Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download Firenze University Press Caryologia www.fupress.com/caryologia International Journal of Cytology, Cytosystematics and Cytogenetics The technique of Plant DNA Barcoding: potential application in floriculture Citation: A. Giovino, F. Martinelli, A. Perrone (2020) The technique of Plant DNA Barcoding: potential application in floriculture. Caryologia 73(2): 27-37. Antonio Giovino1,*, Federico Martinelli2,*, Anna Perrone3 doi: 10.13128/caryologia-730 1 Council for Agricultural Research and Economics (CREA), Research Centre for Plant Received: December 12, 2019 Protection and Certification (CREA-DC), Bagheria, Italy 2 Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy Accepted: April 1, 2020 3 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Uni- Published: July 31, 2020 versity of Palermo, Viale delle Scienze, Palermo, 90128, Italy *Correspondonding authors. E-mail: [email protected]; federico.martinelli@ Copyright: © 2020 A. Giovino, F. unifi.it Martinelli, A. Perrone. This is an open access, peer-reviewed article pub- lished by Firenze University Press Abstract. The objective of this work was to assess the ability of the DNA barcoding (http://www.fupress.com/caryologia) approach to identify different taxonomic groups from two flowering plant collec- and distributed under the terms of the tions: 1) the most relevant commercial taxa (nursery production) and 2) Mediterra- Creative Commons Attribution License, nean plants with ornamental attitude (new emerging species). “Core markers”, rbcL which permits unrestricted use, distri- and matK, were adoptedthe identification step of 100 taxa belonging to 20 families. A bution, and reproduction in any medi- third marker, the intergenic spacer trnH-psbA, was also tested, on 74 taxa, when the um, provided the original author and source are credited. core markers were not able to discriminate well the analysed germplasm.DNA barcode fragments were recovered for all the total taxa investigated (100%). The rbcL showed Data Availability Statement: All rel- the best performances: the greatest amplification success, the best sequencing perfor- evant data are within the paper and its mance both in terms of the number of sequences obtained and in terms of quality Supporting Information files. of the sequences obtained. Despite having recorded greater amplification difficulties, according to numerous other studies, matK has shown a good success in sequencing Competing Interests: The Author(s) declare(s) no conflict of interest. and quality of the obtained sequences (de Vere et al. 2012), unlike what is indicated in some protocols that suggests for this region the need for further primers to be adopted for the sequencing phase (Hollingsworth et. al 2011). Results showed that sixty-one taxa overall (61%) were totally resolved at specific or subspecific level, by at least one of the three markers. The matK and rbcL locus respectively resolved 44% and 35% of the taxa. The core markers inmultilocus approach led to the discrimination of a total of 49% taxa. The trnH-psbA was able to discriminate 52% of taxa analysed and resulting determinant in the discrimination of 14 taxa. Four families, including the major num- ber of taxa (Arecaeae, Fabaceae, Euphorbiaceae, Asteraceae), were evaluated in terms of genetic distance (K2P% value). This work highlighted the potential of the barcoding approach for a rapid identification of plant species in order to solve taxonomic disputes and support commercial traceability of floreal products. Keywords: DNA barcoding, DNA fingerprinting, floriculture,genetic identification. 1 INTRODUCTION Genetic certification of plant material is, today more than ever, a funda- mental requirement to increase the competitiveness of plant nurseries, even Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 73(2): 27-37, 2020 ISSN 0008-7114 (print) | ISSN 2165-5391 (online) | DOI: 10.13128/caryologia-730 28 Antonio Giovino, Federico Martinelli, Anna Perrone in the ornamental sector. This represents a unique and Hebert of the University of Guelph (Canada) (Hebert effective tool for unambiguous determination of nature et al 2003). In this work it was used for the identifica- of plant species. These improvements will enhancethe tion of species, a gene sequence located in the region floriculture sector through the successful obtainment of the mitochondrial gene COI, coding for the subu- of the following to objectives: 1) genetic identification nit I of the cytochrome-c oxidase (also known as War- (especially for native plants) and particularly to iden- burg’s respiratory fragment), therefore the variability of tify the link between genetic resources of ornamental a molecular marker for the identification of biological interest and the relative territory of origin, thus pro- identities is exploited.Over the years, COI has been suc- moting the products in harmony with the territory and cessfully used in various animal taxa, including birds with sustainability criteria, 2) traceability (native plants (Hebert et al., 2004b), arthropods (Barrett and Hebert, and imported plants) through the characterization of 2005), fish (Wardet al., 2005) and Lepidoptera (Hebert autochthonous products, plant material of supply chain et al., 2004a). In vegetables, COI has not proved to be and non-native incoming material. Therefore, the genet- an excellent marker for phylogenetic studies, due to the ic certification of plant material is an extremely impor- low evolutionary rate of the mitochondrial genome. In tant aspect for the resolution of related problems:1) order to overcome this problem, other markers for DNA taxonomic controversies (synonymy/homonymy) and barcoding of plants have been identified in recent years. species of difficult identification, 2) newly introduced These are DNA sequences present in some sections of programs, genetic improvement, 3) early identification the chloroplast genome, such as the trnH-psbA inter- of species with very long phenological cycles, 4)corre- genic region, the matK gene or the rbcL gene, which spondence checks of vegetable species entering the mar- have characteristics similar tocoxI useful for species kets, 5) protection of biodiversity, of native or endan- identification. There are several requirements for a gered species. Recently, DNA barcoding has emergedas marker to be considered appropriate for DNA barcod- a new molecular tool for taxonomists (Hebert, Ratnas- ing. First of all it is advisable that the marker has a wide ingham & deWaard, 2003). A DNA barcodeis a univer- taxonomic coverage (also called universality), which sally accepted short DNA sequence normally employed would allow the applicability of the gene chosen as bar- for the identification of species (Savolainen et al., 2005), code markern to the largest possible number of taxa promoted for a variety of biological applications (Holl- and have a high success rate of PCR and sequencing. A ingsworth, Graham & Little, 2011), including the identi- high resolution capacity of the gene is also important, fication of cryptic species, species discovery (Bickford et i.e the ability of a given barcode to differentiate species. al., 2007) and taxonomic revisions (Simeone et al 2013). This is typically based on the amount of interspecific The genotype is nothing but the set of all the genes differences between DNA sequences (Polymorphism). that make up the DNA of an organism. Thus DNA- Another fundamental assumption is that the molecular based taxonomy has proved to be a valuable support marker chosen as a barcode should show a higher inter- to the classical taxonomy allowing to face the growing specific variability than intraspecific variability. Inter- need for accurate and accessible taxonomic information and intra-specific variability are separated by a certain (Tautz et al., 2003). In particular, the advent of molecu- distance (discontinuity between intra and interspecific lar markers has marked a remarkable turning point in variability) called “barcoding gap” (Meyer and Paulay, the world of plant genetics allowing the construction 2005).The ideal marker therefore consists of a highly of association genetic maps and the identification of variable region, which provides for species discrimina- genes responsible for agronomic characters (Giovino et tion, flanked by highly conserved regions for which ade- al. 2015a). In taxonomic studies, markers are important quate primers can be designed (Saunders and Kucera, for botanical classifications and the analysis of phyloge- 2010). Therefore, for the plants, the Barcoding proto- netic relationships (Varshney et al., 2005). Among the cols refer to the indications of the Plant working Group, molecular techniques, a new approach to the study of which suggests the use of a multi-locus approach (Hol- biodiversity has become widespread, with all the prob- lingsworth et al., 2011; Domina et al. 2017). The gen- lems related to this study: the DNA barcoding, literally eral objective of the research was to use the technique “DNA barcode”. The name of this approach refers to the of DNA barcoding to help nursery production thanks identification method by which a scanner distinguishes to the easy identification of new products, ornamental various commercial products using linear bar codes or plants and ornamental-food valueto respond to new and “UPC” (Universal Product Code).This molecular inves- growing market needs. tigation approach was first proposed to the scientific
Recommended publications
  • E:\Brbl\Testi\Braun-Blanquetia
    BRAUN-BLANQUETIA, vol. 46, 2010 225 FLORISTIC CHANGE DURING EARLY PRIMARY SUCCESSION ON LAVA, MOUNT ETNA, SICILY * ** Roger DEL MORAL , Emilia POLI MARCHESE * Department of Biology, Box 351800, University of Washington, Seattle, Washington (USA) E-mail: [email protected] ** Università di Catania, c/o Dipartimento di Botanica, via A. Longo 19, I-95125, Catania (Italia) E-mail: [email protected] ABSTRACT sis; GF=growth-form; GPS=global po- can lead to alternative stable vegetation sitioning system; HC=half-change; types (FATTORINI &HALLE, 2004; TEM- Weinvestigatedthedegreetowhi- NMS=nonmetricmultidimensionalsca- PERTON &ZIRR,2004;YOUNG etal.2005). ch vegetation becomes more similar ling; PS=percent similarity. Convergence can be recognized if during primary succession and asked sample similarity increases with age, whether the age of a lava site alone NOMENCLATURE: Pignatti (1982). but chronosequence methods may con- determinesspeciescompositiononothe- found site and stochastic effects with rwise similar sites or if site-specific effects due to age. Though chronose- factors are more important. The study INTRODUCTION quence methods must be employed in wasconfinedto lavaflowsfoundbetwe- long trajectories (DEL MORAL&GRISHIN, en 1,000 and 1,180 m on the south side The mechanisms that guide the 1999), the underlying assumption that of Mount Etna, Italy that formed from assembly of species are complex (KED- all sites were initially identical has ra- 1892 to 1169 or earlier. Ground layer DY, 1992; WALKER & DEL MORAL, 2003). rely been tested. Here we explore the cover wasmeasured at15exposed sites During primary succession, landscape relationship between time and develop- and 12 sites under shrubs, using ten 1- context and chance produce mosaics ment on a small part of Mount Etna, m2 quadrats in five plots at each site.
    [Show full text]
  • Phylogeny and Evolution of the Arctium-Cousinia Complex (Compositae, Cardueae-Carduinae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC TAXON 58 (1) • February 2009: 153–171 López-Vinyallonga & al. • Arctium-Cousinia complex Phylogeny and evolution of the Arctium-Cousinia complex (Compositae, Cardueae-Carduinae) Sara López-Vinyallonga1,4*, Iraj Mehregan2,4, Núria Garcia-Jacas1, Olga Tscherneva3, Alfonso Susanna1 & Joachim W. Kadereit2 1 Botanical Institute of Barcelona (CSIC-ICUB), Pg. del Migdia s. n., 08038 Barcelona, Spain. *slopez@ibb. csic.es (author for correspondence) 2 Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz, Germany 3 Komarov Botanical Institute, Ul. Prof. Popova 2, 197376 St. Petersburg, Russia 4 These authors contributed equally to this publication The phylogeny and evolution of the Arctium-Cousinia complex, including Arctium, Cousinia as one of the largest genera of Asteraceae, Hypacanthium and Schmalhausenia, is investigated. This group of genera has its highest diversity in the Irano-Turanian region and the mountains of Central Asia. We generated ITS and rpS4-trnT-trnL sequences for altogether 138 species, including 129 (of ca. 600) species of Cousinia. As found in previous analyses, Cousinia is not monophyletic. Instead, Cousinia subgg. Cynaroides and Hypacanthodes with together ca. 30 species are more closely related to Arctium, Hypacanthium and Schmalhausenia (Arc- tioid clade) than to subg. Cousinia (Cousinioid clade). The Arctioid and Cousiniod clades are also supported by pollen morphology and chromosome number as reported earlier. In the Arctioid clade, the distribution of morphological characters important for generic delimitation, mainly leaf shape and armature and morphology of involucral bracts, are highly incongruent with phylogenetic relationships as implied by the molecular data.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • 1462 2012 312 15822.Pdf
    UNIVERSITÀ MEDITERRANEA DI REGGIO CALABRIA FACOLTÀ DI AGRARIA Lezioni di BIOLOGIA VEGETALE Angiosperme (Sistematica) Dott. Francesco Forestieri Dott. Serafino Cannavò Fabaceae Leguminose Papillionaceae Fabaceae (Leguminosae) La famiglia delle Fabacaea è una delle più grandi famiglie delle piante vascolari, con circa 18000 specie riunite in 650 generi. Le Fabaceae costituiscono uno dei più importanti gruppi di piante coltivate, insieme alle Graminaceae. Esse forniscono alimenti, foraggio per il bestiame, spezie, veleni, tinture, oli, ecc. Sistematica Cronquist 1981 - 1988 Magnoliopsida Rosidae Fabales Mimosaceae Caesalpiniaceae Fabaceae (Leguminosae) Sistematica APG III Eurosidae I Fabales Fabaceae (Leguminosae) Mimosoideae Cesalpinoideae Faboideae (Papilionoideae) Sistematica Magnoliopsida Eurosidae I Magnoliidae • Zygophyllales Hamamelididae • Celastrales Caryophyllidae • Oxalidales Dilleniidae • Malpighiales Rosidae • Cucurbitales • Rosales • Fabales • Fabales ̶ Fabaceae ̶ Mimosaceae o Mimosoideae ̶ Caesalpiniaceae o Ceasalapinoideae ̶ Fabaceae o Faboideae • Proteales ̶ Polygalaceae • ----- ̶ Quillajaceae • Euphorbiales ̶ Surianaceae • Apiales • Fagales • Solanales • Rosales • Lamiales • Scrophulariales • Asterales La famiglia delle Fabaceae è distinta in 3 sottofamiglie: • Mimosoideae. Alberi o arbusti delle zone tropicali o subtropicali, con fiori attinomorfi, petali piccoli, stami in numero doppio a quello dei petali o molto numerosi. Mimosoideae Acacia • Caesalpinioideae Alberi per lo più delle zone equatoriali o subtropicali con
    [Show full text]
  • Hymenoptera, Vespidae, Masarinae) in Morocco
    Research Collection Journal Article Flower associations and nesting of the pollen wasp Quartinia major Kohl, 1898 (Hymenoptera, Vespidae, Masarinae) in Morocco Author(s): Mauss, Volker; Müller, Andreas; Prosi, Rainer Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000249947 Originally published in: Journal of Hymenoptera Research 62, http://doi.org/10.3897/jhr.62.22879 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library JHR 62: 15–31Flower (2018) associations and nesting of the pollen wasp Quartinia major Kohl, 1898... 15 doi: 10.3897/jhr.62.22879 RESEARCH ARTICLE http://jhr.pensoft.net Flower associations and nesting of the pollen wasp Quartinia major Kohl, 1898 (Hymenoptera, Vespidae, Masarinae) in Morocco Volker Mauss1, Andreas Müller2, Rainer Prosi3 1 Staatliches Museum für Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany 2 ETH Zürich, Institute of Agricultural Sciences, Biocommunication and Entomology, Schmelzbergstraße 9/LFO, CH-8092 Zürich, Switzerland 3 Lerchenstraße 81, D-74564 Crailsheim, Germany Corresponding author: Volker Mauss ([email protected]) Academic editor: J. Neff | Received 9 December 2017 | Accepted 4 January 2018 | Published 26 February 2018 http://zoobank.org/426192A5-7E3A-46CD-9CDF-48A8FBD63AC5 Citation: Mauss V, Müller A, Prosi R (2018) Flower associations and nesting of the pollen wasp Quartinia major Kohl, 1898 (Hymenoptera, Vespidae, Masarinae) in Morocco. Journal of Hymenoptera Research 62: 15–31. https://doi. org/10.3897/jhr.62.22879 Abstract Females of Quartinia major Kohl were observed to visit flowers of Pulicaria mauritanica Batt., Cladanthus arabicus (L.) Cass.
    [Show full text]
  • Vascular Plant Species Diversity of Mt. Etna
    Vascular plant species diversity of Mt. Etna (Sicily): endemicity, insularity and spatial patterns along the altitudinal gradient of the highest active volcano in Europe Saverio Sciandrello*, Pietro Minissale* and Gianpietro Giusso del Galdo* Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy * These authors contributed equally to this work. ABSTRACT Background. Altitudinal variation in vascular plant richness and endemism is crucial for the conservation of biodiversity. Territories featured by a high species richness may have a low number of endemic species, but not necessarily in a coherent pattern. The main aim of our research is to perform an in-depth survey on the distribution patterns of vascular plant species richness and endemism along the elevation gradient of Mt. Etna, the highest active volcano in Europe. Methods. We used all the available data (literature, herbarium and seed collections), plus hundreds of original (G Giusso, P Minissale, S Sciandrello, pers. obs., 2010–2020) on the occurrence of the Etna plant species. Mt. Etna (highest peak at 3,328 mt a.s.l.) was divided into 33 belts 100 m wide and the species richness of each altitudinal range was calculated as the total number of species per interval. In order to identify areas with high plant conservation priority, 29 narrow endemic species (EE) were investigated through hot spot analysis using the ``Optimized Hot Spot Analysis'' tool available in the ESRI ArcGIS software package. Results. Overall against a floristic richness of about 1,055 taxa, 92 taxa are endemic, Submitted 7 November 2019 of which 29 taxa are exclusive (EE) of Mt.
    [Show full text]
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]
  • List of 735 Prioritised Plant Taxa of CARE-MEDIFLORA Project
    List of 735 prioritised plant taxa of CARE-MEDIFLORA project In situ and/or ex situ conservation actions were implemented during CARE-MEDIFLORA for 436 of the prioritised plant taxa. Island(s) of occurrence: Balearic Islands (Ba), Corsica (Co), Sardinia (Sa), Sicily (Si), Crete (Cr), Cyprus (Cy) Occurrence: P = present; A = alien (not native to a specific island); D = doubtful presence Distribution type: ENE = Extremely Narrow Endemic (only one population) NE = Narrow Endemic (≤ five populations) RE = Regional Endemic (only one Island) IE = Insular Endemic (more than one island) W = distributed in more islands or in a wider area. Distribution type defines the "regional responsibility" of an Island on a plant species. Criteria: Red Lists (RL): plant species selected is included in the red list (the plant should be EN, CR or VU in order to justify a conservation action); Regional Responsibility (RR): plant species selected plays a key role for the island; the "regional responsibility" criterion is the first order of priority at local level, because it establishes a high priority to plants whose distribution is endemic to the study area (an island in our specific case). Habitats Directive (HD): plant species selected is listed in the Annexes II and V of the Habitat Directive. Wetland plant (WP): plant species selected is a wetland species or grows in wetland habitat. Island(s) where Distribution Island(s) where Taxon (local checklists) Island(s) of occurrence conservation action(s) type taxon prioritised were implemented Ba Co Sa Si Cr Cy RL RR HD WP Ex situ In situ Acer granatense Boiss. P W 1 Ba Ba Acer obtusatum Willd.
    [Show full text]
  • Albania in Spring
    Albania in Spring Naturetrek Tour Report 29 May - 5 June 2019 Dalmatian Pelican Elder-flowered Orchid Hermann Tortoise Spring Gentian Report and photos compiled by Neil Anderson Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Albania in Spring Tour participants: Neil Anderson (leader) & Mirjan Topi (local guide) with 16 Naturetrek clients Day 1 Wednesday 29th May Arrive Tirana We had a mid-afternoon flight departing Gatwick which left about 15 minutes late but arrived in Albania’s capital, Tirana, on time just before 21.00 local time. We were staying just a few minutes away at the comfortable Ark Hotel, where we checked in and were soon in our rooms settling down for a night’s sleep before the start of the tour. Day 2 Thursday 30th May Fllake-Sektori Rinia Lagoon, Karavasta, Berat We had a full programme after our breakfast in Tirana before heading for the scenic UNESCO city of Berat, our base for the next couple of days. We first visited the Rinia lagoon close to the capital and we were blessed with some pleasantly warm sunshine. This area is a popular beach location, but being a weekday there was little disturbance. Our first stop before the main lagoon was the unprotected site of a large Bee-eater breeding colony. Over 200 pairs breed here in total and we watched over 40 pairs. We also saw several Red-rumped Swallows here, had good views of a vocal Cuckoo and a Great Reed Warbler sang in the dyke.
    [Show full text]
  • Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
    1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers.
    [Show full text]
  • Index Seminum 2018-2019
    UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere,
    [Show full text]
  • Schede Per Una Lista Rossa Della Flora Vascolare E Crittogamica Italiana Editori
    SocIetà BotanIca ItaLIana onLuS GRuppI peR La conSeRvazIone deLLa natuRa, FLoRIStIca, BRIoLoGIa, LIchenoLoGIa, MIcoLoGIa Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana editori Graziano Rossi, Gianluigi Bacchetta, Giuseppe Fenu, Bruno Foggi, Matilde Gennai, domenico Gargano, chiara Montagnani, Simone orsenigo, Lorenzo peruzzi autori Gianluigi Bacchetta, carlo Blasi, Giuseppe caruso, Miris castello, donatella cogoni, Gianniantonio domina, Stefania ercole, emmanuele Farri, Giuseppe Fenu, Roberto Fiorentin, Bruno Foggi, Mauro Fois, Matilde Gennai, vincenzo Gonnelli, edda Lattanzi, Leonardo Lombardi, alfredo Maccioni, Francesco Mascia, chiara Montagnani, anna nebot, Giuseppe oriolo, Salvatore pasta, enrico vito perrino, andrea Santo, Silvia Sau, Leonardo Scuderi, Luca Strazzaboschi, Stefano tasinazzo, Riccardo testolin, agnese tilia, Michela tomasella, dimitar uzunov, daniele viciani, Mariacristina villani, Robert philipp Wagensommer IndIce - Le schede delle specie trattate piante vascolari: Spermatofite Astragalus thermensis vals. Centaurea kartschiana Scop. subsp. kartschiana Cirsium alpis-lunae Brilli-catt. & Gubellini Dianthus mossanus Bacch. & Brullo Festuca morisiana parl. subsp. morisiana Genista tyrrhena vals. subsp. pontiana Brullo & de Marco Hellenocarum multiflorum (Sm.) h.Wolff Lavatera triloba L. subsp. triloba Limonium apulum Brullo Limonium lacinium arrigoni Pallenis maritima (L.) Greuter Saxifraga berica (Bég.) d.a.Webb InFoRMatoRe BotanIco ItaLIano, 47 (1) 99-140, 2015 103 Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana Astragalus thermensis vals. S. Sau, G. Fenu, d. coGonI, G. Bacchetta nomenclatura: psammofile di interesse fitogeografico o endemiche, Specie: Astragalus thermensis vals. tra le quali si evidenzia la presenza di Helichrysum Famiglia: Fabaceae microphyllum cambess. subsp. tyrrhenicum Bacch., nome comune: astragalo del coghinas Brullo & Giusso, Ephedra distachya L., Scrophularia ramosissima Loisel., Armeria pungens (Link) descrizione. pulvino di (10)20-50 cm, spinoso, hoffmanns.
    [Show full text]