Code of Practice for Packing of Cargo Transport Units (Ctus) (CTU Code)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12.1 12. Pressure Vessels: Combined Stresses Cylindrical Or Spherical
12. Pressure Vessels: Combined Stresses Cylindrical or spherical pressure vessels (e.g., hydraulic cylinders, gun barrels, pipes, boilers and tanks) are commonly used in industry to carry both liquid s and gases under pressure. When the pressure vessel is exposed to this pressure, the material comprising the vessel is subjected to pressure loading, and hence stresses, from all directions. The normal stresses resulting from this pressure are functions of the radius of the element under consideration, the shape of the pressure vessel (i.e., open ended cylinder, closed end cylinder, or sphere) as well as the applied pressure. Two types of analysis are commonly applied to pressure vessels. The most common method is based on a simple mechanics approach and is applicable to “thin wall” pressure vessels which by definition have a ratio of inner radius, r, to wall thickness, t, of r/t≥10. The second method is based on elasticity solution and is always applicable regardless of the r/t ratio and can be referred to as the solution for “thick wall” pressure vessels. Both types of analysis are discussed here, although for most engineering applications, the thin wall pressure vessel can be used. Thin-Walled Pressure Vessels Several assumptions are made in this method. 1) Plane sections remain plane 2) r/t ≥ 10 with t being uniform and constant 3) The applied pressure, p, is the gage pressure (note that p is the difference between the absolute pressure and the atmospheric pressure) 4) Material is linear-elastic, isotropic and homogeneous. 5) Stress distributions throughout the wall thickness will not vary 6) Element of interest is remote from the end of the cylinder and other geometric discontinuities. -
Coalescing Filters - to 175 Psig @ -20 to 200°F Series R20- Enameled Carbon Steel ◊ Series R22- 304 Stainless • Intake Air Flows to 40,000 SCFM Std
click here to return to website Coalescing Filters - to 175 psig @ -20 to 200°F Series R20- Enameled Carbon Steel ◊ Series R22- 304 Stainless • Intake Air Flows to 40,000 SCFM Std. • ASME U Stamp Std., Nat’l. Board Registered • Exceptionally Low ∆P, High Flow • Pleated Element Design - Exceptional Useful Filter Area • Hinged Swing Bolt Closure, Easy Access, O Ring Seal • 304SS Throat Safety Cages and ∆P Taps Std. • Rugged Enameled Steel or 304SS Construction Series R20 coalescing filters are fabricated from rugged enameled carbon steel, designed, constructed in accordance w/ASME Boiler & Pressure Vessel Code requirements for unfired pressure vessels. Any model can be modified to fit your needs. • Standard Connection Sizes from 1" to 12" NPT or raised face flange in-line connections are std. Alt. connections and/or an elevated discharge are avail- able. A hinged swing bolt closure is standard on models R20-0002 & larger. • Coalescing Filter Media. Sparks™ #907 media is composed of microfine borosilicate glass fibers bonded with phenolic resin. Together with a textile prefilter and a final drain layer, these pleated elements are remarkably effective at coalescing fine entrained oil and aqueous vapor mist from air/gas flows with very low ∆P. Experience has demonstrated high removal (over 90%) in dealing with 1.0 to 0.3µ aerosols. Other optional filter media such as #926 exceeds 95% removals. Individual performance will vary with the specific viscosity and vapor pressure of liquid con- taminates. • Options: Models R20-0202-RF-030 and larger include CS leg supports. (add 18" to OH) Carbon steel support legs in any length, gauges, and special finishes, are optional on any model. -
Design of Pressure Vessle (Air Bottle)
INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-4, ISSUE-1, JAN-2017 E-ISSN: 2349-7610 Design of Pressure Vessle (Air Bottle) N.V.Mahesh Babu.T1, Nersu Radhika2, Dr.P.Srinivasa Rao3 and Dr.B.Sudheer Prem Kumar4 1Associate Professor, Department of Mechanical Engineering, Guru Nanak Institutions Technical Campus, Ibrahimpatnam, Telangana 501 506, [email protected]. 2Assistant Professor, H & S Department, Sri Indu College of Engineering and Technology, Ibrahimpatnam, Telangana 501 506. 2 [email protected]. 3 Professor, Department of Mechanical Engineering,Al-Habeeb College of Engineering and Technology,Chevella, Telangana, [email protected] 4Professor & Chairman(Board of Studies) Mechanical Engineering, JNT University,Hyderabad, Telangana 500 085, [email protected], [email protected] ABSTRACT This is a paper that presents the design of a pressure vessel (Air Bottle). High pressure rise is developed in the pressure vessel and pressure vessel has to withstand severe forces. In the design of pressure vessel safety is the primary consideration, due the potential impact of possible accident. There have a few main factors to design the safe pressure vessel. This writing is focusing on analyzing the safety parameter for allowable working pressure. The cylinder is designed by considering the pressure, temperature and other constraints. Analysis of strength is made analytically and validation is done by ANSYS model and analysis. Keywords — Air bottle, ASME Code, Finite Element Analysis, ANSYS, Design for Fatigue. 1. INTRODUCTION 2. TYPE OF STRESS INDUCED IN VESSELS Pressure vessels are containers for containment of pressure, Generally there are two types of stresses induced. -
Legal and Economic Analysis of Tramp Maritime Services
EU Report COMP/2006/D2/002 LEGAL AND ECONOMIC ANALYSIS OF TRAMP MARITIME SERVICES Submitted to: European Commission Competition Directorate-General (DG COMP) 70, rue Joseph II B-1000 BRUSSELS Belgium For the Attention of Mrs Maria José Bicho Acting Head of Unit D.2 "Transport" Prepared by: Fearnley Consultants AS Fearnley Consultants AS Grev Wedels Plass 9 N-0107 OSLO, Norway Phone: +47 2293 6000 Fax: +47 2293 6110 www.fearnresearch.com In Association with: 22 February 2007 LEGAL AND ECONOMIC ANALYSIS OF TRAMP MARITIME SERVICES LEGAL AND ECONOMIC ANALYSIS OF TRAMP MARITIME SERVICES DISCLAIMER This report was produced by Fearnley Consultants AS, Global Insight and Holman Fenwick & Willan for the European Commission, Competition DG and represents its authors' views on the subject matter. These views have not been adopted or in any way approved by the European Commission and should not be relied upon as a statement of the European Commission's or DG Competition's views. The European Commission does not guarantee the accuracy of the data included in this report, nor does it accept responsibility for any use made thereof. © European Communities, 2007 LEGAL AND ECONOMIC ANALYSIS OF TRAMP MARITIME SERVICES ACKNOWLEDGMENTS The consultants would like to thank all those involved in the compilation of this Report, including the various members of their staff (in particular Lars Erik Hansen of Fearnleys, Maria Bertram of Global Insight, Maria Hempel, Guy Main and Cécile Schlub of Holman Fenwick & Willan) who devoted considerable time and effort over and above the working day to the project, and all others who were consulted and whose knowledge and experience of the industry proved invaluable. -
Transforming Shipping Containers Into Primary Care Health Clinics
Transforming Shipping Containers into Primary Care Health Clinics Project Report Aerospace Vehicles Engineering Degree 27/04/2020 STUDENT: DIRECTOR: Alba Gamón Aznar Neus Fradera Tejedor Abstract The present project consists in the design of a primary health clinic inside intermodal shipping containers. In recent years the frequency of natural disasters has increased, while man-made conflicts continue to afflict many parts of the globe. As a result, societies and countries are often left without access to basic medical assistance. Standardised and ready-to-deploy mobile clinics could play an important role in bringing such assistance to those who need it all over the world. This project promotes the adaptation of the structure of shipping containers to house a primary healthcare center through a multidisciplinary approach. Ranging from the study of containers and the potential environments where a mobile clinic could be of use to the design of all the manuals needed for the correct deployment, operation and maintenance of a mobile healthcare center inside a shipping container, this project intends to combine with knowledge from many sources to develop a product of great human, social and ecological value. 1 Abstract 1 INTRODUCTION 6 Aim 6 Scope 6 Justification 7 Method 8 Schedule 8 HISTORY AND CHARACTERISTICS OF INTERMODAL CONTAINERS 9 History 9 Shipping containers and their architectural use 10 Why use a container? 10 Container dimensions 11 Container types 12 Container prices 14 STUDY OF POSSIBLE LOCATIONS 15 Locations 15 Environmental -
Rules for Classification and Construction VI Additional Rules and Guidelines
Rules for Classification and Construction VI Additional Rules and Guidelines 1 Container Technology 1 Guidelines for the Construction, Repair and Testing of Freight Containers Edition 1995 The following Guidelines come into force on April 1st, 1995 Germanischer Lloyd Aktiengesellschaft Head Office Vorsetzen 35, 20459 Hamburg, Germany Phone: +49 40 36149-0 Fax: +49 40 36149-200 [email protected] www.gl-group.com "General Terms and Conditions" of the respective latest edition will be applicable (see Rules for Classification and Construction, I - Ship Technology, Part 0 - Classification and Surveys). Reproduction by printing or photostatic means is only permissible with the consent of Germanischer Lloyd Aktiengesellschaft. Published by: Germanischer Lloyd Aktiengesellschaft, Hamburg Printed by: Gebrüder Braasch GmbH, Hamburg VI - Part 1 Table of Contents Chapter 1 GL 1995 Page 3 Table of Contents Section 1 General Instructions and Guidance A. General Test Conditions .............................................................................................................. 1- 1 B. Types of tests .............................................................................................................................. 1- 2 C. Construction characteristics (design principles) .......................................................................... 1- 5 D. Materials ..................................................................................................................................... 1- 7 E. Jointing methods ........................................................................................................................ -
Potentials for Platooning in US Highway Freight Transport
Potentials for Platooning in U.S. Highway Freight Transport Preprint Matteo Muratori, Jacob Holden, Michael Lammert, Adam Duran, Stanley Young, and Jeffrey Gonder National Renewable Energy Laboratory To be presented at WCX17: SAE World Congress Experience Detroit, Michigan April 4–6, 2017 To be published in the SAE International Journal of Commercial Vehicles 10(1), 2017 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-5400-67618 March 2017 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Transport Vehicles and Freight Containers on Flat Cars
Pipeline and Hazardous Materials Safety Admin., DOT § 174.61 For the applicable address and tele- is also within the limits of the design phone number, see § 107.117(d)(4) of this strength requirements for the doors. chapter. A leaking bulk package con- [Amdt. 174–83, 61 FR 28677, June 5, 1996, as taining a hazardous material may be amended at 68 FR 75747, Dec. 31, 2003; 76 FR moved without repair or approval only 43530, July 20, 2011] so far as necessary to reduce or to eliminate an immediate threat or harm § 174.57 Cleaning cars. to human health or to the environment All hazardous material which has when it is determined its movement leaked from a package in any rail car would provide greater safety than al- or on other railroad property must be lowing the package to remain in place. carefully removed. In the case of a liquid leak, measures must be taken to prevent the spread of § 174.59 Marking and placarding of liquid. rail cars. [65 FR 50462, Aug. 18, 2000] No person may transport a rail car carrying hazardous materials unless it is marked and placarded as required by Subpart C—General Handling and this subchapter. Placards and car cer- Loading Requirements tificates lost in transit must be re- placed at the next inspection point, § 174.55 General requirements. and those not required must be re- (a) Each package containing a haz- moved at the next terminal where the ardous material being transported by train is classified. For Canadian ship- rail in a freight container or transport ments, required placards lost in tran- vehicle must be loaded so that it can- sit, must be replaced either by those not fall or slide and must be safe- required by part 172 of this subchapter guarded in such a manner that other or by those authorized under § 171.12. -
Event Guide Is Sponsored by a @Intermodaleu
SANY PORT MACHINERY. Stand B82 5-7 NOVEMBER 2019 | HAMBURG MESSE YOUR PLATFORM IN EVENT EUROPE TO MEET THE ADVERT GLOBAL CONTAINER INDUSTRY GUIDE SANY has the vision and capability to offer a refreshing alternative to the market. Customer solutions are developed and produced meeting the highest European standards and demands. Quality, Reliability and Customer Care are our core values. The team in SANY Europe follows each project from the development phase through to the ex-works dispatch and full customer satisfaction. Short delivery times and 5 years warranty included. FLOORPLAN • EXHIBITOR A-Z • CONFERENCE PROGRAMME • PRODUCT INDEX The Event Guide is sponsored by A @intermodalEU www.intermodal-events.com Sany Europe GmbH · Sany Allee 1, D-50181 Bedburg · TEL. 0049 (2272) 90531 100 · www.sanyeurope.com Sany_Anz_Portmachinery_TOC_Full_PageE.indd 1 25.04.18 09:58 FLOORPLAN Visit us at Visit us at Visit us at EXHIBITOR A-Z stand B110 stand B110 stand B110 COMPANY STAND COMPANY STAND ABS E70 CS LEASING E40 ADMOR COMPOSITES OY F82 DAIKIN INDUSTRIES D80 ALL PAKISTAN SHIPPING DCM HYUNDAI LTD A92 ASSOCIATION (APSA) F110 DEKRA CLAIMS SERVICES GMBH A41 AM SOLUTION B110 EMERSON COMMERCIAL ARROW CONTAINER & RESIDENTIAL SOLUTIONS D74 PLYWOOD & PARTS CORP F60 EOS EQUIPMENT OPTIMIZATION BEACON INTERMODAL LEASING B40 SOLUTIONS B80 BEEQUIP E70 FLEX BOX A70, A80 BLUE SKY INTERMODAL E40 FLORENS ASSET MANAGEMENT E62 BOS GMBH BEST OF STEEL B90 FORT VALE ENGINEERING LTD B74 BOXXPORT C44A GLOBALSTAR EUROPE BSL INTERCHANGE LTD D70 SATELLITE SERVICE LTD B114 -
Chapter 17. Shipping Contributors: Alan Simcock (Lead Member)
Chapter 17. Shipping Contributors: Alan Simcock (Lead member) and Osman Keh Kamara (Co-Lead member) 1. Introduction For at least the past 4,000 years, shipping has been fundamental to the development of civilization. On the sea or by inland waterways, it has provided the dominant way of moving large quantities of goods, and it continues to do so over long distances. From at least as early as 2000 BCE, the spice routes through the Indian Ocean and its adjacent seas provided not merely for the first long-distance trading, but also for the transport of ideas and beliefs. From 1000 BCE to the 13th century CE, the Polynesian voyages across the Pacific completed human settlement of the globe. From the 15th century, the development of trade routes across and between the Atlantic and Pacific Oceans transformed the world. The introduction of the steamship in the early 19th century produced an increase of several orders of magnitude in the amount of world trade, and started the process of globalization. The demands of the shipping trade generated modern business methods from insurance to international finance, led to advances in mechanical and civil engineering, and created new sciences to meet the needs of navigation. The last half-century has seen developments as significant as anything before in the history of shipping. Between 1970 and 2012, seaborne carriage of oil and gas nearly doubled (98 per cent), that of general cargo quadrupled (411 per cent), and that of grain and minerals nearly quintupled (495 per cent) (UNCTAD, 2013). Conventionally, around 90 per cent of international trade by volume is said to be carried by sea (IMO, 2012), but one study suggests that the true figure in 2006 was more likely around 75 per cent in terms of tons carried and 59 per cent by value (Mandryk, 2009). -
HPE 2010 – Guideline for Packing
Packaging guidelines 2nd revised edition 2010 German Federal Association for Bundesverband Wooden packaging · Holzpackmittel · Pallets · Paletten · Export packaging (HPE) e.V. Exportverpackung (HPE) e.V. Packaging guidelines Edited by Bundesverband Holzpackmittel · Paletten · Exportverpackung (HPE) e.V. The packaging firms who are members of the Federal German Asso- ciation for Wooden Packaging, pallets and export packaging who refer to these guidelines in their advertising material and contracts engage themselves not to fall below the standards herein set out when manufac- turing and executing export packaging. They indicate their engagement by additionally marking packaging units with their mark and registration number. Only members of the expert group “Packaging according to HPE standard” are entitled to use this stamp. For further details check out www.hpe.de (Fachbetriebe/Exportverpacker nach HPE-Standard). presented by: This packaging firm has the following registration number: Packaged goods will be marked with the same number. 3 Packaging guidelines Issued by HPE, the German Federal Association for wooden packaging, pallets and export packaging 2nd revised edition 2010 These guidelines had been revised by a special subcommittee of the HPE expert group “Packaging according to HPE standards” in cooperation with the transport managers’ group of the “major plant construction” VDMA1 working party and by BFSV2 Hamburg. All rights, especially copying of parts or all of these guidelines remain with HPE. The German text issued by HPE, is decisive in all contentious matters. All earlier versions lose their validity on publication of the present edition © Bundesverband Holzpackmittel Paletten Exportverpackung (HPE) e.V. Wachsbleiche 26 53111 Bonn Germany Telefon: +49-(0)228-26 52 46 Telefax: +49-(0)228-26 52 48 E-Mail: [email protected] Internet: www.hpe.de 1 Association of German machine manufacturers 2 German Association for the advice, research, design of systems, packaging development and testing 4 Edition 2/2010 LIST OF CONTENTS Page A. -
Kögel Load Securing
Kögel Load Securing IllustrationsIllustration may similar show optional / can extrainclude equipment special / The equipment products are subject to continuous technical modifications Why so much talk about the art of engineering? ....................................... 3 Kögel Load Securing – basics and regulations ........................................ 4 Kögel Certified body stability according to EN 12642 XL ........................ 6 Kögel Load Securing for partial loads ................................................... 7 Kögel Friction-locked Load Securing ..................................................... 8 Kögel Automotive ............................................................................... 9 Kögel Transport solutions for the beverage industry .............................. 10 Kögel Coilfix and Paperfix ................................................................. 12 Kögel White Goods, Tyre Transport ..................................................... 14 Kögel Boards and Palleted Goods, Octabin .......................................... 15 Kögel Box Trailers ............................................................................ 16 Kögel Tests ..................................................................................... 17 Kögel Quality Characteristics ............................................................. 18 Kögel Product Ranges ....................................................................... 20 Why so much talk about the art of engineering? Because there is genius in it and because