Transport Vehicles and Freight Containers on Flat Cars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transforming Shipping Containers Into Primary Care Health Clinics
Transforming Shipping Containers into Primary Care Health Clinics Project Report Aerospace Vehicles Engineering Degree 27/04/2020 STUDENT: DIRECTOR: Alba Gamón Aznar Neus Fradera Tejedor Abstract The present project consists in the design of a primary health clinic inside intermodal shipping containers. In recent years the frequency of natural disasters has increased, while man-made conflicts continue to afflict many parts of the globe. As a result, societies and countries are often left without access to basic medical assistance. Standardised and ready-to-deploy mobile clinics could play an important role in bringing such assistance to those who need it all over the world. This project promotes the adaptation of the structure of shipping containers to house a primary healthcare center through a multidisciplinary approach. Ranging from the study of containers and the potential environments where a mobile clinic could be of use to the design of all the manuals needed for the correct deployment, operation and maintenance of a mobile healthcare center inside a shipping container, this project intends to combine with knowledge from many sources to develop a product of great human, social and ecological value. 1 Abstract 1 INTRODUCTION 6 Aim 6 Scope 6 Justification 7 Method 8 Schedule 8 HISTORY AND CHARACTERISTICS OF INTERMODAL CONTAINERS 9 History 9 Shipping containers and their architectural use 10 Why use a container? 10 Container dimensions 11 Container types 12 Container prices 14 STUDY OF POSSIBLE LOCATIONS 15 Locations 15 Environmental -
Prices and Costs in the Railway Sector
ÉCOLE POLYTECHNIQUE FÉDÉRALEDE LAUSANNE ENAC - INTER PRICESPRICES AND AND COSTS COSTS ININ THE THE RAILWAY RAILWAY SECTOR SECTOR J.P.J.P. Baumgartner Baumgartner ProfessorProfessor JanuaryJanuary2001 2001 EPFL - École Polytechnique Fédérale de Lausanne LITEP - Laboratoire d'Intermodalité des Transports et de Planification Bâtiment de Génie civil CH - 1015 Lausanne Tél. : + 41 21 693 24 79 Fax : + 41 21 693 50 60 E-mail : [email protected] LIaboratoire d' ntermodalité des TEP ransports t de lanification URL : http://litep.epfl.ch TABLE OF CONTENTS Page 1. FOREWORD 1 2. PRELIMINARY REMARKS 1 2.1 The railway equipment market 1 2.2 Figures and scenarios 1 3. INFRASTRUCTURES AND FIXED EQUIPMENT 2 3.1 Linear infrastructures and equipment 2 3.1.1 Studies 2 3.1.2 Land and rights 2 3.1.2.1 Investments 2 3.1.3 Infrastructure 2 3.1.3.1 Investments 2 3.1.3.2 Economic life 3 3.1.3.3 Maintenance costs 3 3.1.4 Track 3 3.1.4.1 Investment 3 3.1.4.2 Economic life of a main track 4 3.1.4.3 Track maintenance costs 4 3.1.5 Fixed equipment for electric traction 4 3.1.5.1 Investments 4 3.1.5.2 Economic life 5 3.1.5.3 Maintenance costs 5 3.1.6 Signalling 5 3.1.6.1 Investments 5 3.1.6.2 Economic life 6 3.1.6.3 Maintenance costs 6 3.2 Spot fixed equipment 6 3.2.1 Investments 7 3.2.1.1 Points, switches, turnouts, crossings 7 3.2.1.2 Stations 7 3.2.1.3 Service and light repair facilities 7 3.2.1.4 Maintenance and heavy repair shops for rolling stock 7 3.2.1.5 Central shops for the maintenance of fixed equipment 7 3.2.2 Economic life 8 3.2.3 Maintenance costs 8 4. -
Event Guide Is Sponsored by a @Intermodaleu
SANY PORT MACHINERY. Stand B82 5-7 NOVEMBER 2019 | HAMBURG MESSE YOUR PLATFORM IN EVENT EUROPE TO MEET THE ADVERT GLOBAL CONTAINER INDUSTRY GUIDE SANY has the vision and capability to offer a refreshing alternative to the market. Customer solutions are developed and produced meeting the highest European standards and demands. Quality, Reliability and Customer Care are our core values. The team in SANY Europe follows each project from the development phase through to the ex-works dispatch and full customer satisfaction. Short delivery times and 5 years warranty included. FLOORPLAN • EXHIBITOR A-Z • CONFERENCE PROGRAMME • PRODUCT INDEX The Event Guide is sponsored by A @intermodalEU www.intermodal-events.com Sany Europe GmbH · Sany Allee 1, D-50181 Bedburg · TEL. 0049 (2272) 90531 100 · www.sanyeurope.com Sany_Anz_Portmachinery_TOC_Full_PageE.indd 1 25.04.18 09:58 FLOORPLAN Visit us at Visit us at Visit us at EXHIBITOR A-Z stand B110 stand B110 stand B110 COMPANY STAND COMPANY STAND ABS E70 CS LEASING E40 ADMOR COMPOSITES OY F82 DAIKIN INDUSTRIES D80 ALL PAKISTAN SHIPPING DCM HYUNDAI LTD A92 ASSOCIATION (APSA) F110 DEKRA CLAIMS SERVICES GMBH A41 AM SOLUTION B110 EMERSON COMMERCIAL ARROW CONTAINER & RESIDENTIAL SOLUTIONS D74 PLYWOOD & PARTS CORP F60 EOS EQUIPMENT OPTIMIZATION BEACON INTERMODAL LEASING B40 SOLUTIONS B80 BEEQUIP E70 FLEX BOX A70, A80 BLUE SKY INTERMODAL E40 FLORENS ASSET MANAGEMENT E62 BOS GMBH BEST OF STEEL B90 FORT VALE ENGINEERING LTD B74 BOXXPORT C44A GLOBALSTAR EUROPE BSL INTERCHANGE LTD D70 SATELLITE SERVICE LTD B114 -
Intermodal Chassis Availability for Containerized Agricultural Exports
INTERMODAL CHASSIS AVAILABILITY FOR CONTAINERIZED AGRICULTURAL EXPORTS A Case Study of the Ports of Los Angeles, Long Beach, and Oakland Cyrus Ramezani, Ph.D. [email protected] Chris Carr, J.D. [email protected] Orfalea College of Business California Polytechnic State University 1 Grand Avenue San Luis Obispo, California 93407 Report Prepared for USDA-AMS USDA Cooperative Agreement No. 19-TMTSD-CA-0003 25 February 2021 ACKNOWLEDGMENTS This research was supported by Cooperative Agreement Number 19-TMTSD-CA-0003 with the Agricultural Marketing Services (AMS) of the U.S. Department of Agriculture (USDA). The opin- ions and conclusions expressed here are those of the authors and do not necessarily represent those of USDA or AMS. The authors gratefully acknowledge industry participants, including agricultural exporters, ship- pers, freight forwarders, chassis providers, motor carriers, and various Ports’ staff, for their input and data related to this research. Mr. Kevin Gard served as an outstanding graduate research assistant on this project. Any errors or omissions are the sole responsibility of the authors. Contents List of Tables 5 List of Figures6 Executive Summary7 1 Introduction and Problem Statement9 2 Objectives and Scope of the Study 11 3 Methodology 14 4 U.S. and California Agricultural Exports 15 4.1 Containerized Agricultural Exports.......................... 23 5 Containerized Agricultural Exports Through California Ports 25 5.1 Port of Los Angeles.................................. 27 5.2 Port of Long Beach.................................. 36 5.3 Port of Oakland.................................... 45 6 The Rise of Mega Ships and Chassis Shortages 54 6.1 Mapping Container Volume to Chassis Demand and Supply............. 61 6.2 Chassis Supply at California Ports......................... -
Overview of the U.S. Freight Transportation System
Overview of the U.S. Freight Transportation System This report was prepared by the Center for Intermodal Freight Transportation Studies, The University of Memphis submitted to the U.S. Department of Transportation, Research and Innovative Technologies Administration. Authors: Jimmy Dobbins, Vanderbilt, University John Macgowan, Upper Great Plains Transportation Institute Martin Lipinski, University of Memphis August, 2007 DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The document is disseminated under the sponsorship of the Department of Transportation University Transportation Centers Program, in the interest of information exchange. The U. S. Government assumes no liability for the contents. 1 National Intermodal Transportation System Improvement Plan (NITSIP) Table of Contents Introduction ..................................................................................................................................... 2 Figure 1. 2002 Freight Value, Tons and Ton-Miles .............................................................. 3 Figure 2. 2005 Employment by Freight Transportation Mode .............................................. 4 Figure 3. Business Logistics, Inventory, and Transportation Expenditures as a Percent of U.S. Gross Domestic Product (GDP) ...................................................................................... 5 Figure 4. Real U.S. Gross Domestic Product (GDP) Per Capita .......................................... -
Development in Intermodal Equipment
ISSN 1052-7524 Proceedings of the Transportation Research Forum Volume 7 1993 35th TRF Annual Forum New York, New York October 14-16, 1993 High Speed Rail and Freight Railroads 107 Developments in Intermodal Equipment' Dean Wise, Moderator Vice President Mercer Management Consulting This panel topic is developments in double-stack — and talk about some of i ntermodal equipment. My name is the new developments. Dean Wise. I am a Vice President with Mercer Management Consulting based in Our speakers today are going to cover Boston. the view from the leasing industry. Charlie Wilmot is going to go first. Thinking back on this subject, one of the Then we are going to move to one of the first conferences I went to after I joined innovators in equipment, Larry Gross, Mercer (formerly Temple, Barker & who is President of RoadRailer. Then Sloan) was a conference where the we are going to go to the crazy idea edge subject was also intermodal equipment. by hearing from Dick Sherid, who is This was in 1982 or 1983. Back then, a with CSX. He is going to talk about the lead discussion was on whether we really Iron Highway, which is an idea that has needed to go from a 40-foot intermodal been around but that I think most trailer to a 45-foot trailer. people still aren't quite tuned in to. At the time, the motor carrier industry Our first speaker, Charlie Wilmot, is Was starting to standardize it at 48, so Vice President at XTRA Corporation. some people were saying,the competitors XTRA is one of the two leading leasing are already out eight feet and we are companies that provide intermodal thinking, do we need to go another five. -
Investing in Mobility
Investing in Mobility FREIGHT TRANSPORT IN THE HUDSON REGION THE EAST OF HUDSON RAIL FREIGHT OPERATIONS TASK FORCE Investing in Mobility FREIGHT TRANSPORT IN THE HUDSON REGION Environmental Defense and the East of Hudson Rail Freight Operations Task Force On the cover Left:Trucks exacerbate crippling congestion on the Cross-Bronx Expressway (photo by Adam Gitlin). Top right: A CSX Q116-23 intermodal train hauls double-stack containers in western New York. (photo by J. Henry Priebe Jr.). Bottom right: A New York Cross Harbor Railroad “piggypacker” transfers a low-profile container from rail to a trailer (photo by Adam Gitlin). Environmental Defense is dedicated to protecting the environmental rights of all people, including the right to clean air, clean water, healthy food and flourishing ecosystems. Guided by science, we work to create practical solutions that win lasting political, economic and social support because they are nonpartisan, cost-effective and fair. The East of Hudson Rail Freight Operations Task Force is committed to the restoration of price- and service-competitive freight rail service in the areas of the New York metropolitan region east of the Hudson River. The Task Force seeks to accomplish this objective through bringing together elected officials, carriers and public agencies at regularly scheduled meetings where any issue that hinders or can assist in the restoration of competitive rail service is discussed openly. It is expected that all participants will work toward the common goal of restoring competitive rail freight service East of the Hudson. ©2004 Environmental Defense Printed on 100% (50% post-consumer) recycled paper, 100% chlorine free. -
Container Sweat and Condensation in Transporting Organic
Established 1898 Presenter: Sherman Drew Panel Members: Richard Lawson; Kevin Meller; Mark Cote Moderator: Pete Scrobe What is Condensation? Packaging concerns Types of condensation: including selection of What causes sea containers and unit condensation? packaging design Key definitions Desiccants & Absorbent Materials Condensation Issues: ◦ Atmospheric pressure Insulation measures ◦ Dew Point Ventilation Strategies ◦ Relative Humidity and Alternatives ◦ Container Sweat Condensation and ◦ Cargo Sweat impact on organic vs. ◦ Radiation of heat inorganic Commodities Hygroscopic Characteristics Commodities Prevention strategies Condensation Dehumidification Container Sweat Mode Cargo Sweat Radiation of Heat at Saturated Air Terminals and On Board Ship Dew Point Hygroscopic Relative Humidity Commodities Saturation & Equilibrium Non-Hygroscopic Capacity Commodities The first stage - time from container stuffing until the container is loaded onto a ship. Includes road transport and brief periods of storage. The second stage is the actual time at sea or aboard a ship. The final stage begins when container is offloaded from the ship continuing until the freight is discharged from the container. This may include varying periods of time spent in customs, on trains, trucks and in temporary storage A two year study conducted by Xerox involved shipping cargo between various lanes and seasons throughout North America, Asia and Europe. Studies concluded that during the actual vessel transit stage, daily cycles of temperature and humidity are usually very minor or completely non-existent (excluding deck cargoes). Temperature changes are gradual, often occurring over days rather than hours. Occasionally, a single temperature/ humidity cycle occurs as the vessel makes stops along the route, extreme conditions are rare. Yet the first and final stage proved daily temperature and humidity cycles are common and may be extreme. -
Solving a Highly Constrained Multi-Level Container Loading
Solving a highly constrained multi-level container loading problem from practice Division of Optimization, Department of Mathematics, Linköping University Jonas Olsson Bachelor Thesis: 16 hp Supervisor: Nils-Hassan Quttineh Level: G2 Examiner: Torbjörn Larsson LiTH-MAT-EX--2017/01--SE Linköping, February 2017 Abstract The container loading problem considered in this thesis is to determine placements of a set of packages within one or multiple shipping containers. Smaller packages are consolidated on pallets prior to being loaded in the shipping containers together with larger packages. There are multiple objectives which may be summarized as fitting all the packages while achieving good stability of the cargo as well as the shipping containers themselves. According to recent literature reviews, previous research in the field have to large extent been neglecting issues relevant in practice. Our real-world application was developed for the industrial company Atlas Copco to be used for sea container shipments at their Distribution Center (DC) in Texas, USA. Hence all applicable practical constraints faced by the DC operators had to be treated properly. A high variety in sizes, weights and other attributes such as stackability among packages added complexity to an already challenging combinatorial problem. Inspired by how the DC operators plan and perform loading manually, the batch concept was developed, which refers to grouping of boxes based on their characteristics and solving subproblems in terms of partial load plans. In each batch, an extensive placement heuristic and a load plan evaluation run iteratively, guided by a Genetic Algorithm (GA). In the placement heuristic, potential placements are evaluated using a scoring function considering aspects of the current situation, such as space utilization, horizontal support and heavier boxes closer to the floor. -
Railcar Puzzle and Commodity Matching Game
NURail Project ID: NURail2014-UIUC-E09 Guidebook for Railway-themed K-12 STEM Outreach Activities By C. Tyler Dick, Ph.D., P.E. Lecturer and Principal Research Engineer Rail Transportation and Engineering Center (RailTEC) University of Illinois at Urbana-Champaign [email protected] Lee Evans Graduate Research Assistant Rail Transportation and Engineering Center (RailTEC) University of Illinois at Urbana-Champaign [email protected] 23-12-2020 Grant Number: DTRT13-G-UTC52 (Grant 2) Guidebook for Railway‐themed K‐12 STEM Outreach Activities Introduction Welcome to the Guidebook for Railway‐themed K‐12 STEM Outreach Activities! Inside, you will find descriptions of educational activities designed to introduce students to the railroad transportation mode through the lens of STEM (Science, Technology, Engineering, and Mathematics) concepts. Railroads have been a critical part of the global economy since the 1830s. Today, railroads haul more ton‐miles of intercity freight (one ton of freight moved one mile) than any other mode of transportation in the United States. While the railroad industry is the leader in long‐haul freight transportation, recruiting students to leadership roles in the industry is challenging. With many railroad employees approaching retirement age, the need to raise student awareness of railway industry career opportunities has never been greater. The activities in this guidebook cover a wide variety of railroad topics. The activities are intended to be hands‐on to provide students with knowledge through experiential learning that also increases their awareness of railway transportation technology. Although the following chapters provide a step‐by‐step guide to each activity, we encourage you to experiment with modifications to each activity and to create your own activities on other facets of the railroad industry and STEM topics. -
Scanned Document
Results From the U.S. Department ot Transportation Car Coupling Impact Tests Federal Railroad Administration of lntermodal Trailers and Containers Office of Research and Development Washington, D.C. 20590 Milton R. Johnson liT Research Institute 10 West 35th Street Chicago, Illinois 60616 DOT/FRNORD-88/08 March 1988 This document is available to the U.S. Final Report public through the National Technical Information Service, Springfield, Virginia 22161. NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. T~chnicol Report Docum~ntation Pog• DOT/FRA/ORD-88/08 S. R~port Dote Results from the Car Coupling Impact Tests of ~1arch 1988 Intermodal Trailers and Containers 6 .. Prdormeny Orgon.•tohon Code I 8. P•rformut9 Or9onia:ohon R .. pott Ho. t-;--:--:-'--:-:-----------------------i1 1. Aulhor ol PQ6Q54 M. R. Johnson 9. P.rfo'""'"t Ortaruzotio" Name oncf Ad.Jress 10. Wo,Jo u,,, No. (TRAIS) liT Research Institute 10 W. 35th Street 1 l. Contro~t ot Gtont No. Chicago, Illinois 60616 DTFR53-85-P-00485 13. Trp• of Report oncl Poriocl Co••••cl ll. s,......... , A.., ...c, H-• -cl ... clclrou ---------------1 Fi na 1 Report Federal Railroad Administration 1985-1987 400 Seventh Street, S.W. Washington, D.C. 20590 16. Abauo.;l Results are presented from the car coupling impact and lift/drop tests which were conducted during April 1985 at the Transportation Test Center, Pueblo, Colorado, under the Safety Evaluation of Intermodal and Jumbo Tank Hazardous Material Cars Program. -
HO 40' High-Cube Container
Announced 12.28.20 HO 40’ High-Cube Container Orders Due: 01.29.21 ETA: December 2021 Ocean Network Express Cosco Shipping ATH27038 HO RTR 40’ High-Cube Container, ONE (3) ATH27040 HO RTR 40’ High-Cube Container, Cosco (3) ATH27039 HO RTR 40’ High-Cube Container, ONE (3) ATH27041 HO RTR 40’ High-Cube Container, Cosco (3) MSC/Florens Touax/MOL ATH27042 HO RTR 40’ High-Cube Container, MSC/Florens (3) ATH27044 HO RTR 40’ High-Cube Container, Touax/MOL (3) ATH27043 HO RTR 40’ High-Cube Container, MSC/Florens (3) ATH27045 HO RTR 40’ High-Cube Container, Touax/MOL (3) MSC NYK ATH27046 HO RTR 40’ High-Cube Container, MSC (3) ATH27048 HO RTR 40’ High-Cube Container, NYK (3) ATH27047 HO RTR 40’ High-Cube Container, MSC (3) ATH27049 HO RTR 40’ High-Cube Container, NYK (3) Maersk ATH27050 HO RTR 40’ High-Cube Container, Maersk (3) Photo credits to Mario Caceres All Road Names PROTOTYPE AND BACKGROUND INFO: An intermodal container is a large standardized shipping container, designed and built for intermodal freight transport, meaning these containers can be used across different modes of transport – from ship to rail to truck – without unloading and reloading their cargo. About 80% of the world’s containers are either twenty or forty foot standard length boxes of the dry freight design. corrugating the sheet metal used for the sides and roof contributes significantly to the container’s rigidity and stacking strength, just like in corrugated iron or in cardboard boxes. International (ISO) containers have castings with openings for twistlock fasteners at each of the eight corners, to allow gripping the box from above, below, or the side, and they can be stacked up to ten units high for storage.