The Great Plains As a Natural Region: the Basics

Total Page:16

File Type:pdf, Size:1020Kb

The Great Plains As a Natural Region: the Basics Proceedings of the South Dakota Academy of Science,Vol. 80 (2001) 259 THE GREAT PLAINS AS A NATURAL REGION: THE BASICS Richard A. Peterson Wewela, SD 57578 ABSTRACT The need for this paper became apparent during a review of articles in the Prairie Naturalist(1986-1995), where the term, Great Plains, was used to de- scribe many different areas/regions, most of which were outside of established natural boundaries. The Rocky Mountains have long been the agreed upon western boundary of the Great Plains and the primary factor in the develop- ment of the Great Plains; indeed, without the uplift of the Rocky Mountains there would not be a Great Plains region. Consistent natural boundaries for the Great Plains, were in general use after 1931, when Nevin M. Fenneman de- scribed the region in Physiography of the Western United States, and reaffirmed the eastern boundary as originally fixed by John Wesley Powell in 1895. Typ- ical Great Plains landforms (plains and buttes) have resulted from the moun- tain uplift and subsequent sediment deposits that increased the elevation of the Great Plains relative to the Central Lowlands. The Great Plains, in the rain shadow of the Rocky Mountains, have been characterized by a dry subhumid to semiarid climate. The potential natural vegetation of the Great Plains has been, since the last retreat of the continental glaciers 8,000-10,000 years ago, grass/forb vegetation - mostly a mix of mid and short grasses. True Prairie has been limited to the moist side of the dry/moist boundary. These differences between the grasslands of the Great Plains and the grasslands of the Central Lowlands have resulted in differences in occurrence and abundance of grass- land animal species, such as black-tailed prairie dog, black-footed ferret, swift fox, pronghorn, ferruginous hawk, prairie falcon and lark bunting. The east- ern limits of these species more or less coincides with the eastern boundary of the Great Plains physiographic region and the dry/moist boundary. Given the differences described here it would be more accurate and appropriate to limit the use of the term, Great Plains, to the western Interior Plains and divide the Midcontinent grasslands into eastern (True Prairie) and western (Great Plains) sections. Keywords Great Plains, natural, boundary INTRODUCTION The Great Plains! As part of an article title the term is a real eye catcher. Is the Great Plains a real place with distinctive characteristics and limits, or is 260 Proceedings of the South Dakota Academy of Science,Vol. 80 (2001) it just a handy term useful to authors to convey an image? If it is a specific re- gion, what are the characteristics and where are the boundaries? If it is just an image, of what? Observant westbound travelers upon approaching the Great Plains may notice an abrupt rise in elevation as they encounter the escarpment of the Coteau du Missouri. Elsewhere, travelers may note the gradual change from landscapes of rolling surfaces, and hazy views of rounded hills, to land- scapes of broad flat plateaus and flat surface remnants, where the skyline is distant and clear—welcome to the wide open spaces—welcome to images of cowboys and Indians, wagon trains, immense buffalo herds, homesteaders, drought and hardship. The term Great Plains was not much used as a regional designation until 1857, when it was used in promotional articles and speeches synonymously with “pastoral region” by William Gilpin, who was appointed, in 1861, first gov- ernor of Colorado Territory. His purpose was to create a more positive image to promote settlement in the Great American Desert, as the area was general- ly known at the time (Lewis 1966). Since Gilpin, the Great Plains of North America have been recognized as both a natural and a cultural region by schol- ars in various disciplines (e.g. geology, biology, geography and history); how- ever, consistent boundaries for the area, and its name, Great Plains, were not in general use until after 1931, when Nevin M. Fenneman described the region in Physiography of the Western United States, and reaffirmed the eastern bound- ary as originally fixed by John Wesley Powell in 1895. Prior to this the region had most often been referred to as the High Plains to distinguish it from the lower Prairie Plains of the Midwest (Brown 1948). More recently it has become common to find the term, Great Plains, used by many natural science authors to refer to many different regions - both nat- ural and artificial, as was found from a review of articles in The Prairie Natu- ralist (1986-1995). As well, the Great Plains Research journal does not limit it- self to the Great Plains, but includes in its sphere most of central North Amer- ica: grasslands, savannahs, and some forest. Books, such as Flora of the Great Plains and Birds of the Great Plains, include portions of other natural regions and exclude portions of the Great Plains natural region. The term, Great Plains, is also used to designate artificial regions with no apparent natural pa- rameters, as in “Great Plains states.” Is it appropriate in natural science writ- ing to use the term, Great Plains, that has been previously recognized as the name of a specific natural region and apply it to artifical regions? It would be simpler if the so-called Great Plains states were entirely within the Great Plains natural region, unfortunately no state is entirely within the Great Plains. Many of these Great Plains states could just as easily be called Central Lowland states, or True Prairie states, and others could be included as Rocky Mountain states. The problem (in my opinion) that has developed by applying the term, Great Plains, to many different areas, is that now when it is used without ex- planation or a map, no one can be certain as to what area or region the au- thor is referring. The following presentation describes the Great Plains as a natural region with unifying characteristics: physiographic, climatic, and veg- etative. Proceedings of the South Dakota Academy of Science,Vol. 80 (2001) 261 GREAT PLAINS PHYSIOGRAPHIC CHARACTERISTICS The Great Plains physiographic province is located in the western portion of the Interior Plains Physical Division of North America (see Fig. 1). It is dif- ferent from the eastern portion of the Interior Plains (the Central Lowlands) mostly because of the development and continued presence of the Rocky Mountains which are the western boundary of the Great Plains. The marine sediments of the upper Cretaceous strata underlying the Great Plains were tilt- ed by the uplift of the Rocky Mountains and then covered by sediments (Ter- tiary strata) that eroded from the mountains. Subsequent uplifts caused the streams that had been depositing sediment on the plains for more than 60 mil- lion years to cut down into these sediments, more or less beginning the cre- ation of the current land- scape with its streams, buttes, badlands, breaks and occasional broad plateaus (e.g., Staked Plains) left between the streams, according to Trim- ble (1980). More recently in geo- logic time an area unique to the northern Great Plains was created by a dead-ice moraine that covers a high- land area called the Coteau du Missouri. This coteau is the eastern limit of the sed- iments brought by rivers Figure 1. North American Interior Plains physio- from the Rocky Mountains. graphic region divided into the Great Plains and An escarpment, several the Central Lowlands, adapted from Trimble hundred feet high separates (1980). the Coteau du Missouri from the lower, nearly flat, drift-covered plains of the Central Lowland physiographic province to the east. This glaciated portion of the Great Plains includes the area north and east of the Missouri River. Continental ice sheets did cover some areas south and west of the current Missouri River, but only scattered boulders remain to indi- cate the glaciers former presence, and current conditions there are more simi- lar to the unglaciated portions of the Great Plains than to the glaciated areas east of the river. The areas of the Great Plains regions covered by glaciers and other nontypical conditions are shown in Figure 1. Summary of Great Plains physiographic characteristics: 1. The mountain uplift tilted the upper Cretaceous strata and this, along with sediment deposits from the mountains increased the elevation of the Great Plains relative to the Central Lowlands. 262 Proceedings of the South Dakota Academy of Science,Vol. 80 (2001) 2. Most of the Great Plains were not glaciated. 3. Typical landforms include: large flat surfaced remnants (plains) and small flat surfaced remnants (buttes). GREAT PLAINS CLIMATE CHARACTERISTICS The distinguishing climatic characteristic of the Great Plains environment is a deficiency of water. “This deficiency accounts for many of the ways of life in the West. In this deficiency is found the key to what may be called the plains civilization. It is the feature that makes the whole aspect of life west of the 98th meridian such a contrast to life east of that line (Webb 1931: 17).” And again: The Great Plains has a climate which distinguishes it from neighboring regions, and according to Borchert (1971) the most distinctive characteristics are the great droughts that have temporarily extended the arid climate of the Southwest into the Great Plains, and pushed the semiarid climate of the Great Plains eastward into the Prairie region. Average annual precipitation in the Great Plains decreases from east to west, being least, approx. 12 inches (30cm), at the base of the Rocky Moun- tains. This is the result of the rain shadow effect of the mountains and in- creasing distance from the main moisture source, the Gulf of Mexico.
Recommended publications
  • Geologic Resource Evaluation Report, Capitol Reef National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Capitol Reef National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/005 Capitol Reef National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/005 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 September 2006 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service.
    [Show full text]
  • OVERVIEW Tectonics of the Himalaya and Southern Tibet from Two Perspectives
    OVERVIEW Tectonics of the Himalaya and southern Tibet from two perspectives K. V. Hodges Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ABSTRACT café or on the banks of a quiet pond, Impressionist art preserves an instan- taneous sensation. Claude Monet, perhaps the greatest of the Impressionists, The Himalaya and Tibet provide an unparalleled opportunity to ex- tried to go further by expressing the passage of time in his series paintings, amine the complex ways in which continents respond to collisional like those of the façade of the Rouen Cathedral. If Impressionism is a form orogenesis. This paper is an attempt to synthesize the known geology of of historical documentation, we might think of one of the great traditions of this orogenic system, with special attention paid to the tectonic evolu- tectonics research—the description of orogeny as a temporal progression of tion of the Himalaya and southernmost Tibet since India-Eurasia colli- deformational episodes—as an essentially Impressionist enterprise. Our sion at ca. 50 Ma. Two alternative perspectives are developed. The first ability to use the developmental sequence of major structures in one setting is largely historical. It includes brief (and necessarily subjective) re- to predict the sequence in others, as is the case for foreland fold-and-thrust views of the tectonic stratigraphy, the structural geology, and meta- belts worldwide (Dahlstrom, 1970), is ample testimony to the value of the morphic geology of the Himalaya. The second focuses on the processes Impressionist perspective. that dictate the behavior of the orogenic system today.
    [Show full text]
  • Plateau Uplift: Mode and Mechanism
    Papers Presented to the CONFERENCE ON PLATEAU UPLIFT: MODE AND MECHANISM Flagstaff, Arizona 14-16 August 1978 (NASA-CE-157468) PAPERS PRESENTED TO THE N178-29663 CONFERENCE ON PT.RTEAU UP1IFT: ODE AND MECHANISM (lunar and Planetary Inst) 92 p HC A05/MF A01 CSCL 08G nclas G3/46 27138 A LUNAR AND PLANETARY INSTITUTE TOPICAL CONFERENCE Co-Sponsored' by the International Committee on Geodynamics. A Working Group 7 p~uPU 178 Hodted by the 'RECEIVEO U.S. Geological Survey, Geologic Division 1 1 Branch of Astrogeologic Studies Universities Space Research Association The Lunar and Planetary Institute 3303 NASA Road 1 Houston, Texas 77058 PAPERS PRESENTED TO THE CONFERENCE ON PLATEAU UPLIFT: MODE AND MECHANISM A LUNAR AND PLANETARY INSTITUTE TOPICAL CONFERENCE Co-Sponsored by the INTERNATIONAL COMMITTEE ON GEODYNAMICS, WORKING GROUP 7 Hosted by the U.S. GEOLOGICAL SURVEY, GEOLOGIC DIVISION BRANCH OF ASTROGEOLOGIC STUDIES Flagstaff, Arizona 14-16 August 1978 Compiled by the Lunar and Planetary Institute 3303 NASA Road One Houston, Texas 77058 LPI Contribution 329 PREFACE This volume contains papers which have been accepted for publication by the Program Committee of the Conference on Plateau Uplifts* Mode and Mechanism. The Program Committee consists of K. Burke (State Universtty of New York), G. Eaton (U.S. Geological Survey), E. A. Flinn (NASA Headquarters), P. P. Jones (Lunar and Planetary Institute), I. Lucchitta (U.S. Geological Survey), T. R. McGetchin, Chairman (Lunar and Planetary Instttute), R. B. Merrill (Lunar and Planetary Institute), E. M. Shoemaker (Californta Instttute of Technology), L. T. Silver (CaZifornia Institute of Technology), G A.
    [Show full text]
  • VC Summer Nuclear Station Units 2 & 3 COLA
    V. C. Summer Nuclear Station, Units 2 and 3 COL Application Part 2, FSAR SUBSECTION 2.5.1 BASIC GEOLOGIC AND SEISMIC INFORMATION TABLE OF CONTENTS Section Title Page 2.5.1 BASIC GEOLOGIC AND SEISMIC INFORMATION .................... 2.5.1-1 2.5.1.1 Regional Geology ....................................................................... 2.5.1-1 2.5.1.1.1 Regional Physiography, Geomorphology, and Stratigraphy.............................................................................. 2.5.1-1 2.5.1.1.1.1 The Appalachian Plateau Physiographic Province ............... 2.5.1-2 2.5.1.1.1.2 The Valley and Ridge Physiographic Province..................... 2.5.1-3 2.5.1.1.1.3 The Blue Ridge Physiographic Province .............................. 2.5.1-3 2.5.1.1.1.4 The Piedmont Physiographic Province................................. 2.5.1-4 2.5.1.1.1.5 The Atlantic Coastal Plain Physiographic Province .............. 2.5.1-8 2.5.1.1.1.6 Mesozoic Rift Basins ............................................................ 2.5.1-8 2.5.1.1.2 Regional Tectonic Setting ........................................................ 2.5.1-9 2.5.1.1.2.1 Regional Geologic History .................................................... 2.5.1-9 2.5.1.1.2.2 Tectonic Stress in the Mid-Continent Region ..................... 2.5.1-12 2.5.1.1.2.3 Gravity and Magnetic Data of the Site Region and Site Vicinity .................................................................. 2.5.1-14 2.5.1.1.2.3.1 Regional Gravity Data............................................. 2.5.1-15 2.5.1.1.2.3.2 Regional Magnetic Data.......................................... 2.5.1-17 2.5.1.1.2.4 Principal Regional Tectonic Structures............................... 2.5.1-19 2.5.1.1.2.4.1 Regional Paleozoic Tectonic Structures ................
    [Show full text]
  • Uranium Provinces of North America— Their Definition, Distribution, and Models by Warren I
    Uranium Provinces of North America— Their Definition, Distribution, and Models By Warren I. Finch U.S. GEOLOGICAL SURVEY BULLETIN 2141 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Finch, Warren Irvin, 1924– Uranium provinces of North America : their definition, distribution, and models / by Warren I. Finch. p. cm. — (U.S. Geological Survey bulletin ; 2141) Includes bibliographical references. Supt. of Docs. no.: I 19.3:2141 1. Uranium ores—North America. I. Title. II. Series. QE75.B9 no. 2141 [QE390.2.U7] 557.3 s—dc20 [551.4′932′097] 95-37553 CIP CONTENTS Abstract ........................................................................................................................... 1 Introduction..................................................................................................................... 1 Methods of Study .................................................................................................... 2 Acknowledgments................................................................................................... 2 Brief Review of Concepts of Metallogenic and Mineral Provinces ..............................
    [Show full text]
  • Geologic Resource Evaluation Report, Zion National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Zion National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/014 Zion National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2006/014 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 March 2006 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service.
    [Show full text]
  • ADAMS Accession Nos. ML14309A441
    Fermi 3 Combined License Application Part 2: Final Safety Analysis Report 2.5 Geology, Seismology, and Geotechnical Engineering EF3 COL 2.0-26-A 2.5.1 Basic Geology and Seismic Information Subsection 2.5.1 presents a geological and seismological characterization of the Fermi 3 site divided into two parts. Subsection 2.5.1.1 describes the geology including the physiographic, geologic, and tectonic setting of the (320 km [200 mi] radius) site region and Subsection 2.5.1.2 describes the geology including stratigraphy, structural geology, and engineering geology of the (40 km [25 mi] radius) site vicinity to (1 km [0.6 mi] radius) site location. The geological and seismological characterization was developed in accordance with the guidance provided in RG 1.206, Section C.I.2.5.1 “Basic Geologic and Seismic Information,” and is intended to fulfill the requirements of 10 CFR 52 “Licenses, Certifications, and Approvals for Nuclear Power Plants” Section 52.79. The geological and seismological characterization presented in this section provides the basis for evaluating the geologic, seismic, and man-made hazards at the site. The geological and seismological characterization presented in this section is developed from previously published reports for the Fermi 2 power plant, recent and historic geologic literature, field and aerial reconnaissance, and subsurface hydrogeologic and geotechnical investigations conducted in 2007 for the preparation of this FSAR. The review of recent literature was facilitated by using GeoRef electronic database (American Geological Institute). Additionally, the Michigan and Ohio Geological Survey offices were contacted for relevant unpublished geologic literature, studies, and projects.
    [Show full text]
  • The Nature Conservancy's Watershed Approach To
    THE NATURE CONSERVANCY’S WATERSHED APPROACH TO COMPENSATION PLANNING FOR THE VIRGINIA AQUATIC RESTORATION TRUST FUND December 2009 TABLE OF CONTENTS PART ONE: THE NATURE CONSERVANCY’S CONSERVATION BY DESIGN .... 2 Background ..................................................................................................................... 2 The Nature Conservancy’s Conservation By Design ..................................................... 3 Element I: Geographic service area delineation ............................................................ 4 Elements ii, iii and iv: Threats Assessment ................................................................... 8 Elements v and vi: Aquatic resource goals / objectives and a prioritization strategy.. 10 Element xii. Satisfying Criteria for Use of Preservation ............................................. 13 Element viii. A description of any public and private stakeholder involvement in the plan ................................................................................................................................ 13 Element ix. Long-term protection and management strategies ................................... 15 Element x. Monitoring and Evaluating Progress .......................................................... 15 Conclusion .................................................................................................................... 17 PART II. OVERVIEW OF ECOREGIONAL PRIORITY CONSERVATION AREAS BY DEQ/CORPS SERVICE AREAS .............................................................................
    [Show full text]
  • Geologic Map of East Tennessee with Explanatory Text
    STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF GEOLOGY BULLETIN 58, PART II Geologic Map of East Tennessee With Explanatory Text Compiled by JOHN RODGERS Geologist, U. S. Geological Survey with the Collaboration of Geologists of the Tennessee Division of Geology Tennessee Valley Authority and United States Geological Survey Prepared under the Joint Auspices of the United States Geological Survey and the Tennessee Division of Geology Nashville, Tennessee 1953 Reprinted 1993 STATE OF TENNESSEE FRANK G. CLEMENT, Governor DEPARTMENT OF CONSERVATION Jim McCORD, Commissioner DIVISION OF GEOLOGY W. D. HARDEMAN, State Geologist 1993 STATE OF TENNESSEE Ned McWherter Governor DEPARTMENT OF ENVIRONMENT AND CONSERVATION J. W. Luna Commissioner DIVISION OF GEOLOGY Edward T. Luther State Geologist CONTENTS Page Abstract…………………………………………………...…………………………………………………1 Introduction ………………………………………………………...……………………………………… 3 Area covered by present map…………………………………………………………………...…………. 3 Compilation of the map ……………………………………………………………………………………. 3 Map units…………………………………………………………………………………………………… 6 Acknowledgments……………………………………………………………………………………….…. 8 Physical geography …...........…………………………………………………………........................…… 11 Regional setting .........................…............…………………………………………………….…. 11 Unaka Mountains .............................................……………………………………………….….. 11 Valley of East Tennessee ........................................………………………………………………. 14 Cumberland Plateau ..............................……………………………………………………….….
    [Show full text]
  • A Window to the Appalachians
    I-68/I-70: A WINDOW TO THE APPALACHIANS by Dr. John J. Renton Dept. of Geology & Geography West Virginia University Morgantown, WV Introduction The Appalachian Mountains are probably the most studied mountains on Earth. Many of our modern ideas as to the origin of major mountain systems evolved from early investigations of the Appalachian region. The Appalachians offer a unique opportunity to experience the various components of an entire mountain system within a relatively short distance and period of time. Compared to the extensive areas occupied by other mountain systems such as the Rockies and the Alps, the Appalachians are relatively narrow and can be easily crossed within a few hours driving time. Following I-68 and I-70 between Morgantown, WV, and Frederick, Maryland, for example, one can visit all of the major structural components within the Appalachians within a distance of about 160 miles. Before I continue, I would like to clarify references to the Allegheny and Appalachian mountains. The Allegheny Mountains were created about 250 million years ago when continents collided during the Alleghenian Orogeny to form the super-continent of Pangea (Figure 1). As the continents collided, a range of mountains were created in much the same fashion that the Himalaya Mountains are now being formed by the collision of India and Asia. About 50 million years after its Figure 1 1 creation, Pangea began to break up with the break occurring parallel to the axis of the original mountains. As the pieces that were to become our present continents moved away from each other, the Indian, Atlantic, and Arctic oceans were created (Figure 2).
    [Show full text]
  • Section 2.5.1 Geologic Characterization Information
    Clinch River Nuclear Site Early Site Permit Application Part 2, Site Safety Analysis Report SUBSECTION 2.5.1 TABLE OF CONTENTS Section Title Page 2.5 Geology, Seismology, and Geotechnical Engineering ............................... 2.5.1-1 2.5.1 Geologic Characterization Information ...................................... 2.5.1-1 2.5.1.1 Regional Geology (within the 200-Mile Regional Radius) ................................................................... 2.5.1-1 2.5.1.2 Local Geology ....................................................... 2.5.1-32 2.5.1.3 References ........................................................... 2.5.1-82 2.5.1-i Revision 0 Clinch River Nuclear Site Early Site Permit Application Part 2, Site Safety Analysis Report SUBSECTION 2.5.1 LIST OF TABLES Number Title 2.5.1-1 Stratigraphic Units Encountered at the Clinch River Nuclear Site 2.5.1-2 Clinch River Nuclear Stratigraphic Boundaries 2.5.1-3 Average Thickness and Variability of Each Stratigraphic Unit 2.5.1-4 Lithologic Adjectives and Modifiers 2.5.1-5 Summary of Petrographic Examination 2.5.1-6 Description of Mapped Karst Features 2.5.1-7 Occurrence of Karst Depressions by Geologic Unit in the 5-Mile Site Radius 2.5.1-8 Occurrence of Cave Entrances by Geologic Unit in the 5-Mile Site Radius 2.5.1-9 Chemistry, Mineralogy, and Petrography of Rock Core 2.5.1-10 Mineralogy of Rock Core from Clinch River Breeder Reactor Project 2.5.1-11 Cavities in Boreholes Drilled at Clinch River Nuclear Site, 1973–1978 and 2013 2.5.1-12 Definition of Joint Condition Ratings
    [Show full text]
  • Friendship Hill National Historic Site Geologic Resource Evaluation Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Friendship Hill National Historic Site Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2008/022 THIS PAGE: Waterfall on Ice Pond Run, Friendship Hill NHP. ON THE COVER: Gallatin House, Friendship Hill NHP NPS Photos Friendship Hill National Historic Site Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2008/022 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 February 2008 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer- reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly- published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service.
    [Show full text]