Handbook of Bioenergy Crops ‘[The] Most Authoritative and Rich Source of Information in Biomass

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Bioenergy Crops ‘[The] Most Authoritative and Rich Source of Information in Biomass PPC 252x192mm (for 246x189mm cover), spine 35mm Handbook of Bioenergy Crops ‘[The] most authoritative and rich source of information in biomass. It can be considered as a milestone and will be instrumental in promoting the utilization of biomass for human welfare in decades to come.’ Professor Dr Rishi Kumar Behl, University of Hisar, Haryana, India ‘This book enlightens the vital economic and social roles of biomass to meet the growing demand for energy.’ Dr Qingguo Xi, Agricultural Institute of Dongying, Shandong, China ‘The author’s decade-long expertise and dedication makes this publication unique. Global in scope, the standards of judgement and accuracy are high for a book that will become the biomass bible and reference for future generations.’ Professor Preben Maegaard, Director, Nordic Folkecenter for Renewable Energy and Chairman, World Council for Renewable Energy (WCRE) Biomass currently accounts for about 15 per cent of global primary energy consumption and is playing an increasingly important role in the face of climate change, energy and food security concerns. Handbook of Bioenergy Crops is a unique reference and guide, with extensive coverage of more than 80 Handbook of of the main bioenergy crop species. For each it gives a brief description, outlines the ecological requirements, methods of propagation, crop management, rotation and production, harvesting, handling and storage, processing and utilization, then finishes with selected references. This is accompanied by detailed guides to biomass accumulation, harvesting, transportation and storage, as well as conversion Bioenergy Crops technologies for biofuels and an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. This is an indispensable resource for all those involved in biomass production, utilization and research A Complete Reference to Species, Professor Dr N. El Bassam is the Director of International Research Centre for Renewable Energy Development and Applications (IFEED) in Germany. N. El Bassam Energy / Agriculture and Food www.earthscan.co.uk Earthscan strives to minimize its impact on the environment N. El Bassam Prelims.qxd 2/3/2010 4:48 PM Page i Handbook of Bioenergy Crops Prelims.qxd 2/3/2010 4:48 PM Page ii Prelims.qxd 2/3/2010 4:48 PM Page iii Handbook of Bioenergy Crops A Complete Reference to Species, Development and Applications N. El Bassam publishing for a sustainable future London • Washington, DC Prelims.qxd 2/3/2010 4:48 PM Page iv First published in 2010 by Earthscan Copyright © N. El Bassam 2010 The moral right of the author has been asserted. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as expressly permitted by law, without the prior, written permission of the publisher. Earthscan Ltd, Dunstan House, 14a St Cross Street, London EC1N 8XA, UK Earthscan LLC, 1616 P Street, NW, Washington, DC 20036, USA Earthscan publishes in association with the International Institute for Environment and Development ISBN: 978-1-84407-854-7 Typeset by Domex e-Data, India Cover design by Yvonne Booth Earthscan publishes in association with the International Institute for Environment and Development A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data El Bassam, Nasir. Bioenergy crops : a development guide and species reference / N. El Bassam. -- 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-1-84407-854-7 (hardback : alk. paper) 1. Energy crops. I. Title. SB288.E43 2009 333.95'39--dc22 2009012294 At Earthscan we strive to minimize our environmental impacts and carbon footprint through reducing waste, recycling and offsetting our CO2 emissions, including those created through publication of this book. For more details of our environmental policy, see www.earthscan.co.uk. This book was printed in the UK by MPG Books, an ISO 14001 accredited company. The paper used is FSC certified. Prelims.qxd 2/3/2010 4:48 PM Page v Contents List of figures and tables ix List of acronyms and abbreviations xxiii Foreword xxv PART I 1 Global Energy Production, Consumption and Potentials of Biomass 3 Structure of energy production and supply 3 Global potential of biomass 3 Perspectives of bioenergy crops 7 2 Bioenergy Crops versus Food Crops 9 Impact of bioenergy on food security and food sovereignty 9 Bioenergy and food prices 10 3 Transportation Biofuels 13 Automotive biofuels 13 Aviation biofuels 17 4 Primary Biomass Productivity, Current Yield Potentials, Water and Land Availability 21 Basic elements of biomass accumulation 21 Photosynthetic pathways 22 The potential biomass resource base 25 5 Harvesting, Logistics and Delivery of Biomass 29 Harvesting systems and machinery 30 Multi-phase procedure 30 Single-phase Procedure 31 Upgrading and storage 33 Chopped material 33 Bales 33 Bundles 34 Pellets 34 Chips 34 Prelims.qxd 2/3/2010 4:48 PM Page vi vi HANDBOOK OF BIOENERGY CROPS 6 Technical Overview: Feedstocks, Types of Biofuels and Conversion Technologies 37 Ethanol 39 Oils 41 Solid biofuels 46 Wet biofuels 47 Biogas 49 Conversion of biofuels to heat, power and electricity 50 Heat 50 Electricity 52 Fuel cells 58 The Stirling engine 59 Biofuel properties 59 7 Environmental Impacts 61 Energy plant species 64 Environment impact 64 Energy balances 66 Reductions in greenhouse gas emissions 67 8 Economic and Social Dimensions 69 Energy and development 69 Jobs and employment 72 Biomass stoves 73 Investment in the energy supply sector 75 Economic and social impact of bioenergy in developing countries 76 Investments and market development 78 9 Integrated Bioenergy Farms and Rural Settlements 81 Integrated energy farms (IEFs) – a concept of the FAO 81 Jühnde bioenergy village 87 Prelims.qxd 2/5/2010 6:28 PM Page vii CONTENTS vii PART II 10 Energy Crops Guide 93 Scope and definition 93 Lupins 234 Bioenergy crops 94 Meadow foxtail 237 Aleman grass (carib grass) 96 Miscanthus 240 Alfalfa 98 Neem tree 251 Algae 102 Oil palm 253 Annual ryegrass 107 Olive tree 266 Argan tree (ironwood) 109 Perennial ryegrass 272 Babassu palm (babaçú) 111 Pigeonpea 274 Bamboo 114 Poplar 278 Banana 124 Rape and canola 281 Black locust 128 Reed canarygrass 289 Broom (genista) 133 Rocket 294 Buffalo gourd 137 Root chicory 298 Cardoon 139 Rosin weed 301 Cassava 144 Safflower 302 Castor oil plant 150 Safou 308 Coconut palm 154 Salicornia 313 Common reed 161 Shea tree 317 Cordgrass 164 Sorghum 319 Cotton 167 Sorrel 333 Cuphea 170 Soya bean 335 Date palm 174 Sugar beet 341 Eucalyptus 184 Sugar cane 350 Giant knotweed 190 Sunflower 359 Giant reed 193 Sweet potato 366 Groundnut 199 Switchgrass 370 Hemp 202 Tall fescue (reed fescue) 376 Jatropha (physic nut) 206 Tall grasses 378 Jojoba 213 Timothy 382 Kallar grass 219 Topinambur (Jerusalem artichoke) 384 Kenaf 224 Water Hyacinth 387 Kudzu 228 White Foam 390 Leucaena (horse tamarind) 230 Willow 392 Prelims.qxd 2/5/2010 5:04 PM Page viii viii HANDBOOK OF BIOENERGY CROPS PART III 11 Ethanol Crops 399 Barley 401 Maize 402 Potato 405 Rice 406 Wheat 409 Pseudocereals: Amaranthus, buckwheat, quinoa 415 12 Oil Crops 41 Calendula officinalis 41 Camelina sativa 417 Carthamus tinctorius 417 Crambe abyssinica 417 Dimorphoteca pluvialis 417 Flax 417 Lesquerella grandiflora and L. gordonii 417 Limnanthes alba 417 Linseed 418 13 Biogas from Crops 423 Biogas in developing countries 423 Biogas from crops and their residues 424 14 Hydrogen and Methanol Crops 433 Bio-feedstocks 433 Conversion pathways 433 New developments 435 15 Underutilized and Unexploited Crops 437 Index of botanical names 489 Index of common names 493 Index of general terms 505 Prelims.qxd 2/3/2010 4:48 PM Page ix List of Figures and Tables Figures 1.1 Primary energy resources, supply and utilization 4 1.2 Global final energy consumption, 2006 4 2.1 Correlation between energy input and availability of food as calorie supply 10 2.2 Food price indices 11 2.3 Correlation between oil and food prices 11 3.1 First and second generation of biofuels 14 3.2 Pathways of innovative synthetic biofuels 14 3.3 Integrated bioenergy plantations, Braunschweig, Germany 16 3.4 Total flex technology (alcohol or gasoline), Brazil 17 3.5 Air New Zealand biofuel test flight (747-400) 18 3.6 Brazilian ethanol-powered crop duster Ipanema 19 4.1 The almost closed cycle of energy production from biomass 22 4.2 Determinants of potential biomass production 23 4.3 Production of biomass of the C4 crops miscanthus and maize and the C3 crop rye under two water supply conditions 24 5.1 Mass- and volume-related energy density of biofuels 30 5.2 Big round baler 31 5.3 Whole crop chopping machine and collecting and transportation tracks 31 5.4 Harvesting devices for large bioenergy crop fields 31 5.5 Biomass combine harvester 32 5.6 Biotruck for harvesting and pelleting 32 5.7 Different types of pellets and briquettes 33 5.8 The recovery capacity and storage space requirements for different harvest products as biofuel feedstocks 34 5.9 Harvesting poplar for fibre and fuel 35 5.10 Land requirements for biomass power plants 35 6.1 Main conversion options for biomass to secondary energy carriers 38 6.2 Conversion possibilities for biomass rich in oils, sugars and starch 39 6.3 Conversion possibilities for lignocellulose biomass 40 6.4 An ethanol-powered plane 41 6.5 Biodiesel fuel station 42 6.6 The ‘bio-pipelines’
Recommended publications
  • The Transition from Whale Oil to Petroleum
    The transition from whale oil to petroleum Brooks A. Kaiser University of Southern Denmark University of Hawaii, Manoa Main question (many asides possible) • How well does the transition from whale oil to petroleum that occurred in the mid - 19th century fit a deterministic model of dynamic efficiency of natural resource use? – In other words: just how ‘lucky’ was the discovery of petroleum, and what can be said about resource transitions when new resources/technology are uncertain A standard transition between two known resources MUC MUC Illuminating Oils Price and Quantity 6000000 45.00 40.00 5000000 35.00 4000000 30.00 25.00 3000000 Price 20.00 2000000 15.00 10.00 Gal. sperm oil orThous. Gal. Petrol 1000000 5.00 0 0.00 1780 1800 1820 1840 1860 1880 1900 1920 Year gallons, sperm oil Crude oil (thous. gall) 2007 prices, sperm oil Prices, crude oil Note: gap in prices because only get about 5-10% kerosene from crude From an exhaustible to a non-renewable resource needing knowledge investment Theoretical Model • An adapted model from Tsur and Zemel (2003, 2005) of resource transitions • Maximize net benefits over time from whale extraction, oil investment, oil extraction, subject to: – Dynamics of whale population – Dynamics of knowledge over new backstop (oil) – Dynamics of non-renewability of backstop – Time of transition between whale oil and oil Conventional Wisdom and Economic History • Contemporary opinion: Whales doomed without petroleum • Daum (1957) revision: substitutes well under development. No direct statement about whale popn’s
    [Show full text]
  • E:\Brbl\Testi\Braun-Blanquetia
    BRAUN-BLANQUETIA, vol. 46, 2010 225 FLORISTIC CHANGE DURING EARLY PRIMARY SUCCESSION ON LAVA, MOUNT ETNA, SICILY * ** Roger DEL MORAL , Emilia POLI MARCHESE * Department of Biology, Box 351800, University of Washington, Seattle, Washington (USA) E-mail: [email protected] ** Università di Catania, c/o Dipartimento di Botanica, via A. Longo 19, I-95125, Catania (Italia) E-mail: [email protected] ABSTRACT sis; GF=growth-form; GPS=global po- can lead to alternative stable vegetation sitioning system; HC=half-change; types (FATTORINI &HALLE, 2004; TEM- Weinvestigatedthedegreetowhi- NMS=nonmetricmultidimensionalsca- PERTON &ZIRR,2004;YOUNG etal.2005). ch vegetation becomes more similar ling; PS=percent similarity. Convergence can be recognized if during primary succession and asked sample similarity increases with age, whether the age of a lava site alone NOMENCLATURE: Pignatti (1982). but chronosequence methods may con- determinesspeciescompositiononothe- found site and stochastic effects with rwise similar sites or if site-specific effects due to age. Though chronose- factors are more important. The study INTRODUCTION quence methods must be employed in wasconfinedto lavaflowsfoundbetwe- long trajectories (DEL MORAL&GRISHIN, en 1,000 and 1,180 m on the south side The mechanisms that guide the 1999), the underlying assumption that of Mount Etna, Italy that formed from assembly of species are complex (KED- all sites were initially identical has ra- 1892 to 1169 or earlier. Ground layer DY, 1992; WALKER & DEL MORAL, 2003). rely been tested. Here we explore the cover wasmeasured at15exposed sites During primary succession, landscape relationship between time and develop- and 12 sites under shrubs, using ten 1- context and chance produce mosaics ment on a small part of Mount Etna, m2 quadrats in five plots at each site.
    [Show full text]
  • Finland 242 Finland Finland
    FINLAND 242 FINLAND FINLAND 1. GENERAL INFORMATION 1.1. General Overview Finland (in Finnish Suomi) is a republic in northern Europe, bounded on the north by Norway, on the east by Russia, on the south by the Gulf of Finland and Estonia, on the south-west by the Baltic Sea and on the west by the Gulf of Bothnia and Sweden. Nearly one third of the country lies north of 2 2 the Arctic Circle. The area of Finland, including 31 557 km of inland water, totals 338 000 km . The terrain is generally level, hilly areas are more prominent in the north and mountains are found only in the extreme north-west. The average July temperature in the capital Helsinki on the southern coast is 17 °C. The February average in Helsinki is about -5.7 °C. The corresponding figures at Sodankylä (Lapland) in the northern Finland are 14.1 °C and -13.6 °C. Precipitation (snow and rain) averages about 460 mm in the north and 710 mm in the south. Snow covers the ground for four to five months a year in the south, and about seven months in the north. Finland has a population of 5.16 million (1998) and average population density of 17 per km2 of land. Historical population data is shown in Table 1. The predicted annual population growth rate between the years 1998 and 2010 is 0.21 %. More than two thirds of the population reside in the southern third of the country. In Finland the total primary energy consumption1 per capita was about 60 % higher than the European Union average (according to 1996 statistics) and about 35 % higher than the OECD average.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,727,574 B1 Ushioda Et Al
    US007727574B1 (12) United States Patent (10) Patent No.: US 7,727,574 B1 Ushioda et al. (45) Date of Patent: Jun. 1, 2010 (54) METHOD OF PRODUCING 5,576,045 A * 1 1/1996 Cain et al. .................. 426,607 WATER-CONTAINING CHOCOLATES 5,589.216 A * 12/1996 Guskey et al. .... ... 426,607 5.599,574. A * 2/1997 Guskey et al. .............. 426/660 (75) Inventors: Toshio Ushioda, Yawara-mura (JP); E6. A S.G. St. - - - - - - -fall. i. k --- OKaWa ca. - - - st Stairs 6,165,540 A * 12/2000 Traitler et al. ..... ... 426,631 y s 6,210,739 B1 * 4/2001 Nalur ............... ... 426,607 O O YO 6,391,356 B1* 5/2002 Willcocks et al. ........... 426/306 (73) Assignee: Fuji Oil Company, Limited, Osaka (JP) 6,537,602 B1* 3/2003 Kawabata et al. ........... 426.283 - 6,737,100 B1 5/2004 Matsui et al. (*) Notice: Subject to any disclaimer, the term of this 7,186,435 B2 * 3/2007 Beckett et al. .............. 426,631 patent is extended or adjusted under 35 U.S.C. 154(b) by 1615 days. FOREIGN PATENT DOCUMENTS EP O791297 A2 8, 1997 (21) Appl. No.: 10/472,525 JP HO6-007086 A 1, 1994 JP H10-075713. A 3, 1998 (22) PCT Filed: Mar. 11, 2002 WO WOOOf 57715 10, 2000 (86). PCT No.: PCT/UPO2/O2267 OTHER PUBLICATIONS Bailey, A. E. 1950. Melting and Solidification of Fats, Interscience S371 (c)(1), Publishers, Inc., New York, p. 160-161.* (2), (4) Date: Sep. 24, 2003 Minifie, B. W. 1970. Chocolate, Cocoa and Confectionery: Science and Technology, 2" edition.
    [Show full text]
  • On the World-Distribution of British Plants
    ON THE WORLD-DISTRIBUTION OF BRITISH PLANTS. By Thomas Comber, Esq. (BEAD JANUABY 23, 1873.) THE geographical distribution of British plants has long had the careful attention of our botanists, and been the subject of their patient study. The results attained have been recorded, in a manner which leaves nothing to be desired, by Mr. H. C. Watson in his Cybele Briltanica, and in a more condensed form in the Compendium of that work. The recorded facts accumulated by Mr. Watson furnish, as he himself remarks, a fresh starting point for other workers in the same field; and provide a store of materials which can bo used with every confidence as to their accuracy. As regards their occurrence within Britain, Mr. Watson has proposed for British plants certain groups, which he terms types of distribution ; such as British for those plants which are met with pretty generally all over Great Britain ; Scottish and English for those which are found only or mostly in the Northern or Southern half of the island; German and Atlantic for those which are confined chiefly to the South-eastern or South-western provinces : but, although from the names of the two last it might be inferred that the range outside of the United Kingdom is indicated, Mr. Watson is careful to state that his types are " to be understood in " reference only to their distribution within Britain itself and " by itself." So far as I am aware no attempt has yet been 238 made to arrange our plants into groups according to the general geographical area they occupy outside of the United Kingdom : and it is to suggest such a grouping that I have to solicit your attention to-night.
    [Show full text]
  • Free Download
    The Revolution Transforming Agriculture & Environment Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com Biochar: Ancient Origins, Modern Solution A Biochar Timeline Author Paul Taylor PhD This complete book is available at www.TheBiocharRevolution.com FIRST EDITION 2010 Copyright 2010 NuLife Publishing All rights reserved. No part of this publication may be reproduced, stored in a retrieval system in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. National Library of Australia Cataloguing–in–Publishing entry: Taylor, Paul, 1945– The Biochar Revolution: Transforming Agriculture & Environment. 1st ed. ISBN: 978 1 921630 41 5 (pbk.) 1. Ashes as fertilizer. 2. Carbon sequestration. 3. Charcoal. 4. Soil amendments 631.4 Published by NuLife Publishing PO Box 9284 GCMC Qld 9726 Australia Email: [email protected] For further information about orders: Email: [email protected] Website: www.thebiocharrevolution.com ACKNOWLEDGEMENTS I am grateful for the interest, support, patience, and effort expressed consistently— yet in unique ways—by each and every author, as we went though many revisions together. They are listed in the front of the book, with their bios in the back, under contributing authors. I owe special thanks to Hugh McLaughlin and Paul Anderson for their belief, interest, advice and support in the book as a whole. Both read, and offered valuable editing suggestions on, diverse chapters. Hugh reviewed most of the final manuscript. Gary Levi played a crucial role as chief editor and editorial advisor. He edited every chapter numerous times, and stayed with the project as it extended from 5 weeks to 5 months, working generously and meticulously to shape and organize the book.
    [Show full text]
  • Proceedings IUFRO: Evaluation and Planning of Forestry Research
    united States oepartment of Agriculture Proceedings Forest Service Northeastern IUFRO Station NE-GTR-111 Evaluation and Planning 1986 of Forestry Research S6.06 - S6.06.01 Colorado State University Fort Collins, Colorado 80523 July 25-26, 1985 IUFRO PROCEEDINGS EVALUATION AND PLANNING OF FORESTRY RESEARCH S6.06 - S6.06.01 Compiled by Denver P. Burns Colorado State University Fort Collins, Colorado 80523 USA July 25-26, 1985 Sponsored by INTERNATIONAL UNION OF FORESTRY RESEARCH ORGANIZATIONS and NORTHEASTERN FOREST EXPERIMENT STATION, USDA FOREST SERVICE Papers are published in this proceedings in camera-ready form as submitted by the authors. The authors are responsible for the content of their papers. PROGRAM July 25, 1985 Introduction: Denver P. Burns, Director, Northeastern Forest Experiment Station, USDA Forest Service, Broanall, PA SESSION I - RESB.Alial FRONTIERS Moderator: Dr. Eldon Ross Resear·ch Frontiers. W. Franklin Harr·is, Deputy Division Director, Biotic Systems and Resources, National Science Foundation, Washington, D.C. SESSION II - RESBARQI FROIITIBRS FOR FORESTRY Applying Frontier Biotechnologies to Tree Improvement: Opportunities and Limitations. F. Thomas Ledig, Project Leader, Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, USDA For·est Service, Berkeley, CA Biotechnologies - The Potential Role of Somaclonal Variation in Forestry. Darroll D. Skilling and Michael E. Ostry, Principal Plant Pathologists, Nor·th Central Forest Experiment Station, USDA Forest Service, St. Paul, MN Frontiers in Wood Utilization Research in the United States. John R. Erickson, Director·, Forest Products Laboratory, USDA For·est Service, �.adison, WI Fr·ontiers in Handling Wood. C. R. Silversides, Forestry Consultant, Prescott, Ontar·io SESSION III - IDBIITIFIING RBSBARal NEEDS Moderator: Dr.
    [Show full text]
  • 1462 2012 312 15822.Pdf
    UNIVERSITÀ MEDITERRANEA DI REGGIO CALABRIA FACOLTÀ DI AGRARIA Lezioni di BIOLOGIA VEGETALE Angiosperme (Sistematica) Dott. Francesco Forestieri Dott. Serafino Cannavò Fabaceae Leguminose Papillionaceae Fabaceae (Leguminosae) La famiglia delle Fabacaea è una delle più grandi famiglie delle piante vascolari, con circa 18000 specie riunite in 650 generi. Le Fabaceae costituiscono uno dei più importanti gruppi di piante coltivate, insieme alle Graminaceae. Esse forniscono alimenti, foraggio per il bestiame, spezie, veleni, tinture, oli, ecc. Sistematica Cronquist 1981 - 1988 Magnoliopsida Rosidae Fabales Mimosaceae Caesalpiniaceae Fabaceae (Leguminosae) Sistematica APG III Eurosidae I Fabales Fabaceae (Leguminosae) Mimosoideae Cesalpinoideae Faboideae (Papilionoideae) Sistematica Magnoliopsida Eurosidae I Magnoliidae • Zygophyllales Hamamelididae • Celastrales Caryophyllidae • Oxalidales Dilleniidae • Malpighiales Rosidae • Cucurbitales • Rosales • Fabales • Fabales ̶ Fabaceae ̶ Mimosaceae o Mimosoideae ̶ Caesalpiniaceae o Ceasalapinoideae ̶ Fabaceae o Faboideae • Proteales ̶ Polygalaceae • ----- ̶ Quillajaceae • Euphorbiales ̶ Surianaceae • Apiales • Fagales • Solanales • Rosales • Lamiales • Scrophulariales • Asterales La famiglia delle Fabaceae è distinta in 3 sottofamiglie: • Mimosoideae. Alberi o arbusti delle zone tropicali o subtropicali, con fiori attinomorfi, petali piccoli, stami in numero doppio a quello dei petali o molto numerosi. Mimosoideae Acacia • Caesalpinioideae Alberi per lo più delle zone equatoriali o subtropicali con
    [Show full text]
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Effect of Biodiesel Production Parameters on Viscosity and Yield Of
    Alexandria Engineering Journal (2015) xxx, xxx–xxx HOSTED BY Alexandria University Alexandria Engineering Journal www.elsevier.com/locate/aej www.sciencedirect.com ORIGINAL ARTICLE Effect of biodiesel production parameters on viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera Godwin Kafui Ayetor a,*, Albert Sunnu b, Joseph Parbey a a Koforidua Polytechnic, Faculty of Engineering, Box 981, Koforidua, Ghana b Kwame Nkrumah University of Science and Technology, Department of Mechanical Engineering, Kumasi, Ghana Received 29 August 2014; accepted 29 September 2015 KEYWORDS Abstract In this study, the effect of H2SO4 on viscosity of methyl esters from Jatropha oil (JCME), Jatropha curcas; palm kernel oil (PKOME) from Elaeis guineensis species, and coconut oil (COME) has been stud- Palm kernel oil; ied. Effect of methanol to oil molar mass ratio on yield of the three feedstocks has also been studied. Biodiesel; Methyl ester yield was decreased by esterification process using sulphuric acid anhydrous (H2SO4). Coconut oil; Jatropha methyl ester experienced a viscosity reduction of 24% (4.1–3.1 mm2/s) with the addition of Transesterification; 1% sulphuric acid. In this work palm kernel oil (PKOME), coconut oil (COME) and Jatropha oil Viscosity (JCME) were used as feedstocks for the production of biodiesel to investigate optimum parameters to obtain high yield. For each of the feedstock, the biodiesel yield increased with increase in NaOH concentration. The highest yield was obtained with 1% NaOH concentration for all. The effect of methanol in the range of 4:1–8:1 (molar ratio) was investigated, keeping other process parameters fixed. Optimum ratios of palm kernel oil and coconut oil biodiesels yielded 98% each at methanol: oil molar ratio of 8:1.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    GENETICS AND EVOLUTION OF MULTIPLE DOMESTICATED SQUASHES AND PUMPKINS (Cucurbita, Cucurbitaceae) By HEATHER ROSE KATES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Heather Rose Kates To Patrick and Tomás ACKNOWLEDGMENTS I am grateful to my advisors Douglas E. Soltis and Pamela S. Soltis for their encouragement, enthusiasm for discovery, and generosity. I thank the members of my committee, Nico Cellinese, Matias Kirst, and Brad Barbazuk, for their valuable feedback and support of my dissertation work. I thank my first mentor Michael J. Moore for his continued support and for introducing me to botany and to hard work. I am thankful to Matt Johnson, Norman Wickett, Elliot Gardner, Fernando Lopez, Guillermo Sanchez, Annette Fahrenkrog, Colin Khoury, and Daniel Barrerra for their collaborative efforts on the dissertation work presented here. I am also thankful to my lab mates and colleagues at the University of Florida, especially Mathew A. Gitzendanner for his patient helpfulness. Finally, I thank Rebecca L. Stubbs, Andrew A. Crowl, Gregory W. Stull, Richard Hodel, and Kelly Speer for everything. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 9 LIST OF FIGURES .......................................................................................................
    [Show full text]
  • Information to Users
    The nutritional value and toxic properties of buffalo gourd (Cucurbita foetidissima) plant. Item Type text; Dissertation-Reproduction (electronic) Authors Fellah, Abdulmunam Mohamed. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 11:49:37 Link to Item http://hdl.handle.net/10150/185245 INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrou,gh, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]