122 2.6.2 Kinematics of Wheel Suspensions .....................................................................124 2.6.2.1 Roll Center...................................................................................................128 2.6.2.2 Braking-Torque and starting-Torque Compensation (anti-dive/anti- squat) 131 2.6.3 Elastokinematics.................................................................................................134 2.6.4 Requirements to be met by Wheel Suspension..................................................135 2.6.4.1 Handling ......................................................................................................136 2.6.4.2 Comfort........................................................................................................138 Contents 3 2.6.5 Rigid Axles..........................................................................................................139 2.6.6 Semi-rigid Axles..................................................................................................143 2.6.7 Independent Suspension....................................................................................147 2.6.7.1 Swing Axles .................................................................................................147 2.6.7.2 Trailing-link Suspension ..............................................................................149 2.6.7.3 Semitrailing-link Wheel Suspension ............................................................150 2.6.7.4 Double-wishbone Suspension.....................................................................153 2.6.7.5 Strut Suspension .........................................................................................156 2.6.7.6 Multilink Wheel Suspensions.......................................................................162 4 Demands on Vehicle Behavior 2 Lateral Dynamics (Driving Stability) 2.1 Demands on Vehicle Behavior Like at all vehicles which are not track-bound, the driver of the motor vehicle has to manage not only the control respectively the regulation of driving speed, but also driving direction. Determination of driving direction by the control activity of the driver contains three cybernetic tasks, Fig. 2.1- 1: 1. From all provided routes, a particular route based on criteria such as time need or distance has to be selected. 2. Within the selected route the desired course has to be defined, whereby information continuously monitored during driving (traffic in the same direction as well as oncoming traffic, signalling systems, routing of the road) are evaluated. 3. The vehicle has to be navigated on the previously defined desired course by its control elements. Fig. 2.1- 1: Cybernetic tasks of the driver in the guidance of a motor vehicle Man undertakes function of a control device in terms of driving stability by the last of this three functions. The vehicle represents the control travel. So interactions between driver action and vehicle response can be understood as operations in a closed control loop, Fig. 2.1- 2. Demands on Vehicle Behavior 5 Fig. 2.1- 2 : Control loop driver - vehicle In this control loop disturbance variables act on the driver (e.g. relative
Recommended publications
  • Prestone Ebook Winter Driving 3
    A Prestone ebook: WINTER DRIVING Of all the seasons, winter creates the most challenging driving conditions, and can be extremely tough on your car. Treacherous weather coupled with dark evenings can make driving hazardous, so it’s vital you ready yourself and your car before the season takes hold. From heavy rain to ice and snow, winter will throw all sorts of extreme weather your way — so it’s best to be prepared. By checking the condition of your car and changing your driving style to adapt to the hazardous conditions, you can keep driving no matter how extreme the weather becomes. To help you stay safe behind the wheel this season, here’s an in-depth guide on the dos and don’ts of winter driving. From checking your vehicle’s coolant/antifreeze to driving in thick fog, heavy rain and high winds — this guide is packed with tips and advice on driving in even the most extreme winter weather. PREPARING YOUR VEHICLE FOR WINTER DRIVING Keeping your car in a good, well maintained condition is important throughout the year, but especially so in winter. At a time when extreme weather can strike at any moment, your car needs to be prepared and ready for the worst. The following checks will help to make sure your car is ready for even the toughest winter conditions. COOLANT / ANTIFREEZE Whatever the weather, your car needs coolant/antifreeze all year round to make sure the engine doesn’t overheat or freeze up. By adding a quality coolant/antifreeze to your engine, it’ll be protected in all extremes — from -37°C to 129°C and you’ll also be protected against corrosion.
    [Show full text]
  • The Parliament of the Commonwealth of Australia Tyre Safety Report Op the House of Representatives Standing Committee on Road Sa
    THE PARLIAMENT OF THE COMMONWEALTH OF AUSTRALIA TYRE SAFETY REPORT OP THE HOUSE OF REPRESENTATIVES STANDING COMMITTEE ON ROAD SAFETY JUNE 1980 AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA 1980 © Commonwealth of Australia 1980 ISBN 0 642 04871 1 Printed by C. I THOMPSON, Commonwealth Govenimeat Printer, Canberra MEMBERSHIP OF THE COMMITTEE IN THE THIRTY-FIRST PARLIAMENT Chairman The Hon. R.C. Katter, M.P, Deputy Chai rman The Hon. C.K. Jones, M.P. Members Mr J.M. Bradfield, M.P. Mr B.J. Goodluck, M.P. Mr B.C. Humphreys, M.P. Mr P.F. Johnson, M.P. Mr P.F. Morris, M.P. Mr J.R. Porter, M.P. Clerk to the Committee Mr W. Mutton* Advisers to the Committee Mr L. Austin Mr M. Rice Dr P. Sweatman Mr Mutton replaced Mr F.R. Hinkley as Clerk to the Committee on 7 January 1980. (iii) CONTENTS Chapter Page Major Conclusions and Recommendations ix Abbreviations xvi i Introduction ixx 1 TYRES 1 The Tyre Market 1 -Manufacturers 1 Passenger Car Tyres 1 Motorcycle Tyres 2 - Truck and Bus Tyres 2 ReconditionedTyi.es 2 Types of Tyres 3 -Tyre Construction 3 -Tread Patterns 5 Reconditioned Tyres 5 The Manufacturing Process 7 2 TYRE STANDARDS 9 Design Rules for New Passenger Car Tyres 9 Existing Design Rules 9 High Speed Performance Test 10 Tests under Conditions of Abuse 11 Side Forces 11 Tyre Sizes and Dimensions 12 -Non-uniformity 14 Date of Manufacture 14 Safety Rims for New Passenger Cars 15 Temporary Spare Tyres 16 Replacement Passenger Car Tyres 17 Draft Regulations 19 Retreaded Passenger Car Tyres 20 Tyre Industry and Vehicle Industry Standards 20
    [Show full text]
  • RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE and OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 1-1-2009 RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN- LOOP HANDLING METRICS Robert Powell Clemson University, [email protected] Follow this and additional works at: http://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Please take our one minute survey! Recommended Citation Powell, Robert, "RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS" (2009). All Theses. Paper 743. This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. RELATIONSHIPS BETWEEN LANE CHANGE PERFORMANCE AND OPEN-LOOP HANDLING METRICS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Robert A. Powell December 2009 Accepted by: Dr. E. Harry Law, Committee Co-Chair Dr. Beshahwired Ayalew, Committee Co-Chair Dr. John Ziegert Abstract This work deals with the question of relating open-loop handling metrics to driver- in-the-loop performance (closed-loop). The goal is to allow manufacturers to reduce cost and time associated with vehicle handling development. A vehicle model was built in the CarSim environment using kinematics and compliance, geometrical, and flat track tire data. This model was then compared and validated to testing done at Michelin’s Laurens Proving Grounds using open-loop handling metrics. The open-loop tests conducted for model vali- dation were an understeer test and swept sine or random steer test.
    [Show full text]
  • The Effect of Tyre Inflation Pressure on Fuel Consumption and Vehicle Handling Performance a Case of ANBESSA CITY BUS
    ADAMA SCIENCE AND TECHNOLOGY UNIVERSITY SCHOOL OF MECHANICAL, CHEMICAL AND MATERIALS ENGINEERING The Effect of Tyre Inflation Pressure on Fuel Consumption and vehicle Handling Performance a case of ANBESSA CITY BUS A thesis submitted in partial fulfillment of the requirements for the award of the Degree of Master of Science in Automotive Engineering By NIGATU BELAYNEH USAMO ADVISOR: - N. RAMESH BABU (Associate Professor) MECHANICAL SYSTEMS AND VEHICLE ENGINEERING PROGRAM June-2017 Adama-Ethiopia I CANDIDATE'S DECLARATION I hereby declare that the work which is being presented in the thesis titled ―The Effect of Tyre Inflation Pressure on Fuel Consumption and vehicle Handling Performance a case of ANBESSA CITY BUS‖ in partial fulfillment of the requirements for the award of the degree of Master of Science in Automotive Engineering is an authentic record of my own work carried out from October 2016 to up June 2017, under the supervision of N. RAMESH BABU Department of Mechanical and Vehicle Engineering, Adama Science and Technology University, Ethiopia. The matter embodied in this thesis has not been submitted by me for the award of any other degree or diploma. All relevant resources of information used in this thesis have been duly acknowledged. Name Signature Date Nigatu Belayneh ………………… …………… Student This is to certify that the above statement made by the candidate is correct to the best of my knowledge and belief. This thesis has been submitted for examination with my approval. Name Signature Date N. Ramesh Babu ______________ ________________
    [Show full text]
  • Mechanics of Pneumatic Tires
    CHAPTER 1 MECHANICS OF PNEUMATIC TIRES Aside from aerodynamic and gravitational forces, all other major forces and moments affecting the motion of a ground vehicle are applied through the running gear–ground contact. An understanding of the basic characteristics of the interaction between the running gear and the ground is, therefore, essential to the study of performance characteristics, ride quality, and handling behavior of ground vehicles. The running gear of a ground vehicle is generally required to fulfill the following functions: • to support the weight of the vehicle • to cushion the vehicle over surface irregularities • to provide sufficient traction for driving and braking • to provide adequate steering control and direction stability. Pneumatic tires can perform these functions effectively and efficiently; thus, they are universally used in road vehicles, and are also widely used in off-road vehicles. The study of the mechanics of pneumatic tires therefore is of fundamental importance to the understanding of the performance and char- acteristics of ground vehicles. Two basic types of problem in the mechanics of tires are of special interest to vehicle engineers. One is the mechanics of tires on hard surfaces, which is essential to the study of the characteristics of road vehicles. The other is the mechanics of tires on deformable surfaces (unprepared terrain), which is of prime importance to the study of off-road vehicle performance. 3 4 MECHANICS OF PNEUMATIC TIRES The mechanics of tires on hard surfaces is discussed in this chapter, whereas the behavior of tires over unprepared terrain will be discussed in Chapter 2. A pneumatic tire is a flexible structure of the shape of a toroid filled with compressed air.
    [Show full text]
  • Wear, Friction, and Temperature Characteristics of an Aircraft Tire Undergoing Braking and Cornering
    https://ntrs.nasa.gov/search.jsp?R=19800004758 2020-03-21T20:55:26+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NASA Technical Paper 1569 Wear, Friction, and Temperature Characteristics of an Aircraft Tire Undergoing Brakingand Cornering John L. McCarty, Thomas J. Yager, and S. R.Riccitiello DECEMBER 19 79 . ~~ TECH LIBRARY KAFB, NM OL3477b NASA Technical Paper 1569 Wear, Friction, andTemperature Characteristics of an Aircraft Tire Undergoing Brakingand Cornering John L. McCarty and Thomas J. Yager Langley ResearchCellter HamptotZ, Virgitlia S. R.Riccitiello Ames ResearchCelzter MoffettField, Califoruia National Aeronautics and Space Administration Scientific and Technical Information Branch 1979 SUMMARY An experimental investigation was conducted to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from differ- entelastomers. Braking and corneringtests were performed on size 22 X 5.5, type VI1 aircraft tires retreaded with currently employedand experimental elastomers. The braking testsconsisted of gearingthe tire to a driving wheel of a ground vehicle to provide operations at fixed slip ratios on dry surfaces ofsmooth and coarseasphalt and concrete. The corneringtests involved freely rolling the tire at fixed yaw angles of O0 to 24O on thedry smooth asphalt surface. The results show thatthe cumulative tread wear varieslinearly with distancetraveled at all slip ratios and yaw angles. Thewear rateincreases with increasing slip ratio duringbraking and increasing yaw angleduring cor- nering. The extent ofwear in eitheroperational mode is influenced by the character of the runway surface. Of thefour tread elastomers investigated, 100-percentnatural rubber was shown to be theleast wear resistant and the state-of-the-artelastomer, comprised of a 75/25 polyblend of cis-polyisoprene and cis-polybutadiene, proved most resistantto wear.
    [Show full text]
  • Winter Driving Safety Tailgate Meeting Guides
    Winter Driving Safety Tailgate Meeting Guide Prepare your vehicle for winter 2. Give your vehicle a check-up. You may know how to drive for winter conditions – • Before each trip, do a ‘circle check’ (walk around your braking in snow, handling a skid, and more. But what if vehicle to inspect its overall condition). your vehicle does not respond? A winter-ready vehicle is • Review your vehicle’s maintenance record. Take it in just as important as good driving skills. for repair if needed and report any concerns to the Motor vehicle crashes are a leading cause of workplace company. deaths in British Columbia. On average, the number of • Make sure the battery, brakes, lights, fuses, cooling/ crashes where someone is injured or killed on BC roads heating systems, exhaust/electrical systems, belts due to driving too fast for the conditions almost doubles and hoses are in good shape. from nearly 121 in October to over 234 in December.* • Keep the gas tank full to avoid condensation in the A winter-ready vehicle allows you to better handle winter tank which can cause fuel lines to freeze. conditions. Here’s what to do: 3. Equip your vehicle with a winter 1. Install four matched winter tires with the survival kit. winter tire logo. Recommended items are an approved high-visibility • Winter tires provide better traction in cold weather vest, non-perishable food, blankets, first aid supplies, (7 degrees Celsius or less). When the temperature windshield scraper, snow brush, spare tire, wheel wrench dips below 7 degrees, the rubber in all-season tires & jack, shovel & traction mat, sand or kitty litter, fuel begins to harden.
    [Show full text]
  • The Conti Urbanscandinavia. GENERATION 3
    People GENERATION 3. DRIVEN BY YOUR NEEDS. Technical data and air pressure recommendations Tire size Operating code EU tire label Rim Tire dimensions Load capacity (kg) per axle at tire Rolling 6) cir- pressure (bar) (psi) Min. cum- dis- Max. standard Stat. fer- Speed tance value in service Actual value radius ence Index and be- reference tween Outer- Tire speed TT/ Rim- rim Outer- Width Ø it- 3) 4) 5) 7.5 8.0 8.5 9.0 Pattern LI/SI 1) PR M+S (km / h) TL 2) K N G width centers Width Ø + 1 % ± 1 % ± 1.5 % ± 2 % LI 1) ment (109) (116) (123) (131) 275/70 R 22.5 Conti 150/145 J 16 M+S J 100 TL D C 2 73 7.50 303 279 974 267 968 449 2989 152 S 6135 6460 6780 7100 UrbanScan (152/148 E) (E 70) 8.25 311 287 282 150 S 5790 6095 6400 6700 HA3 148 D 10885 11465 12035 12600 145 D 10025 10555 11080 11600 Conti 150/145 J 16 M+S J 100 TL D C 2 75 UrbanScan (152/148 E) (E 70) HD3 Data acc. to DIN 7805/4, WdK£Guidelines 134/2, 142/2, 143/14, 143/25 1) Load index single/dual wheel itment and speed symbol 2) TT = Tube Type, TL = Tubeless 3) Fuel eiciency 4) Wet grip 5) External rolling noise (db) Whatever city road 6) For tire pressures of 8.0 bar (116 psi) or greater, use valve slit cover plate conditions in Winter: The Conti UrbanScandinavia.
    [Show full text]
  • English Layout
    what size tire to choose tires The following information is required when choosing the correct tire: • Size • Load Index • Speed Rating everything youneedtoknowabout tires You can find this information for the vehicle's original tires in your Owner's Manual. When looking at an actual tire, you can find similar information moulded into the sidewall. Choosing tires that provide the best safety and value for your driving conditions is a big decision. In choosing wisely, you what do these numbers should take into account your average annual kilometres driven, and letters represent? Typical sidewall marking: and how often you drive in rough conditions: rain, snow, dirt 185/60R15 82H or gravel roads, busy highways, and crowded city streets. The following should help you better understand some of the 185 width of tire: Expressed in millimetres. key points to consider when choosing tires. Speak to your Service Note: Some size designations may be preceded by a “P” for P-Metric Passenger Tire or by “LT” for Light Truck Advisor regarding the tires that are best for you. 60 aspect ratio: everything you need to know about tires The ratio of the tire’s height to its width expressed as a percentage. R Stands for “Radial” construction. 15 diameter of the wheel: The diameter on which the tire will fit expressed in inches. when to what tire buy tires to choose Regularly inspecting your tires will help determine all season tires when they should be replaced. Here is a list • All-around good performance in a wide variety of conditions of warning signs that your tires may need • Softer construction, longer tread life and quieter ride than replacement.
    [Show full text]
  • Final Report
    Final Report Reinventing the Wheel Formula SAE Student Chapter California Polytechnic State University, San Luis Obispo 2018 Patrick Kragen [email protected] Ahmed Shorab [email protected] Adam Menashe [email protected] Esther Unti [email protected] CONTENTS Introduction ................................................................................................................................ 1 Background – Tire Choice .......................................................................................................... 1 Tire Grip ................................................................................................................................. 1 Mass and Inertia ..................................................................................................................... 3 Transient Response ............................................................................................................... 4 Requirements – Tire Choice ....................................................................................................... 4 Performance ........................................................................................................................... 5 Cost ........................................................................................................................................ 5 Operating Temperature .......................................................................................................... 6 Tire Evaluation ..........................................................................................................................
    [Show full text]
  • Tire Building Drum Having Independently Expandable Center and End Sections
    Europäisches Patentamt *EP001295702A2* (19) European Patent Office Office européen des brevets (11) EP 1 295 702 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: B29D 30/24, B29D 30/20 26.03.2003 Bulletin 2003/13 (21) Application number: 02021255.1 (22) Date of filing: 19.09.2002 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Currie, William Dudley IE IT LI LU MC NL PT SE SK TR Stow, Ohio 44224 (US) Designated Extension States: • Reding, Emile AL LT LV MK RO SI 9163 Kehmen (LU) • Roedseth, John Kolbjoern (30) Priority: 21.09.2001 US 960211 7790 Bissen (LU) (71) Applicant: THE GOODYEAR TIRE & RUBBER (74) Representative: Leitz, Paul COMPANY Goodyear S.A., Akron, Ohio 44316-0001 (US) Patent-Department 7750 Colmar-Berg (LU) (54) Tire building drum having independently expandable center and end sections (57) A tire building drum has a center section (720) therebetween. In an embodiment of the invention, the and two end sections (722, 724). Each end section is bead lock assembly comprises a cylinder and two pis- provided with an expandable bead lock assembly (726). tons (P1, P2) disposed within the cylinder. The pistons The center section is preferably expandable. The ex- are free to move axially within the cylinder, in response pandable bead lock assembly comprises a carrier ring to pneumatic pressure. The first piston (P1) is con- (CR) and a plurality of elongate links (K) extending be- strained from moving axially inward by rods (R1P1, tween the carrier ring (CR) and a plurality of radially- R2P1, R3P1).
    [Show full text]
  • Camber Effect Study on Combined Tire Forces
    Camber effect study on combined tire forces Shiruo Li Master Thesis in Vehicle Engineering Department of Aeronautical and Vehicle Engineering KTH Royal Institute of Technology TRITA-AVE 2013:33 ISSN 1651-7660 Postal address Visiting Address Telephone Telefax Internet KTH Teknikringen 8 +46 8 790 6000 +46 8 790 6500 www.kth.se Vehicle Dynamics Stockholm SE-100 44 Stockholm, Sweden Abstract Considering the more and more concerned climate change issues to which the greenhouse gas emission may contribute the most, as well as the diminishing fossil fuel resource, the automotive industry is paying more and more attention to vehicle concepts with full electric or partly electric propulsion systems. Limited by the current battery technology, most electrified vehicles on the roads today are hybrid electric vehicles (HEV). Though fully electrified systems are not common at the moment, the introduction of electric power sources enables more advanced motion control systems, such as active suspension systems and individual wheel steering, due to electrification of vehicle actuators. Various chassis and suspension control strategies can thus be developed so that the vehicles can be fully utilized. Consequently, future vehicles can be more optimized with respect to active safety and performance. Active camber control is a method that assigns the camber angle of each wheel to generate desired longitudinal and lateral forces and consequently the desired vehicle dynamic behavior. The aim of this study is to explore how the camber angle will affect the tire force generation and how the camber control strategy can be designed so that the safety and performance of a vehicle can be improved.
    [Show full text]