Prosopis Kuntzei Harms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E:\Brbl\Testi\Braun-Blanquetia
BRAUN-BLANQUETIA, vol. 46, 2010 225 FLORISTIC CHANGE DURING EARLY PRIMARY SUCCESSION ON LAVA, MOUNT ETNA, SICILY * ** Roger DEL MORAL , Emilia POLI MARCHESE * Department of Biology, Box 351800, University of Washington, Seattle, Washington (USA) E-mail: [email protected] ** Università di Catania, c/o Dipartimento di Botanica, via A. Longo 19, I-95125, Catania (Italia) E-mail: [email protected] ABSTRACT sis; GF=growth-form; GPS=global po- can lead to alternative stable vegetation sitioning system; HC=half-change; types (FATTORINI &HALLE, 2004; TEM- Weinvestigatedthedegreetowhi- NMS=nonmetricmultidimensionalsca- PERTON &ZIRR,2004;YOUNG etal.2005). ch vegetation becomes more similar ling; PS=percent similarity. Convergence can be recognized if during primary succession and asked sample similarity increases with age, whether the age of a lava site alone NOMENCLATURE: Pignatti (1982). but chronosequence methods may con- determinesspeciescompositiononothe- found site and stochastic effects with rwise similar sites or if site-specific effects due to age. Though chronose- factors are more important. The study INTRODUCTION quence methods must be employed in wasconfinedto lavaflowsfoundbetwe- long trajectories (DEL MORAL&GRISHIN, en 1,000 and 1,180 m on the south side The mechanisms that guide the 1999), the underlying assumption that of Mount Etna, Italy that formed from assembly of species are complex (KED- all sites were initially identical has ra- 1892 to 1169 or earlier. Ground layer DY, 1992; WALKER & DEL MORAL, 2003). rely been tested. Here we explore the cover wasmeasured at15exposed sites During primary succession, landscape relationship between time and develop- and 12 sites under shrubs, using ten 1- context and chance produce mosaics ment on a small part of Mount Etna, m2 quadrats in five plots at each site. -
1462 2012 312 15822.Pdf
UNIVERSITÀ MEDITERRANEA DI REGGIO CALABRIA FACOLTÀ DI AGRARIA Lezioni di BIOLOGIA VEGETALE Angiosperme (Sistematica) Dott. Francesco Forestieri Dott. Serafino Cannavò Fabaceae Leguminose Papillionaceae Fabaceae (Leguminosae) La famiglia delle Fabacaea è una delle più grandi famiglie delle piante vascolari, con circa 18000 specie riunite in 650 generi. Le Fabaceae costituiscono uno dei più importanti gruppi di piante coltivate, insieme alle Graminaceae. Esse forniscono alimenti, foraggio per il bestiame, spezie, veleni, tinture, oli, ecc. Sistematica Cronquist 1981 - 1988 Magnoliopsida Rosidae Fabales Mimosaceae Caesalpiniaceae Fabaceae (Leguminosae) Sistematica APG III Eurosidae I Fabales Fabaceae (Leguminosae) Mimosoideae Cesalpinoideae Faboideae (Papilionoideae) Sistematica Magnoliopsida Eurosidae I Magnoliidae • Zygophyllales Hamamelididae • Celastrales Caryophyllidae • Oxalidales Dilleniidae • Malpighiales Rosidae • Cucurbitales • Rosales • Fabales • Fabales ̶ Fabaceae ̶ Mimosaceae o Mimosoideae ̶ Caesalpiniaceae o Ceasalapinoideae ̶ Fabaceae o Faboideae • Proteales ̶ Polygalaceae • ----- ̶ Quillajaceae • Euphorbiales ̶ Surianaceae • Apiales • Fagales • Solanales • Rosales • Lamiales • Scrophulariales • Asterales La famiglia delle Fabaceae è distinta in 3 sottofamiglie: • Mimosoideae. Alberi o arbusti delle zone tropicali o subtropicali, con fiori attinomorfi, petali piccoli, stami in numero doppio a quello dei petali o molto numerosi. Mimosoideae Acacia • Caesalpinioideae Alberi per lo più delle zone equatoriali o subtropicali con -
Vascular Plant Species Diversity of Mt. Etna
Vascular plant species diversity of Mt. Etna (Sicily): endemicity, insularity and spatial patterns along the altitudinal gradient of the highest active volcano in Europe Saverio Sciandrello*, Pietro Minissale* and Gianpietro Giusso del Galdo* Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy * These authors contributed equally to this work. ABSTRACT Background. Altitudinal variation in vascular plant richness and endemism is crucial for the conservation of biodiversity. Territories featured by a high species richness may have a low number of endemic species, but not necessarily in a coherent pattern. The main aim of our research is to perform an in-depth survey on the distribution patterns of vascular plant species richness and endemism along the elevation gradient of Mt. Etna, the highest active volcano in Europe. Methods. We used all the available data (literature, herbarium and seed collections), plus hundreds of original (G Giusso, P Minissale, S Sciandrello, pers. obs., 2010–2020) on the occurrence of the Etna plant species. Mt. Etna (highest peak at 3,328 mt a.s.l.) was divided into 33 belts 100 m wide and the species richness of each altitudinal range was calculated as the total number of species per interval. In order to identify areas with high plant conservation priority, 29 narrow endemic species (EE) were investigated through hot spot analysis using the ``Optimized Hot Spot Analysis'' tool available in the ESRI ArcGIS software package. Results. Overall against a floristic richness of about 1,055 taxa, 92 taxa are endemic, Submitted 7 November 2019 of which 29 taxa are exclusive (EE) of Mt. -
List of 735 Prioritised Plant Taxa of CARE-MEDIFLORA Project
List of 735 prioritised plant taxa of CARE-MEDIFLORA project In situ and/or ex situ conservation actions were implemented during CARE-MEDIFLORA for 436 of the prioritised plant taxa. Island(s) of occurrence: Balearic Islands (Ba), Corsica (Co), Sardinia (Sa), Sicily (Si), Crete (Cr), Cyprus (Cy) Occurrence: P = present; A = alien (not native to a specific island); D = doubtful presence Distribution type: ENE = Extremely Narrow Endemic (only one population) NE = Narrow Endemic (≤ five populations) RE = Regional Endemic (only one Island) IE = Insular Endemic (more than one island) W = distributed in more islands or in a wider area. Distribution type defines the "regional responsibility" of an Island on a plant species. Criteria: Red Lists (RL): plant species selected is included in the red list (the plant should be EN, CR or VU in order to justify a conservation action); Regional Responsibility (RR): plant species selected plays a key role for the island; the "regional responsibility" criterion is the first order of priority at local level, because it establishes a high priority to plants whose distribution is endemic to the study area (an island in our specific case). Habitats Directive (HD): plant species selected is listed in the Annexes II and V of the Habitat Directive. Wetland plant (WP): plant species selected is a wetland species or grows in wetland habitat. Island(s) where Distribution Island(s) where Taxon (local checklists) Island(s) of occurrence conservation action(s) type taxon prioritised were implemented Ba Co Sa Si Cr Cy RL RR HD WP Ex situ In situ Acer granatense Boiss. P W 1 Ba Ba Acer obtusatum Willd. -
Wood Anatomy of Senecioneae (Compositae) Sherwin Carlquist Claremont Graduate School
Aliso: A Journal of Systematic and Evolutionary Botany Volume 5 | Issue 2 Article 3 1962 Wood Anatomy of Senecioneae (Compositae) Sherwin Carlquist Claremont Graduate School Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1962) "Wood Anatomy of Senecioneae (Compositae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 5: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol5/iss2/3 ALISO VoL. 5, No.2, pp. 123-146 MARCH 30, 1962 WOOD ANATOMY OF SENECIONEAE (COMPOSITAE) SHERWIN CARLQUISTl Claremont Graduate School, Claremont, California INTRODUCTION The tribe Senecioneae contains the largest genus of flowering plants, Senecio (between 1,000 and 2,000 species). Senecioneae also encompasses a number of other genera. Many species of Senecio, as well as species of certain other senecionean genera, are woody, despite the abundance of herbaceous Senecioneae in the North Temperate Zone. Among woody species of Senecioneae, a wide variety of growth forms is represented. Most notable are the peculiar rosette trees of alpine Africa, the subgenus Dendrosenecio of Senecio. These are represented in the present study of S. aberdaricus (dubiously separable from S. battescombei according to Hedberg, 195 7), S. adnivalis, S. cottonii, and S. johnstonii. The Dendra senecios have been discussed with respect to taxonomy and distribution by Hauman ( 1935) and Hedberg ( 195 7). Cotton ( 1944) has considered the relationship between ecology and growth form of the Dendrosenecios, and anatomical data have been furnished by Hare ( 1940) and Hauman ( 19 3 5), but these authors furnish little information on wood anatomy. -
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report By Dr. Terri Hildebrand Southern Utah University, Cedar City, UT and Dr. Walter Fertig Moenave Botanical Consulting, Kanab, UT Colorado Plateau Cooperative Ecosystems Studies Unit Agreement # H1200-09-0005 1 May 2012 Prepared for Grand Canyon-Parashant National Monument Southern Utah University National Park Service Mojave Network TABLE OF CONTENTS Page # Introduction . 4 Study Area . 6 History and Setting . 6 Geology and Associated Ecoregions . 6 Soils and Climate . 7 Vegetation . 10 Previous Botanical Studies . 11 Methods . 17 Results . 21 Discussion . 28 Conclusions . 32 Acknowledgments . 33 Literature Cited . 34 Figures Figure 1. Location of Grand Canyon-Parashant National Monument in northern Arizona . 5 Figure 2. Ecoregions and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 8 Figure 3. Soil types and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 9 Figure 4. Increase in the number of plant taxa confirmed as present in Grand Canyon- Parashant National Monument by decade, 1900-2011 . 13 Figure 5. Southern Utah University students enrolled in the 2010 Plant Anatomy and Diversity course that collected during the 30 August 2010 experiential learning event . 18 Figure 6. 2010-2011 collection sites and transportation routes in Grand Canyon-Parashant National Monument in northern Arizona . 22 2 TABLE OF CONTENTS Page # Tables Table 1. Chronology of plant-collecting efforts at Grand Canyon-Parashant National Monument . 14 Table 2. Data fields in the annotated checklist of the flora of Grand Canyon-Parashant National Monument (Appendices A, B, C, and D) . -
EGU2014-8360-1, 2014 EGU General Assembly 2014 © Author(S) 2014
Geophysical Research Abstracts Vol. 16, EGU2014-8360-1, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License. Primary succession on slopes exposed to intense erosion: the case of Vesuvius Grand Cone Adriano Stinca, Giovanni Battista Chirico, and Giuliano Bonanomi Università di Napoli, Dipartimento di Agraria, Portici (NA), Italy ([email protected]) Mt. Vesuvius (1281 m a.s.l.) is an active volcano dominating the central part of the Campania Region coastline, with a distinctive barren crater summit, known as Grand Cone, formed during the eruption of AD 79. Local envi- ronmental factors hindered the colonization of the Vesuvius Grand Cone by vascular plants after the last eruptions of 1906 and 1944. The Grand Cone exhibits very steep planar slopes (33-35 degrees), covered by unconsolidated pyroclastic deposits, mainly formed by lapilli and gravels, characterized by an extremely low water holding ca- pacity and very low organic matter and nitrogen contents, and exposed to intense water and wind erosion. In the last decade Genista aetnensis (Biv.) DC. (Fabaceae), has been expanding over the Grand Cone, facilitating the colonization by other species, especially herbaceous, with a dramatic change of the landscape appearance of the Vesuvius Grand Cone. G. aetnensis is a plant endemic of Mt. Etna and Eastern Sardinia and was firstly introduced at the base of Mt. Vesuvius within reforestation programs after the eruption of 1906. This plant is a nitrogen fixing species with a strong ability to colonize andosols, much more pronounced than the indigenous brooms (Cytisus scoparius and Spartium junceum). An intensive investigation has been conducted to explore the eco-hydrological processes driving the vegetation dynamics observed on the slopes of Grand Cone. -
Dixie Meadows Geothermal Utilization Project Environmental Assessment
Appendix D Biological Survey Reports EMPSi 2016; WRC 2013; ESRS 2013 This page intentionally left blank. Biological Survey Report ORNI 32, LLC DIXIE MEADOWS GEOTHERMAL UTILIZATION PROJECT PERSHING AND CHURCHILL COUNTIES, NEVADA July 2016 Environmental Management and Planning Solutions, Inc. 4741 Caughlin Parkway, Suite 4 Reno, Nevada 89519 This page intentionally left blank. TABLE OF CONTENTS Chapter Page 1. INTRODUCTION ............................................................................................................ 1-1 1.1 Project Background ...................................................................................................................... 1-1 1.2 Regional and Geographic Overview ......................................................................................... 1-2 1.3 Methods .......................................................................................................................................... 1-2 1.3.1 Ground Survey ............................................................................................................... 1-2 1.3.2 Golden Eagle Aerial Survey ......................................................................................... 1-5 2. VEGETATION ................................................................................................................. 2-1 2.1 Vegetation Types within the Project Area ............................................................................. 2-1 2.1.1 Inter-Mountain Basins Mixed Salt Desert Scrub ................................................... -
Molecular Phylogeny and Diversification History of Prosopis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Biological Journal of the Linnean Society, 2008, 93, 621–640. With 6 figures Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae) SANTIAGO ANDRÉS CATALANO1*, JUAN CÉSAR VILARDI1, DANIELA TOSTO1,2 and BEATRIZ OFELIA SAIDMAN1 1Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA - Capital Federal, Argentina. 2Instituto de Biotecnología, CICVyA INTA Castelar, CC 25 Castelar 1712, Argentina Received 29 December 2006; accepted for publication 31 May 2007 The genus Prosopis is an important member of arid and semiarid environments around the world. To study Prosopis diversification and evolution, a combined approach including molecular phylogeny, molecular dating, and character optimization analysis was applied. Phylogenetic relationships were inferred from five different molecular markers (matK-trnK, trnL-trnF, trnS-psbC, G3pdh, NIA). Taxon sampling involved a total of 30 Prosopis species that represented all Sections and Series and the complete geographical range of the genus. The results suggest that Prosopis is not a natural group. Molecular dating analysis indicates that the divergence between Section Strombocarpa and Section Algarobia plus Section Monilicarpa occurred in the Oligocene, contrasting with a much recent diversification (Late Miocene) within each of these groups. The diversification of the group formed by species of Series Chilenses, Pallidae, and Ruscifoliae is inferred to have started in the Pliocene, showing a high diversification rate. The moment of diversification within the major lineages of American species of Prosopis is coincident with the spreading of arid areas in the Americas, suggesting a climatic control for diversification of the group. -
I INDIVIDUALISTIC and PHYLOGENETIC PERSPECTIVES ON
INDIVIDUALISTIC AND PHYLOGENETIC PERSPECTIVES ON PLANT COMMUNITY PATTERNS Jeffrey E. Ott A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology Chapel Hill 2010 Approved by: Robert K. Peet Peter S. White Todd J. Vision Aaron Moody Paul S. Manos i ©2010 Jeffrey E. Ott ALL RIGHTS RESERVED ii ABSTRACT Jeffrey E. Ott Individualistic and Phylogenetic Perspectives on Plant Community Patterns (Under the direction of Robert K. Peet) Plant communities have traditionally been viewed as spatially discrete units structured by dominant species, and methods for characterizing community patterns have reflected this perspective. In this dissertation, I adopt an an alternative, individualistic community characterization approach that does not assume discreteness or dominant species importance a priori (Chapter 2). This approach was used to characterize plant community patterns and their relationship with environmental variables at Zion National Park, Utah, providing details and insights that were missed or obscure in previous vegetation characterizations of the area. I also examined community patterns at Zion National Park from a phylogenetic perspective (Chapter 3), under the assumption that species sharing common ancestry should be ecologically similar and hence be co-distributed in predictable ways. I predicted that related species would be aggregated into similar habitats because of phylogenetically-conserved niche affinities, yet segregated into different plots because of competitive interactions. However, I also suspected that these patterns would vary between different lineages and at different levels of the phylogenetic hierarchy (phylogenetic scales). I examined aggregation and segregation in relation to null models for each pair of species within genera and each sister pair of a genus-level vascular plant iii supertree. -
The Vascular Flora of the Owens Peak Eastern Watershed, Southern Sierra Nevada, California
Aliso: A Journal of Systematic and Evolutionary Botany Volume 25 | Issue 1 Article 2 2008 The aV scular Flora of the Owens Peak Eastern Watershed, Southern Sierra Nevada, California Naomi S. Fraga Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Fraga, Naomi S. (2008) "The asV cular Flora of the Owens Peak Eastern Watershed, Southern Sierra Nevada, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 25: Iss. 1, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol25/iss1/2 Aliso, 25, pp. 1–29 ’ 2008, Rancho Santa Ana Botanic Garden THE VASCULAR FLORA OF THE OWENS PEAK EASTERN WATERSHED, SOUTHERN SIERRA NEVADA, CALIFORNIA NAOMI S. FRAGA Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA ([email protected]) ABSTRACT Owens Peak lies at the southern end of the Sierra Nevada within the Bureau of Land Management’s Owens Peak Wilderness Area in Kern County, California. The study site, ca. 50 square miles, encompasses Owens Peak’s eastern watershed, and ranges in elevation from 800–2600 m (2600–8400 ft). Granite rocks of the Sierra Nevada batholith underlie the study area. The eastern watershed of Owens Peak is botanically diverse, with 64 families, 230 genera, and 440 taxa currently documented. Floristic elements within the study area include the southern Sierra Nevada, Great Basin, and Mojave Desert. The flora previously was poorly documented, as discovered through a search of California’s largest herbaria (CAS/DS, RSA-POM, UC/JEPS). -
Vegetation Types and a Call for Conservation
Vegetation Classification and Survey 1: 87–102 doi: 10.3897/VCS/2020/38013 International Association for Vegetation Science (IAVS) RESEARCH PAPER The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation Sebastián R. Zeballos1, Melisa A. Giorgis1,2, Marcelo R. Cabido1, Alicia T. R. Acosta3, María del Rosario Iglesias1, Juan J. Cantero1,4 1 Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Córdoba, Argentina 2 Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina 3 Dipartimento di Scienze, Università degli Studi di Roma Tre, Roma, Italy 4 Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, UNRC, Córdoba, Argentina Corresponding author: Melisa A. Giorgis ([email protected]) Academic editor: Idoia Biurrun ♦ Received 5 July 2019 ♦ Accepted 10 February 2020 ♦ Published 4 May 2020 Abstract Aims: The native woody vegetation from the Espinal phytogeographic province in central Argentina, found in subtropi- cal-warm temperate climates, represents part of the southernmost seasonally dry forest in South America. Although this vegetation has been studied for over a century, a complete phytosociological survey is still needed. This lack of knowl- edge makes its spatial delimitation and the establishment of efficient conservation strategies particularly difficult. The main goals of this study were to classify these forests and assess their current forest cover and to better define the extent of the Espinal phytogeographic province in Córdoba region, central Argentina. Study area: Espinal Phytogeographic Province in Córdoba region, central Argentina (ca. 101,500 km2). Methods: We sampled 122 stands following the prin- ciples of the Zürich-Montpellier School of phytosociology; relevés were classified through the ISOPAM hierarchical analysis.