“Orthosiphon Stamineus” on Liver Damage Caused by Paracetamol in Rats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Lamiales Newsletter
LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998. -
(Lamiaceae and Verbenaceae) Using Two DNA Barcode Markers
J Biosci (2020)45:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00061-2 (0123456789().,-volV)(0123456789().,-volV) Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers 1 2 3 OOOYEBANJI *, E C CHUKWUMA ,KABOLARINWA , 4 5 6 OIADEJOBI ,SBADEYEMI and A O AYOOLA 1Department of Botany, University of Lagos, Akoka, Yaba, Lagos, Nigeria 2Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Ibadan, Nigeria 3Department of Education Science (Biology Unit), Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 4Landmark University, Omu-Aran, Kwara State, Nigeria 5Ethnobotany Unit, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria 6Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Ondo State, Nigeria *Corresponding author (Email, [email protected]) MS received 21 September 2019; accepted 27 May 2020 The families Lamiaceae and Verbenaceae comprise several closely related species that possess high mor- phological synapomorphic traits. Hence, there is a tendency of species misidentification using only the mor- phological characters. Herein, we evaluated the discriminatory power of the universal DNA barcodes (matK and rbcL) for 53 species spanning the two families. Using these markers, we inferred phylogenetic relation- ships and conducted species delimitation analysis using four delimitation methods: Automated Barcode Gap Discovery (ABGD), TaxonDNA, Bayesian Poisson Tree Processes (bPTP) and General Mixed Yule Coalescent (GMYC). The phylogenetic reconstruction based on the matK gene resolved the relationships between the families and further suggested the expansion of the Lamiaceae to include some core Verbanaceae genus, e.g., Gmelina. -
Morphological Characters, Flowering and Seed Germination of the Indonesian Medicinal Plant Orthosiphon Aristatus
BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 2, February 2019 E-ISSN: 2085-4722 Pages: 328-337 DOI: 10.13057/biodiv/d200204 Morphological characters, flowering and seed germination of the Indonesian medicinal plant Orthosiphon aristatus SHALATI FEBJISLAMI1,2,♥, ANI KURNIAWATI2,♥♥, MAYA MELATI2, YUDIWANTI WAHYU2 1Program of Agronomy and Horticulture, Graduates School, Institut Pertanian Bogor. Jl. Raya Dramaga, Bogor 16680, West Java, Indonesia. email: [email protected] 2Department of Agronomy and Horticulture, Faculty of Agriculture, Institut Pertanian Bogor. Jl. Raya Dramaga, Bogor 16680, West Java, Indonesia. Tel./fax. +62-251-8629353, email: [email protected] Manuscript received: 17 April 2018. Revision accepted: 12 January 2019. Abstract. Febjislami S, Kurniawati A, Melati M, Wahyu Y. 2019. Morphological characters, flowering and seed germination of the Indonesian medicinal plant Orthosiphon aristatus. Biodiversitas 20: 328-337. Orthosiphon aristatus (Blume) Miq is a popular medicinal plant in Southeast Asia. The morphological variation of O. aristatus is narrow and information on flowering and seed germination is limited. This study aimed to determine the morphological characters, flowering and seed germination of O. aristatus. The study was conducted on 19 accessions (ex situ collections) of O. aristatus from West, Central and East Java. It was found that the differences in morphological and flowering characters were mainly based on shape and color. The dominant stem color is strong yellowish green mixed with deep purplish pink in different proportions. The dominant leaf shape was medium elliptic. O. aristatus flower has three kinds of colors: purple, intermediate and white (the most common color). O. aristatus has heterostyled flower with a long-styled morph. -
Breeding System and Phytochemical Analysis of Orthosiphon Aristatus (Blume) Miq
Breeding System and Phytochemical Analysis of Orthosiphon aristatus (Blume) Miq. NUR KARIMAH BINTI MOHAMAD Bachelor of Science with Honours (Plant Resource Science and Management) 2015 Breeding System and Phytochemical Analysis of Orthosiphon aristatus (Blume) Miq. Nur Karimah binti Mohamad (37988) This dissertation is submitted in partial fulfilment of the requirements for The Degree of Bachelor of Science with Honours in Plant Resource Science and Management Department of Plant Science and Environmental Ecology Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak APPROVAL SHEET Name of candidate : Nur Karimah Binti Mohamad Title of dissertation : Breeding system and phytochemical analysis of Orthosiphon aristatus (Blume) Miq. .............................................. (Dr Freddy Yeo Kuok San) Supervisor ............................................... (Dr Zinnirah Shabdin) Co-supervisor ................................................ (Dr Rebicca Edward) Coordinator of Final Year Project Department of Plant Science and Environmental Ecology DECLARATION I hereby declare that no portion of the work referred to this dissertation has been submitted in support of an application for another degree of qualification of this or any other university or institution of higher education. ............................................... (Nur Karimah Binti Mohamad) Program of Plant Resource Science and Management Department of Plant Science and Environmental Ecology Faculty of Resource Science and Technology Universiti Malaysia Sarawak ACKNOWLEGDEMENTS Alhamdulillah, my deepest gratitude to the Almighty for granting me strength and patience through the ups and downs to complete this work. I would like to thank my supervisor, Dr Freddy Yeo Kuok San who had been the best guider, who had given full support and unwavering commitment, who kept on pushing me hard to do my best in order to accomplish this project. -
A Comprehensive Review of Orthosiphon Stamineus Benth
Academic Sciences International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 5, Issue 3, 2013 Review Article FROM ETHNOPHARMACOLOGY TO CLINICAL STUDY OF ORTHOSIPHON STAMINEUS BENTH. I KETUT ADNYANA, FINNA SETIAWAN, MUHAMAD INSANU School Of Pharmacy, Institute Technology Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia. Email : [email protected] Received: 09 Apr 2013, Revised and Accepted: 19 May 2013 ABSTRACT Extensive research has been carried out on Orthosiphon stamineus Benth. (lamiaceae) since the 1930s. This plant is used in several countries (especially in Indonesia, Malaysia, Thailand, Vietnam and Myanmar) as traditional medicine. From its ethnobotanical uses the plant is known for several activities. Because of those reasons, O. stamineus is potential to be developed as a new source of drugs. This report comprehensively reviews ethnopharmacological, isolated chemical compounds, pharmacological, toxicological and clinical studies of O. stamineus. Electronic databases (e.g., Pubmed, Scopus, academic journals, Elsevier, Springerlink) were used for searches. Web searches were attempted using Google applying Orthosiphon stamineus, java tea, antihypertensive, sinensetin, methylripariochromene A as keywords. Phytochemical studies reported about 116 compounds that isolated from this plant classified as monoterpenes, diterpenes, triterpenes, saponins, flavonoids, essential oil and organic acids. Pharmacological studies for whole extract, tincture, selected fraction or pure compounds isolated from this plant showed -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
Indonesian Journal of Science and Education Orthosiphon Stamineus Benth
|26 Indonesian Journal of Science and Education Volume 3, Number 1, April 2019, pp: 26 ~ 33 p-ISSN: 2598-5213, e-ISSN: 2598-5205, DOI: 10.31002/ijose.v3i1.729 e-mail: [email protected], website: jurnal.untidar.ac.id/index.php/ijose Orthosiphon stamineus Benth (Uses and Bioactivities) Marina Silalahi Department of Biology Education, Universitas Kristen Indonesia, Jakarta, Indonesia [email protected] th th th Received: April 24 , 2018 R evised: October 23 , 2018 Accepted: April 11 , 2019 ABSTRACT Orthosiphon stamineus Benth., or kumis kucing is a the medicinal plants have been used as diuretic medicine. The utilization of medicinal plants associated to its secondary metabolite. This article aims to explain uses pf the O. stamineus and the its secondary metabolites. This article is based on literature offline and online media. Offline literature used the books, whereas online media used Web, Scopus, Pubmed, and scientific journals. Orthosiphon stamineus has two varieties called purple varieties (which have purple-colored flowers) and white varieties (which have white-colored flowers). Some of secondary metabolites in the O. stamineus are the terpenoids, phenols, isopimaran type ispenimoids, flavonoids, benzochromes, and organic acid derivatives. The traditional medicine of the Orthosiphon stamineus uses as the diuretic, hypertension, hepatitis, jaundice, and diabetes mellitus. Keywords: Orthosiphon stamineus, diuretics, diterpenoids, hypertension INTRODUCTION fence. Those resulted the O. stamineus easily found in yards. Orthosiphon stamineus Benth is a Based on the structure of flowers, O. species belonging of the Lamiaceae, that by stamineus is grouped into two varieties Indonesia local communities known kumis namely purple varieties (purple colored kucing (cat's whiskers). -
Illustration Sources
APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission. -
A Synoptical Classification of the Lamiales
Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 A Synoptical Classification of the Lamiales Version 2.0 (in progress) Compiled by Richard Olmstead With the help of: D. Albach, B. Bremer, P. Cantino, C. dePamphilis, P. Garnock-Jones, R. Harley, L. McDade, E. Norman, B. Oxelman, J. Reveal, R. Scotland, J. Smith, E. Wallander, A. Weber, A. Wolfe, N. Young, M. Zjhra, and others [estimated # species in Lamiales = 22,000] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near-term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 Acanthaceae (~201/3510) Durande, Notions Elém. Bot.: 265. 1782, nom. cons. – Synopsis compiled by R. Scotland & K. Vollesen (Kew Bull. 55: 513-589. 2000); probably should include Avicenniaceae. Nelsonioideae (7/ ) Lindl. ex Pfeiff., Nomencl. -
Nomenclatural Changes in Coleus and Plectranthus (Lamiaceae): a Tale of More Than Two Genera
Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open access Paton, A., Mwyanyambo, M., Govaerts, R. H.A., Smitha, K., Suddee, S., Phillipson, P. B., Wilson, T. C., Forster, P. I. and Culham, A. (2019) Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera. PhytoKeys, 129. pp. 1-158. ISSN 1314–2003 doi: https://doi.org/10.3897/phytokeys.129.34988 Available at http://centaur.reading.ac.uk/86484/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3897/phytokeys.129.34988 Publisher: Pensoft All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online A peer-reviewed open-access journal PhytoKeys 129:Nomenclatural 1–158 (2019) changes in Coleus and Plectranthus: a tale of more than two genera 1 doi: 10.3897/phytokeys.129.34988 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): a tale of more than two genera Alan J. Paton1, Montfort Mwanyambo2, Rafaël H.A. Govaerts1, Kokkaraniyil Smitha3, Somran Suddee4, Peter B. Phillipson5, Trevor C. -
Powerful Plant Antioxidants: a New Biosustainable Approach to the Production of Rosmarinic Acid
antioxidants Review Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid Abbas Khojasteh 1 , Mohammad Hossein Mirjalili 2, Miguel Angel Alcalde 1, Rosa M. Cusido 1, Regine Eibl 3 and Javier Palazon 1,* 1 Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; [email protected] (A.K.); [email protected] (M.A.A.); [email protected] (R.M.C.) 2 Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran; [email protected] 3 Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland; [email protected] * Correspondence: [email protected] Received: 19 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources.