Gene Section Review

Total Page:16

File Type:pdf, Size:1020Kb

Gene Section Review Atlas of Genetics and Cytogenetics in Oncology and Haematology INIST -CNRS OPEN ACCESS JOURNAL Gene Section Review BYSL (Bystin-Like) Michiko N Fukuda, Kazuhiro Sugihara Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA (MNF), Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Hamamatsu City, Shizuoka, Japan (KS) Published in Atlas Database: September 2013 Online updated version : http://AtlasGeneticsOncology.org/Genes/BYSLID857ch6p21.html DOI: 10.4267/2042/53636 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract DNA/RNA Review on BYSL, with data on DNA/RNA, on the Description protein encoded and where the gene is implicated. BYSL locates on 6 chromosome 6p21.1 (Pack et al., 1998). Identity It contains 8 exons spanning 10.7 kb of genomic Other names: BYSTIN DNA. HGNC (Hugo): BYSL Protein Location: 6p21.1 Local order: In human chromosome, BYSL gene Description localizes in chromosome 6, between TRFP Human bystin is a 49.6 kDa cytoplasmic protein encoding a transcription mediator, and CCND3 composed of 437 amino acid residues. encoding cyclin D3 (Figure 1). Bystin is a basic protein with isoelectric point 8.10. Figure 1. Genomic organization of BYSL. Atlas Genet Cytogenet Oncol Haematol. 2014; 18(5) 293 BYSL (Bystin-Like) Fukuda MN, Sugihara K Figure 2. Blastocyst-dependent localization of bystin protein in the mouse endometrial epithelia. Above: mouse endometrium with implanting blastocyst (Bl) shows bystin protein (red) on the apical side of epithelia. below: mouse endometrium from pseudopregnant female shows bystin at abluminal side of epithelia. Glandular epithelia (ge); luminal epithelia (le). Bystin protein contains many potential protein proteins localized to the apical side of the epithelia, kinase phosphorylation sites, suggesting an active whereas in their absence bystin protein was role of bystin in signal transduction. localized to the abluminal or basal side of the However, no known structural motif is found in epithelia (Figure 2). This observation suggests the bystin protein. existence of an embryonic factor affecting in a way determining the localization of bystin in the Expression maternal epithelia. The molecular basis underlying BYSL is expressed in trophectoderm cells and apical or basal localization of bystin is presently endometrial epithelial cells during embryo unknown. implantation in human (Aoki and Fukuda, 2000; Bysl is strongly expressed in the adult rat brain Nakayama et al., 2003; Suzuki et al., 1999; Suzuki after injury (Ma et al., 2006; Sheng et al., 2004). et al., 1998). The expression pattern of mouse Bystin is expressed after optic nerve injury in zebra bystin at peri-implantation (Aoki et al., 2006) is fish (Neve et al., 2012). similar to that of mouse trophinin (Nadano et al., Bystin protein was found in mature sperm, of which 2002). function is implicated to sperm motility In the mouse, bystin protein was found in the (Hatakeyama et al., 2008). Bystin is overexpressed blastocyst embryo and endometrial epithelial cells in hepatocellular carcinoma, suggesting its function during peri-implantation period (Aoki et al., 2006). in cell proliferation in liver cancer (Wang et al., Bystin is expressed in mouse endometrial luminal 2009). and glandular epithelial cells throughout hormonal In the Drosophila embryo, bys expression is cycles (Aoki et al., 2006). Bystin in the luminal ubiquitous but relatively weak at early stages, but at epithelia showed a distinct blastocyst-dependent later stages bys expression is strong and specifically pattern: in the presence of blastocysts, bystin localized to larval imaginal discs, suggesting a role Atlas Genet Cytogenet Oncol Haematol. 2014; 18(5) 294 BYSL (Bystin-Like) Fukuda MN, Sugihara K of bys in cell adhesion. In particular, bys expression suggesting that bystin is essential for mouse is strong in the region of the wing pouch giving rise embryo survival after implantation. However, as to two epithelial sheets of the adult wing that described below, Bysl gene knockdown adhere to one another after the disc everts (Stewart experiments show that bystin is also required for and Nordquist, 2005). survival of pre-implantation stage mouse embryos (Adachi et al., 2007). In the knockout mouse, it is Localisation likely that maternally derived Bysl mRNA masks In 6 weeks human placenta, bystin protein was loss of Bysl at pre-implantation stages. found in the cytoplasm of the syncytiotrophoblast When Bysl siRNAs were microinjected into and cytotrophoblast in the chorionic villi, and in fertilized eggs, compaction at the eight-cell stage endometrial decidual cells at the utero placental occurred normally in vitro (Adachi et al., 2007). interface. In 10 weeks placenta, bystin was Bysl siRNA-injected embryos showed slightly exclusively in the nucli of cytotrophoblast (Suzuki reduced expression of cytokeratin 8 (EndoA), an et al., 1999). In cultured cells, bystin localizes to early trophectoderm marker (Oshima et al., 1983). both the nucleus and cytoplasm (Aoki et al., 2006; While control blastocysts showed assembled Miyoshi et al., 2007). In the nucleus, bystin was cytokeratin structures in the trophectoderm layer, often found in the nucleoli. no organized structures were detected in Bysl siRNA-injected embryos. Consequently, blastocyst Function formation was completely inhibited. These embryos Bystin function in human embryo implantation: failed to hatch from the zona pellucida and could Bystin was originally identified as a cytoplasmic not outgrow in culture, suggesting that the bystin protein that forms a complex with trophinin and functions in trophectoderm differentiation. Bysl tastin in human trophoblastic embryonal carcinoma knockdown also inhibited embryonic stem cell HT-H cells (Fukuda and Nozawa, 1999; Suzuki et proliferation (Adachi et al., 2007). al., 1998). While genes encoding trophinin and Bystin function in stem cells: Mouse bystin gene tastin are only found in mammals, the bystin gene is Bysl has been identified as the stem cell marker conserved across a wide range of eukaryotes, commonly expressed in embryonal, neuronal and including yeast, nematodes, insects, snakes, and hematopoietic stem cells (Ramalho-Santos et al., mammals (Roos et al., 1997; Stewart and Denell, 2002). BYSL is also identified as the major target 1993; Stewart and Nordquist, 2005; Trachtulec and of MYC in B-cells (Basso et al., 2005). Since MYC Forejt, 2001). Trophinin is an intrinsic membrane is one of essential genes for converting somatic protein that mediates cell adhesion by homophilic cells into induced pluripotent stem cell (iPS) trophinin-trophinin binding (Fukuda et al., 1995). (Takahashi and Yamanaka, 2006), these Tastin and bystin are cytoplasmic proteins required observations suggest strongly an essential role of for trophinin to function efficiently as a cell bystin in pluripotent stem cells. Bysl is included in adhesion molecule. In humans, trophinin, tastin and a gene cluster of stem cell markers found on mouse bystin are expressed at the utero-placental interface chromosome 16 (Ramalho-Santos et al., 2002). or at implantation sites (Suzuki et al., 1999). These Bystin function in human sperm motility: Bystin proteins are expressed in human placenta at early regulates sperm motility (Hatakeyama et al., 2008). stages of pregnancy but disappear from the placenta Trophinin plays multiple roles in each cell type after 10 weeks of pregnancy (Aoki and Fukuda, under different conditions. 2000; Fukuda and Nozawa, 1999; Suzuki et al., Bystin function in ribosomal biogenesis: The 1999). yeast bystin homologue ENP1 is essential for In trophoblastic HT-H cells, bystin protein budding yeast to survive (Roos et al., 1997). A associates with trophinin and ErbB4 in the temperature-sensitive ENP1-null mutant showed cytoplasm (Sugihara et al., 2007). When trophinin- defective processing of ribosomal RNA (rRNA) mediated cell adhesion takes place on the cell (Chen et al., 2003). Studies of ribosomal biogenesis surface, bystin dissociates from trophinin and in yeast indicate that Enp1 is required to synthesize tyrosine phosphorylation of ErbB4 takes place, 40S ribosomal subunits by functioning in their suggesting the mechanism underlying the nuclear export (Schafer et al., 2003). trophectoderm cell activation upon human embryo Eukaryotic ribosome formation occurs implantation (Figure 3). Bystin functions as predominantly in nucleoli, but late maturation steps molecular switch in trophinin-mediated signal occur in both the nucleoplasm and cytoplasm. transduction in trophoblastic cells (Fukuda and Location of bystin in the cytoplasm during G1 and Sugihara, 2007; Fukuda and Sugihara,2008; Fukuda its nuclear localization prior to mitosis suggest that and Sugihara,2012). bystin plays dual roles in cell growth and Bystin function in mouse embryo: Bystin null proliferation in mammalian cells. mouse embryos implanted successfully but died Although bystin exhibits activities similar to Enp1, soon after implantation (Aoki et al., 2006), human bystin cannot rescue the lethal phenotype of Atlas Genet Cytogenet Oncol Haematol. 2014; 18(5) 295 BYSL (Bystin-Like) Fukuda MN, Sugihara K Enp1-null yeast mutant, suggesting that ribosomal the 40S subunit before translation in human cells RNA processing pathways in multicellular (Miyoshi et al., 2007), bystin may also function
Recommended publications
  • Identification of the Causative Gene for Simmental Arachnomelia Syndrome Using a Network-Based Disease Gene Prioritization Approach
    Identification of the Causative Gene for Simmental Arachnomelia Syndrome Using a Network-Based Disease Gene Prioritization Approach Shihui Jiao1., Qin Chu2., Yachun Wang1*, Zhenquan Xie3, Shiyu Hou3, Airong Liu5, Hongjun Wu4, Lin Liu6, Fanjun Geng7, Congyong Wang7, Chunhua Qin8, Rui Tan9, Xixia Huang10, Shixin Tan11, Meng Wu12, Xianzhou Xu12, Xuan Liu1, Ying Yu1, Yuan Zhang1 1 Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China, 2 Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 3 Anshan Hengli Dairy Farm, Anshan, Liaoning, China, 4 Xiertala Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, China, 5 Hailaer Farm Buro, Hailaer, Inner Mongolia, China, 6 Beijing Dairy Cattle Centre, Beijing, China, 7 Dingyuan Seedstock Bulls Breeding Ltd. Company, Zhengzhou, Henan, China, 8 Ningxia Sygen BioEngineering Research Center, Yinchuan, Ningxia, China, 9 Xinjiang General Livestock Service, Urumqi, Xinjiang, China, 10 College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China, 11 Xinjiang Tianshan Animal Husbandry Bio-engineering Co. Ltd, Urumqi, Xinjiang, China, 12 Dalian Xuelong Industry Limited Group, Dalian, Liaoning, China Abstract Arachnomelia syndrome (AS), mainly found in Brown Swiss and Simmental cattle, is a congenital lethal genetic malformation of the skeletal system. In this study, a network-based disease gene prioritization approach was implemented to rank genes in the previously reported ,7 Mb region on chromosome 23 associated with AS in Simmental cattle. The top 6 ranked candidate genes were sequenced in four German Simmental bulls, one known AS-carrier ROMEL and a pooled sample of three known non-carriers (BOSSAG, RIFURT and HIRMER).
    [Show full text]
  • Cytokine-Enhanced Cytolytic Activity of Exosomes from NK Cells
    Cancer Gene Therapy https://doi.org/10.1038/s41417-021-00352-2 ARTICLE Cytokine-enhanced cytolytic activity of exosomes from NK Cells 1 1 2 3 2 3 Yutaka Enomoto ● Peng Li ● Lisa M. Jenkins ● Dimitrios Anastasakis ● Gaelyn C. Lyons ● Markus Hafner ● Warren J. Leonard 1 Received: 4 February 2021 / Revised: 9 May 2021 / Accepted: 18 May 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This article is published with open access Abstract Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell–cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were 1234567890();,: 1234567890();,: performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Xenopus Piwi Proteins Interact with a Broad Proportion of the Oocyte Transcriptome
    Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome JAMES A. TOOMBS,1,2,4 YULIYA A. SYTNIKOVA,3,5 GUNG-WEI CHIRN,3,6 IGNATIUS ANG,3,7 NELSON C. LAU,3 and MICHAEL D. BLOWER1,2 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA 2Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 3Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA ABSTRACT Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis. Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner.
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • Mutations in Kinesin Family Member 6 Reveal Specific Role in Ependymal Cell Ciliogenesis and Human Neurological Development
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 Mutations in Kinesin family member 6 reveal specific oler in ependymal cell ciliogenesis and human neurological development Mia J. Konjikusic Patra Yeetong Curtis W. Boswell Chanjae Lee Elle C. Roberson See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Mia J. Konjikusic, Patra Yeetong, Curtis W. Boswell, Chanjae Lee, Elle C. Roberson, Rungnapa Ittiwut, Kanya Suphapeetiporn, Brian Ciruna, Christina A. Gurnett, John B. Wallingford, Vorasuk Shotelersuk, and Ryan S. Gray RESEARCH ARTICLE Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development 1,2 3,4,5 6 2 Mia J. KonjikusicID , Patra Yeetong , Curtis W. BoswellID , Chanjae Lee , Elle 2 3,4 3,4 6 C. RobersonID , Rungnapa IttiwutID , Kanya Suphapeetiporn , Brian Ciruna , Christina 7 2 3,4 1 A. Gurnett , John B. Wallingford , Vorasuk Shotelersuk *, Ryan S. GrayID * 1 Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America, 2 Department of Molecular Biosciences, Patterson Labs, a1111111111 The University of Texas at Austin, Austin, Texas, United States of America, 3 Center of Excellence for a1111111111 Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, a1111111111 Thailand, 4 Excellence Center for Medical Genetics,
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Concurrent Progress of Reprogramming and Gene Correction to Overcome Therapeutic Limitation of Mutant ALK2-Ipsc
    OPEN Experimental & Molecular Medicine (2016) 48, e237; doi:10.1038/emm.2016.43 & 2016 KSBMB. All rights reserved 2092-6413/16 www.nature.com/emm ORIGINAL ARTICLE Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC Bu-Yeo Kim1, SangKyun Jeong2, Seo-Young Lee2, So Min Lee2, Eun Jeong Gweon2, Hyunjun Ahn3,4, Janghwan Kim3,4 and Sun-Ku Chung2 Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G4A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Transcriptome Profiling of the Newborn Mouse Lung Response to Acute Ozone Exposure
    toxicological sciences 138(1), 175–190 2014 doi:10.1093/toxsci/kft276 Advance Access publication December 12, 2013 Transcriptome Profiling of the Newborn Mouse Lung Response to Acute Ozone Exposure Kelsa Gabehart,* Kelly A. Correll,* Jing Yang,* Maureen L. Collins,* Joan E. Loader,*,1, Sonia Leach,† Carl W. White,*,1 and Azzeddine Dakhama*,2 *Department of Pediatrics and †Department of Medicine, National Jewish Health, Denver, Colorado 80206 1Present address: Department of Pediatrics, Children’s Hospital, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80206. 2To whom correspondence should be addressed at Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206. Fax: (303) 270-2182. E-mail: [email protected]. Received August 21, 2013; accepted December 3, 2013 respiratory health, including alterations in the structure of the Ozone pollution is associated with adverse effects on respira- airway epithelium, increased sensitivity to inhaled allergens, tory health in adults and children but its effects on the neonatal increased airway inflammation, and altered lung function (Mar lung remain unknown. This study was carried out to define the and Koenig, 2009; Romieu et al., 2002; Strickland et al., 2010). effect of acute ozone exposure on the neonatal lung and to pro- file the transcriptome response. Newborn mice were exposed to Young children are particularly vulnerable to developing ozone or filtered air for 3 h. Total RNA was isolated from lung adverse respiratory health effects from O3 exposure due to higher tissues at 6 and 24 h after exposure and was subjected to micro- ventilation rates, potentially leading to higher doses of inhaled O3 array gene expression analysis.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Evidence for Multiple, Distinct ADAR-Containing Complexes in Xenopus Laevis
    Downloaded from rnajournal.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Evidence for multiple, distinct ADAR-containing complexes in Xenopus laevis CATERINA T.H. SCHWEIDENBACK,1,2 AMY B. EMERMAN,1,2 ASHWINI JAMBHEKAR,1,2 and MICHAEL D. BLOWER1,2 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA 2Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA ABSTRACT ADAR (adenosine deaminase acting on RNA) is an RNA-editing enzyme present in most metazoans that converts adenosines in double-stranded RNA targets into inosines. Although the RNA targets of ADAR-mediated editing have been extensively cataloged, our understanding of the cellular function of such editing remains incomplete. We report that long, double- stranded RNA added to Xenopus laevis egg extract is incorporated into an ADAR-containing complex whose protein components resemble those of stress granules. This complex localizes to microtubules, as assayed by accumulation on meiotic spindles. We observe that the length of a double-stranded RNA influences its incorporation into the microtubule-localized complex. ADAR forms a similar complex with endogenous RNA, but the endogenous complex fails to localize to microtubules. In addition, we characterize the endogenous, ADAR-associated RNAs and discover that they are enriched for transcripts encoding transcriptional regulators, zinc-finger proteins, and components of the secretory pathway. Interestingly, association with ADAR correlates with previously reported translational repression in early embryonic development. This work demonstrates that ADAR is a component of two, distinct ribonucleoprotein complexes that contain different types of RNAs and exhibit diverse cellular localization patterns. Our findings offer new insight into the potential cellular functions of ADAR.
    [Show full text]