Event Guide Is Sponsored by a @Intermodaleu
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transforming Shipping Containers Into Primary Care Health Clinics
Transforming Shipping Containers into Primary Care Health Clinics Project Report Aerospace Vehicles Engineering Degree 27/04/2020 STUDENT: DIRECTOR: Alba Gamón Aznar Neus Fradera Tejedor Abstract The present project consists in the design of a primary health clinic inside intermodal shipping containers. In recent years the frequency of natural disasters has increased, while man-made conflicts continue to afflict many parts of the globe. As a result, societies and countries are often left without access to basic medical assistance. Standardised and ready-to-deploy mobile clinics could play an important role in bringing such assistance to those who need it all over the world. This project promotes the adaptation of the structure of shipping containers to house a primary healthcare center through a multidisciplinary approach. Ranging from the study of containers and the potential environments where a mobile clinic could be of use to the design of all the manuals needed for the correct deployment, operation and maintenance of a mobile healthcare center inside a shipping container, this project intends to combine with knowledge from many sources to develop a product of great human, social and ecological value. 1 Abstract 1 INTRODUCTION 6 Aim 6 Scope 6 Justification 7 Method 8 Schedule 8 HISTORY AND CHARACTERISTICS OF INTERMODAL CONTAINERS 9 History 9 Shipping containers and their architectural use 10 Why use a container? 10 Container dimensions 11 Container types 12 Container prices 14 STUDY OF POSSIBLE LOCATIONS 15 Locations 15 Environmental -
Usda Commodity Requirements
USDA COMMODITY REQUIREMENTS VO12 VEGETABLE OIL PRODUCTS FOR USE IN EXPORT PROGRAMS Effective Date: 02/1/08 USDA COMMODITIY REQUIREMENTS VO12 VEGETABLE OIL PRODUCTS FOR USE IN EXPORT PROGRAMS Table of Contents Part 1 COMMODITY SPECIFICATIONS ______________________________________ 1 Section 1.1 COMMODITIES ___________________________________________________ 1 Section 1.2 QUALITY DISCOUNTS_____________________________________________ 1 Section 1.3 UNDER-FILL LIMIT _______________________________________________ 2 Section 1.4 QUALITY ASSURANCE ____________________________________________ 2 Part 2 CONTAINER AND PACKAGING REQUIREMENTS _______________________ 2 Section 2.1 GENERAL ________________________________________________________ 2 Section 2.2 CONTAINERS AND MATERIALS ___________________________________ 3 Section 2.3 PACK SIZES ______________________________________________________ 3 Section 2.4 SHIPPING CONTAINERS___________________________________________ 6 Section 2.5 PERFORMANCE SPECIFICATIONS _________________________________ 6 Part 3 MARKING REQUIREMENTS __________________________________________ 7 Section 3.1 4-LITER CYLINDRICAL-STYLE CANS ______________________________ 7 Section 3.2 4-LITER PLASTIC CONTAINERS ___________________________________ 7 Section 3.3 SHIPPING CONTAINERS FOR ALL 4-LITER CONTAINERS ___________ 8 Section 3.4 20-LITER PAILS (EXCLUDING MONETIZED PROGRAMS) ____________ 8 Section 3.5 208-LITER DRUMS_________________________________________________ 9 Section 3.6 MARKING LETTERS ______________________________________________ -
Rules for Classification and Construction VI Additional Rules and Guidelines
Rules for Classification and Construction VI Additional Rules and Guidelines 1 Container Technology 1 Guidelines for the Construction, Repair and Testing of Freight Containers Edition 1995 The following Guidelines come into force on April 1st, 1995 Germanischer Lloyd Aktiengesellschaft Head Office Vorsetzen 35, 20459 Hamburg, Germany Phone: +49 40 36149-0 Fax: +49 40 36149-200 [email protected] www.gl-group.com "General Terms and Conditions" of the respective latest edition will be applicable (see Rules for Classification and Construction, I - Ship Technology, Part 0 - Classification and Surveys). Reproduction by printing or photostatic means is only permissible with the consent of Germanischer Lloyd Aktiengesellschaft. Published by: Germanischer Lloyd Aktiengesellschaft, Hamburg Printed by: Gebrüder Braasch GmbH, Hamburg VI - Part 1 Table of Contents Chapter 1 GL 1995 Page 3 Table of Contents Section 1 General Instructions and Guidance A. General Test Conditions .............................................................................................................. 1- 1 B. Types of tests .............................................................................................................................. 1- 2 C. Construction characteristics (design principles) .......................................................................... 1- 5 D. Materials ..................................................................................................................................... 1- 7 E. Jointing methods ........................................................................................................................ -
Transport Vehicles and Freight Containers on Flat Cars
Pipeline and Hazardous Materials Safety Admin., DOT § 174.61 For the applicable address and tele- is also within the limits of the design phone number, see § 107.117(d)(4) of this strength requirements for the doors. chapter. A leaking bulk package con- [Amdt. 174–83, 61 FR 28677, June 5, 1996, as taining a hazardous material may be amended at 68 FR 75747, Dec. 31, 2003; 76 FR moved without repair or approval only 43530, July 20, 2011] so far as necessary to reduce or to eliminate an immediate threat or harm § 174.57 Cleaning cars. to human health or to the environment All hazardous material which has when it is determined its movement leaked from a package in any rail car would provide greater safety than al- or on other railroad property must be lowing the package to remain in place. carefully removed. In the case of a liquid leak, measures must be taken to prevent the spread of § 174.59 Marking and placarding of liquid. rail cars. [65 FR 50462, Aug. 18, 2000] No person may transport a rail car carrying hazardous materials unless it is marked and placarded as required by Subpart C—General Handling and this subchapter. Placards and car cer- Loading Requirements tificates lost in transit must be re- placed at the next inspection point, § 174.55 General requirements. and those not required must be re- (a) Each package containing a haz- moved at the next terminal where the ardous material being transported by train is classified. For Canadian ship- rail in a freight container or transport ments, required placards lost in tran- vehicle must be loaded so that it can- sit, must be replaced either by those not fall or slide and must be safe- required by part 172 of this subchapter guarded in such a manner that other or by those authorized under § 171.12. -
Structural Design of a Container Ship Approximately 3100 TEU According to the Concept of General Ship Design B-178
Structural design of a container ship approximately 3100 TEU according to the concept of general ship design B-178 Wafaa Souadji Master Thesis presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion” conferred by Ecole Centrale de Nantes developed at West Pomeranian University of Technology, Szczecin in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC Supervisor: Dr. Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin Reviewer: Prof. Robert Bronsart, University of Rostock Szczecin, February 2012 Structural design of a container ship approximately 3100 TEU 3 according to the concept of general ship design B-178 ABSTRACT Structural design of a container ship approximately 3100 TEU according to the concept of general ship design B-178 By Wafaa Souadji The initial design stage is crucial for the ship design, including the ship structural design, as the decisions are here taken fundamental to reach design objectives by establishing basic ship characteristics. Consequently, errors which may appear have the largest impact on the final design. Two main aspects related to the design of structures are typically addressed in the initial design: analysis of strength and cost estimation. The design developed in the dissertation is based on the conceptual design of general containership B-178 built in the Stocznia Szczecińska Nowa, providing its main particulars, hull form as well as the general arrangement. The general objective of the thesis is to carry out the hull structural design based on the functional requirements of the containership. -
Army Container Operations
FM 55-80 ARMY CONTAINER OPERATIONS DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. HEADQUARTERS, DEPARTMENT OF THE ARMY FM 55-80 FIELD MANUAL HEADQUARTERS No. 55-80 DEPARTMENT OF THE ARMY Washington, DC, 13 August 1997 ARMY CONTAINER OPERATIONS TABLE OF CONTENTS Page PREFACE.......................................................................................................................... iv CHAPTER 1. INTRODUCTION TO INTERMODALISM .......................................... 1-1 1-1. Background.................................................................................... 1-1 1-2. Responsibilities Within the Defense Transportation System............. 1-1 1-3. Department of Defense ................................................................... 1-2 1-4. Assistant Deputy Under Secretary of Defense, Transportation Policy............................................................................................. 1-2 1-5. Secretary of the Army..................................................................... 1-2 1-6. Supported Commander in Chiefs..................................................... 1-2 1-7. Army Service Component Commander............................................ 1-2 1-8. Commanders .................................................................................. 1-2 1-9. United States Transportation Command .......................................... 1-3 1-10. Military Traffic Management Command ......................................... 1-3 1-11. Procurement and Leasing -
HAZMAT Transportationtm Compliance I Security I Safety for All Modes of Transport
The Journal Of HAZMAT TransportationTM Compliance I Security I Safety For All Modes of Transport Volume 29, Number 6 I March /April 2019 A Discussion of the Federal EPA Empty Container Rule: Purpose and Application By Paul W. Rankin & Lawrence W. Bierlein, Esq. The Journal of HazMat Transportation™ focuses exclusively on providing expert updates, reviews and guidance on complying with U.S. and International hazardous materials transportation regulations. For 28 years, it has been an indispensable management tool for both large and small organizations, and government agencies throughout North America and Europe. Our service provides actionable guidance to those who must comply with hazardous materials regulations in the chemical, aerospace, pharma- ceutical, industrial packaging, and package testing industries by systematically reviewing and evaluating new and existing regulations. A Publication of PRI International, Inc. / 877-429-7447 / www.hazmatship.com Published and Printed in the United States of America / Copyright 2019 by PRI International, Inc. Reproduction Prohibited. All rights reserved. A Discussion of the Federal EPA Empty Container Rule: Purpose and Application By Paul W. Rankin & Lawrence W. Bierlein, Esq. Introduction of the industry as hazardous waste “treatment, storage and disposal 2 he industrial packaging reconditioning industry serves an facilities” (TSDF) was warranted. EPA was willing to considered indispensable role in promoting the economy of the United whether it should regulate the removal of small amounts of residue TStates by providing for the safe transportation, cleaning and from industrial containers that previously held a regulated sub- reuse of millions of industrial packagings annually. Industrial con- stance. EPA concluded it was not necessary to do so. -
Package Design Bro
Packaging Designs For Automotive Parts REV. 04/01 This brochure is intended to assist automotive packaging specialists Flat Style Hood Design with packaging designs for hoods, Specially engineered pads and roll-ups provide vital cushioning and Acceptable Shipping Guidelines doors, trunks and windshields. help prevent movement during shipping. ® Designs featured are the creations of FedEx® Express packaging engineers For FedEx Express Freight Service ® and have passed the FedEx Express Forklift/Pallet Jack Base • To consolidate multiple piece shipments and protect Packaging Design and Development Rear roll-up pad. Roll-up slit cut pad. against the elements, use shrink or stretch wrapping. All test procedures. All designs are 275# BC flute. 275# C flute. All freight shipments over 150 pounds (68 kg) must be shrink or stretch-wrapped shipments should be banded secured on a forkliftable base and be compatible for available for FedEx customer use. or strapped together as described to prevent shifting and pallet jack usage. The minimum specifications for a typical loss of packages. Individual packages should include the An important aspect of each design base for forklift or pallet jack configuration are illustrated origin and destination address whenever possible. Cover is the use of cost effective corrugated below. Pallet jack entry is required on two sides of either the top layer of the shipment to protect the unitized load pads/roll-ups which provide sufficient type base. from the weather. cushioning needed to prevent damage Labeling Tips during transit. • Remove or mark through all old labels. 3" If you would like more detailed • Attempt to follow all orientation symbols or verbiage information on any of these designs, 7" (“TOP LOAD ONLY,”“DO NOT STACK,” ”THIS SIDE UP,” etc.) please call the FedEx Packaging 7" for all skidded shipments. -
The Possible Impact of New Packaging System Concepts on Traditional Corrugated Box Markets ~
THE POSSIBLE IMPACT OF NEW PACKAGING SYSTEM CONCEPTS ON TRADITIONAL CORRUGATED BOX MARKETS ~ Thesis for the Degree of .Ph. D. MICHIGAN STATE UNIVERSITY DAVID L. OLSSON 1967 -_ A h. M III III I III II III III II II II III II III! II LIBRARY Michigan State University This is to certifg that the thesis entitled THE POSSIBLE IMPACT OF NEW PACKAGING SYSTEM CONCEPTS ON TRADITIONAL CORRUGATED BOX MARKETS presented by David L. OIsson J has been accepted towards fulfillment, . of the requirements for the Ph. D. deg-me inForest Products 0 ‘ @%W or professor v Date October 3I , I967 0—169 RETURNING MATERIALS: MSU Place in book drop to LIBRARIES remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. W955 A 71533 I I I I ABSTRACT THE POSSIBLE IMPACT OF NEW PACKAGING SYSTEM CONCEPTS 0N TRADITIONAL CORRUGATED BOX MARKETS By David L. OIsson Packaging of products for storage and shipment has a history which extends back 5000 years to stone cosmetic kits of MeSOpotamia. Over the years since that time, various package forms have become dominant methods for the shipment of goods. Some, such as leather bags, kegs, barrels, and wooden boxes have nearly completely disappeared from use. Packages serve several functions in the distribution of goods to the market place. Packages protect the product and protect the environ- ment, make goods convenient to handle, store, ship, and use, and moti- vate the customer to buy the product and use it correctly. Shipping packages accomplish these functions within a distribution system which extends from the product-producing center, through the distribution channel, to the point where the consumer uses the product and disposes of the package. -
Intermodal Chassis Availability for Containerized Agricultural Exports
INTERMODAL CHASSIS AVAILABILITY FOR CONTAINERIZED AGRICULTURAL EXPORTS A Case Study of the Ports of Los Angeles, Long Beach, and Oakland Cyrus Ramezani, Ph.D. [email protected] Chris Carr, J.D. [email protected] Orfalea College of Business California Polytechnic State University 1 Grand Avenue San Luis Obispo, California 93407 Report Prepared for USDA-AMS USDA Cooperative Agreement No. 19-TMTSD-CA-0003 25 February 2021 ACKNOWLEDGMENTS This research was supported by Cooperative Agreement Number 19-TMTSD-CA-0003 with the Agricultural Marketing Services (AMS) of the U.S. Department of Agriculture (USDA). The opin- ions and conclusions expressed here are those of the authors and do not necessarily represent those of USDA or AMS. The authors gratefully acknowledge industry participants, including agricultural exporters, ship- pers, freight forwarders, chassis providers, motor carriers, and various Ports’ staff, for their input and data related to this research. Mr. Kevin Gard served as an outstanding graduate research assistant on this project. Any errors or omissions are the sole responsibility of the authors. Contents List of Tables 5 List of Figures6 Executive Summary7 1 Introduction and Problem Statement9 2 Objectives and Scope of the Study 11 3 Methodology 14 4 U.S. and California Agricultural Exports 15 4.1 Containerized Agricultural Exports.......................... 23 5 Containerized Agricultural Exports Through California Ports 25 5.1 Port of Los Angeles.................................. 27 5.2 Port of Long Beach.................................. 36 5.3 Port of Oakland.................................... 45 6 The Rise of Mega Ships and Chassis Shortages 54 6.1 Mapping Container Volume to Chassis Demand and Supply............. 61 6.2 Chassis Supply at California Ports......................... -
Replacing a Disposable Shipping Container with a Reusable Packaging System for a Supplier Electronic Assembly
Rochester Institute of Technology RIT Scholar Works Theses 1994 Replacing a disposable shipping container with a reusable packaging system for a supplier electronic assembly Allen Perry Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Perry, Allen, "Replacing a disposable shipping container with a reusable packaging system for a supplier electronic assembly" (1994). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Replacing a Disposable Shipping Container With a Reusable Packaging System for a Supplier Electronic Assembly by Allen Perry A Thesis submitted to the Department of Packaging Science College of Applied Science and Technology in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE Rochester Institute of Technology 1994 Department of Packaging Science College ofApplied Science and Technology Rochester Institute ofTechnology Rochester, New York CERTIFICATE OF APPROVAL M.S. Degree The M.S. Degree thesis ofAllen M. Perry has been examined and approved by the thesis committee as satisfactory for the thesis requirements for the Master of Science Degree Date 2/7/96 David L. Goodin David L. Olsson Nancy B. Boorsure 11 Replacing a Disposable Shipping Container with a Reusable Packaging System for a Supplier Electronic Assembly. I, Allen M. Perry, hereby state that this document or thesis may be used for reference in the department of Packaging Science, Rochester Institute ofTechnology, Rochester, New York. -
Intermediate Bulk Containers (Ibcs) General Faqs
Intermediate Bulk Containers (IBCs) General FAQs WHAT IS NFPA 30? NFPA 30 is the Flammable and Combustible Liquids Code published by the National Fire Protection Association. The code provides safeguards to reduce the hazards associated with the storage, handling and use of flammable and combustible liquids. NFPA 30 is the law in most states. WHERE IS NFPA 30 THE LAW? are permitted to be stored in these containers. However, the composite IBCs must be listed and labeled. The complete NFPA 30 is enforceable under building and fire prevention rules on what types of IBCs are allowed in buildings can be codes in the following states: Ala., Ariz., Ark., Calif., Colo., found in Chapter 9 of NFPA 30 (visit www.nfpa.org/30 to Conn., Fla., Hawaii, Iowa, Ill., Ind., Kan., Ky., Mass., Maine, access the chapters for free). Mich., Minn., Mo., Mont., N.D., Neb., N.J., N.M., Nev., Ohio, Ore., R.I., Texas, Utah, Va., Vt. and Wis. It is also enforceable in several local jurisdictions. Other avenues of WHAT IS THE FIRE HAZARD OF A COMPOSITE IBC? enforcement may include Occupational Safety and Health When composite IBCs containing combustible or flammable Administration (OSHA) regulations. liquids are stored together in warehouses or other facilities, they can cause dangerous pool fires. These fire hazards WHAT IS AN INTERMEDIATE BULK CONTAINER (IBC)? have two components: Intermediate bulk containers are closed shipping vessels 1. Release of combustible and flammable liquids. with a liquid capacity from 450 up to 3,000 L (119 to 793 When IBCs containing flammable or combustible gallons).