Sportsturf 21 Form of Subsurface Drainage. on The

Total Page:16

File Type:pdf, Size:1020Kb

Sportsturf 21 Form of Subsurface Drainage. on The form of subsurface drainage. On the a distance of 46’ would be about 5.5”. This school construct a new varsity baseball field skinned area, ½% slope is very difficult for would however be a very effective grading at another site comprised primarily of soccer the average maintenance crew to manage plan for a softball infield with no mound. fields. effectively and typically requires laser grad- This same consideration afforded to a The project started with the inspection ing a few times a year to remain effective. little league infield is necessary for a 90’ of the new site and selection of the location Some designers recommend a heavy tex- baseball infield where the height of the for the new field. The proposed location was tured clayey infield mix like XYZ stadium, pitching rubber is required to be 10” above in the corner of one of the existing soccer not understanding that unless the moisture home plate. In this situation you cannot fields. The site was rectangular in shape with in that mix is impeccably managed, it’s construct a regulation mound using any a diagonal slope of 1% across the entire going to get hard as a rock. more than a ½ % slope from the pitcher’s tract. We had the option of selecting from I witnessed a regulation little league in- mound to home plate. Even at ½% slope, two potential locations for the construction field constructed with a conical grading plan the mound would only be about 6” high project. We could use the upper corner similar to the professional field I described. allowing only enough elevation for a 6’ which would entail dealing with a diagonal In this case the designer was sharp. He un- landing zone in front of the rubber. In this cross slope away from the proposed home derstood that ½% slope isn’t sufficient. He situation the desires of the coaches and plate or we could use the bottom corner therefore recommended a 1% slope radiat- athletic director need to be understood and which would mean dealing with a 1% slope ing out in all directions from a point cen- the requirements prioritized to allow for a right down the center line of the proposed tered on the infield turf. What he failed to successful project. infield. Personally, I believe a cross slope is realize is that you cannot construct a regula- the most difficult slope to deal with on an tion pitcher’s mound using this grading plan ST. ROSE HS GETS A NEW FIELD infield. The excavation necessary to elimi- and adhere to the requirement that the I had the opportunity to be involved in a nate the cross slope was cost prohibitive so pitching rubber be 6” above home plate. In construction project at Saint Rose High right or wrong we opted to deal with the fact, there would be no mound at all. A 1% School in Belmar New Jersey. The loss of a 1% slope down the centerline. rise from home plate to a pitching rubber at facility they had used for years required the After the site selection, all those involved www.stma.org SportsTurf 21 FieldScience in the construction process were assembled to provide their particular expertise in the project. Those involved were: the coach/field maintenance supervisor; the athletic director; the landscape architect; and me, the consulting construction con- tractor. For a few different reasons including budget, it was decided that an engineer was not required for the project and the coach/field maintenance supervisor, Mark Fletcher would be serving as general con- tractor on the job. Based on the combined input from Mark and the athletic director, the architect developed the footprint for the field, in- cluding dugouts, warning track, backstop, fencing etc. Mark and I took soil tests, eval- >> NO COWS on this infield. uated the existing topsoil and chose an in- field mix that was compatible with the level of maintenance he would provide. The mix was about 75% sand with about 1:1 silt to clay ratio. Tuckahoe Turf Farms in Ham- monton, NJ was chosen as supplier for the bluegrass sod we would be installing. Mark also lined up an irrigation contractor to in- stall the irrigation and quick connect be- hind the pitcher’s mound. A mason was chosen for the dugouts and the retaining wall. A fencing contractor would be in- stalling the backstop and perimeter fencing. THE INFIELD GETS A PASSING GRADE Literally every infield I have seen that is constructed in the corner of a multipurpose facility has a problem with home plate >> A WALL was constructed to elevate home plate washing out due to the prevailing slope. For 24” and create an acceptable grading plan. this reason we decided to elevate home plate 24” by means of a wall directly behind the back stop. Along with this a diversion was designed around the outfield radius of the proposed infield to divert the prevailing flow of surface water around the infield. By elevating home plate 24” we were able to create a grading plan with a level center line and approximately a 1% slope to 1st and 3rd base that continued beyond the infield. I believe 1% to be the optimum slope for a baseball infield at this level of maintenance and play. It’s enough slope to get the water off the infield turf when internal permeabil- >> Above left: CLAY BRICKS were installed in the pitcher’s mound and home plate. ity of the root zone isn’t sufficient. 1% >> Above Right: 6” of topsoil was applied to all turf areas. slope on the infield skin provides good sur- 22 SportsTurf | January 2012 www.sportsturfonline.com face drainage, doesn’t require quite the pre- cision in maintenance a ½% slope requires and 1% slope minimizes the potential for erosion associated with a steeper slope of 1¼ to 1½%. The elevation of home plate created a need for about 500 cubic yards of fill mate- rial to raise the entire infield. Luckily the original construction of the complex had left a mountain of material that would work as an excellent fill material. The mate- rial was similar in texture to a sandy un- screened infield mix. I would compare it to >> SINCE THE TOPSOIL would be select fill which has a specified range of hy- reused, we stripped and removed the sod. draulic conductivity between 2” and 20” per hour. Select fill is a material sometimes the outfield radius of the infield to help the project. Consideration on the part of used to help regulate percolation in a septic with any water that might lay in the diver- all involved in the construction project al- system. Because the topsoil we would be sion. We did allow for channel drains to be lowed for a successful project and the con- using to cover the fill material was a heavy installed in front of the dugouts at a later struction of a safe, durable and playable textured soil that was not very permeable date if necessary. As with most any infield, field that is currently the pride of Saint and we all know that infield mix is not very we were relying on surface drainage to evac- Rose High School. ■ permeable, we decided subsurface drainage uate surface water from the infield. would not be necessary. The only drainage Once the grading plan and the archi- Jim Hermann, CSFM is President of Total pipe we installed was at the base of the wall tect’s footprint for the facility were finalized Control Inc. Athletic Field Management and we installed a sand slit drain around and documented, we were ready to begin www.totalcontrolinfields.com. www.stma.org SportsTurf 23 FieldScience | By Max Schlossberg, PhD, Joel Simmons SportsTurf’s Point–Counterpoint: SLAN vs. BCSR Soil fertility interpretation: The base saturation tool in base saturation or sufficiency level? turf management OIL FERTILITY TESTING is a valuable agronomic tool HE CONTROVERSY over the use of the base satura- composed of four steps; sampling, analysis, interpretation, and tion ratio (BCSR) versus the sufficiency levels of avail- Srecommendation. Sampling practice is standard boilerplate stuff. Table nutrients method (SLAN) has perpetuated for Perhaps modified in regard to depth; e.g. by potential rooting depth of many years now and with very little change in either side’s species or need for subsoil investigation, sampling accuracy improves thinking. The reality is that base saturation is one tool of many with each additional sub-sample pooled from the area of interest. that most independent agronomists use to help their clients be- The next stage is analysis, and “routine” soil fertility analysis affords come more successful. The other important reality is that most little artistic liberty. Submitted soils of us using the BCSR method are dried and homogenized before an also look very closely at the exact mass is mixed with an extrac- sufficiency levels of nutrients tion solution. Typically chosen on the studying both standard col- basis of regional parent material or loidal soil test audits and water sample soil pH, extraction solutions soluble paste extracts. include Mehlich-1, Bray P-1, Mor- For 25 years I have been a gan, and Mehlich-3. Their purpose is strong advocate of the BCSR to rapidly displace nutrients from soil model and have heard every- and preserve them in their soluble thing from “it’s wrong” to forms, facilitating precise measure of “he’s going to ruin golf solution nutrient concentrations by courses.” A university agrono- state-of-the-art analytical equipment. mist recently said to me “We >> Max Schlossberg, PhD Since a known volume of extractant >> Joel Simmons don’t agree with the BCSR is added to a known soil mass, each method but we know that resulting soil nutrient level (in parts per million, ppm) is derived pre- most independent consultants use this tool.” That spoke vol- cisely from extractant concentration (mg/L).
Recommended publications
  • AAHS New Objective Grading System to Provide Prognostic Value To
    New Objective Grading System to Provide Prognostic Value to Cubital Tunnel Surgery Cory Lebowitz, DO; Lauryn Bianco, MS; Manuel Pontes, PhD; Mitchel K. Freedman, DO; Michael Rivlin, MD INTRODUCTION TABLE 1: ELECTRODIAGNOSTIC GRADING SYSTEM RESULTS CONCLUSION • The use of electrodiagnostic (EDX) • • 101 patients; 60 male & 41 Electrodiagnostic studies is well documented on its female studies not only aid a value as diagnostic tool, however, little clinical diagnosis of is known about its prognostic value for • Overall quickDASH went from 38 to 41 CuTS but can cubital tunnel surgery (CuTS) provide a framework • We report which EDX results yield • Discovered a cut off of a for the outcome of prognostic value for the surgical Sensory Amplitude of 38 treatment for CuTS based on patients surgery • We form an EDX based grading quickDASH improvement • system for CuTS that is predictive of • Patients with a sensory Specifically when outcome amplitude that was looking at the considered normal MCV across the METHODS based off the literature elbow with the but abnormal (i.e <38) sensory • Patients with CuTS were treated based off our data amplitude surgically with an ulnar nerve failed to improve in decompression +/- transposition their quickDASH • The grading system • Pre & Postoperative quickDASH scores is reproducible and scores and demographics reviewed • 97 patients (96%) fit in to can aid in following • Preoperative EDX reviewed: similar patient for • EMG the grading system • 93.8% inter-observer outcome evaluation • Motor Amplitudes and clinical studies • Motor Conduction Velocities reliability to use the • Sensory Amplitude grading system • Conduction Block • Those with a grade 3 had • Grading system constructed solely on the largest quickDASH EDX: nerve conduction studies and improvement electromyography variable.
    [Show full text]
  • Electrophysiological Grading of Carpal Tunnel Syndrome
    ORIGINAL ARTICLE Electrophysiological Grading of Carpal Tunnel Syndrome MUHAMMAD WAZIR ALI KHAN ABSTRACT Background: Carpal Tunnel Syndrome (CTS) is the most common entrapment neuropathy caused by a conduction block of distal median nerve at wrist. Women are affected more commonly than men. Clinical signs are quite helpful in diagnosis but electrophysiological tests yield accurate diagnosis and severity grading along with follow-up and management. Aim: To utilize nerve conduction studies (NCS) to diagnose carpal tunnel syndrome and further classify its severity according to the AAEM criteria. Methods: This descriptive study was conducted at the Department of Neurology, Sh. Zayed Medical College/Hospital, Rahim Yar Khan from June 2013 to Dec 2014. Overall, 90 patients and 180 hands were evaluated through nerve conduction studies. Patients with clinically high suspicion of CTS were included for NCS. Clinical grading was done using the AAEM criteria for CTS. Other variables like duration of symptoms, handedness, bilateral disease and gender were noted. Mean and median were calculated for age of the patients. Results: Ninety patients and 126 hands were identified with carpal tunnel syndrome. Most patients (80%) were females with age range from 19 to 75 years. More than one third had bilateral disease. Dominant hand was involved in majority of the patients. Most patients had (42.8%) severe CTS as per AAEM criteria. Also duration of symptoms directly correlated with severity of disease. Conclusion: Nerve conduction study is a valuable tool in accurate diagnosis and grading of carpal tunnel syndrome. Keywords: Phalen sign, Tinel Sign, electrophysiology, median nerve INTRODUCTION 4,5,6 electrophysiological findings, are quite valuable .
    [Show full text]
  • CHAPTER 9. SITE DEVELOPMENT Article 1. Grading, Excavation and Filling Sec
    Walnut Creek Municipal Code TITLE 9. BUILDING REGULATIONS CHAPTER 9. SITE DEVELOPMENT CHAPTER 9. SITE DEVELOPMENT Article 1. Grading, Excavation and Filling Sec. 9-9.01. Purpose. It is the declared intent of the City of Walnut Creek to promote the conservation of natural resources, including the natural beauties of the land, streams and water sheds, hills and vegetation, and as described in Sec. 10-2.1301 of the Walnut Creek Municipal Code and Government Code §65560(b) (1) to protect the health and safety, including the reduction or elimination of the hazards of earth slides, mud flows, rock falls, undue settlement, erosion, siltation and flooding, or other special conditions as described in Government Code §65560(b) (4) by minimizing the adverse effects of grading, cut and fill operations, water runoff and soil erosion. Therefore, the following regulatory provisions of this chapter are hereby adopted for the purpose of stringent control of all aspects of grading operations. (§1, Ord. 1193, eff. December 26, 1973) Sec. 9-9.02. Permits Required. No person shall do any grading without first having obtained a grading permit from the City except for the following: a. An excavation below finished grade for basements and footings of a building, retaining wall, swimming pool or other structure authorized by a valid building permit. This statement shall not exempt from permit requirements any fill made with the material from such excavation nor exempt any excavation having an unsupported height greater than five feet after the completion of such structure; b. Cemetery graves; c. Refuse disposal sites controlled by other regulations; d.
    [Show full text]
  • Section 31 22 13 ‐ Site Grading
    University of Houston Master Construction Specifications Insert Project Name SECTION 31 22 13 ‐ SITE GRADING PART 1 ‐ GENERAL 1.1 SCOPE OF WORK A. This Section pertains to the earthwork generally consisting of excavation, filling, backfilling and subgrade preparation as required for construction of site retaining walls/structures, slab on grade walks, pavement surfaces, landscaped areas and the general shaping of the site as shown, described or reasonably inferred on the drawings. B. Subsurface data is available from the *Owner. Contractor is urged to carefully analyze the site conditions. C. This section excludes work necessary for building pad preparations. Work within the building footprint and surrounding 5 feet shall be accomplished under technical specification 31 23 00 Excavation and Fill prepared by *STRUCTURAL ENGINEER]. D. Construction Means, Methods, Techniques, Sequences and Procedures: 1. The Contractor is solely responsible for, and has sole control over, construction means, methods, techniques, sequences and procedures, and for coordinating all portions of the Work. 2. Shoring that is required to complete the Work, is considered a method or technique and is the sole responsibility of the Contractor. If a regulatory agency requires a licensed engineer to design, approve or provide drawings for shoring, then it is the sole responsibility of the Contractor to engage the services of a qualified Engineer for shoring design services. 1.2 RELATED WORK SPECIFIED ELSEWHERE A. Drawings and general provisions of the Contract, including A‐procurement and Contracting Requirements, Division 00 and Division 01 apply to this section. B. Section 31 11 00 Clearing and Grubbing C. Section 31 23 33 Trenching, Backfilling and Compaction D.
    [Show full text]
  • Unsealed Road Grading Your Questions Answered
    Unsealed Road Grading Your Questions Answered What is maintenance grading? Council grades unsealed roads to reshape and re-compact the road, to reduce lumps and bumps and ensure that the road will shed water away from the centre after rain. A grading maintenance schedule is adhered to every 6 or 12 months, depending upon the road condition, the amount of use and the effects of wet weather. What is gravel re-sheeting? Gravel re-sheeting is when new gravel is added to the road. This is due to the severe deterioration of the road that can compromise the safety of road users. The gravel is generally laid in loose layers and then trimmed and compacted using a grader, water cart and roller so that the new road generally has a depth of about 150mm. Why does my road lose gravel? Gravel wears away over time due to the combination of the environment (wetness and dryness), the type and volume of traffic and excessive traffic speed. Softer gravel rock will wear away faster than harder gravel rock. Unsealed roads are made up of a mixture of gravel of differing sizes, clay and soils. This mixture affects the strength of the pavement and how long it will last. The rock gives the pavement strength and the clay and other soils binds the gravel together. Where possible, the grader drivers will recover as much of the loose gravel as they can during the grading of a road and turn it from the edge back into the centre of the road. Why is does my road appear to be shrinking? As the road wears down over time the edges of the road pavement will wear and the width can become less.
    [Show full text]
  • Chapter 3 Earthwork
    Topic #625-000-007 Plans Preparation Manual, Volume 1 January 1, 2016 Chapter 3 Earthwork 3.1 General ...................................................................................... 3-1 3.2 Classification of Soils ................................................................. 3-3 3.3 Cross Sections - A Design Tool .................................................. 3-3 3.4 Earthwork Quantities .................................................................. 3-4 3.4.1 Method of Calculating ................................................. 3-4 3.4.2 Earthwork Tabulation ................................................. 3-4 3.4.3 Earthwork Accuracy ................................................... 3-5 3.4.3.1 Projects with Horizontal and Vertical Controlled Cross Sections .......................... 3-5 3.4.3.2 Projects without Horizontal and Vertical Controlled Cross Sections .......................... 3-6 3.4.4 Variation in Quantities ................................................ 3-6 3.5 Earthwork Items of Payment ...................................................... 3-7 3.5.1 Guidelines for Selecting Earthwork Pay Items ............ 3-7 3.5.2 Regular Excavation .................................................... 3-8 3.5.3 Embankment .............................................................. 3-9 3.5.4 Subsoil Excavation ..................................................... 3-9 3.5.5 Lateral Ditch Excavation ............................................. 3-9 3.5.6 Channel Excavation ................................................
    [Show full text]
  • Fundamentals of Site Grading Design
    188.pdf A SunCam online continuing education course Fundamentals of Site Grading Design by Joshua A. Tiner, P.E. 188.pdf Fundamentals of Site Grading A SunCam online continuing education course Table of Contents A. Introduction B. Basics • Background: • Existing Conditions: • Contour Lines: • Spot Elevations / Spot Grades: • Other Standard Annotations: • Slope • Plan Setup • Limit of Disturbance / Transition between Existing and New Grades • The Inverse Slope/Contour Calculation Method C. Design Parameters and Other Limitations • Design Parameters • Positive Drainage • Rules of Thumb o Maximum Access Drive Slope: 8% o Maximum Parking Lot Slope: 5% o Maximum Slope in Maintainable Grassed Landscaped Areas 3:1 o Maximum Slope in Stabilized Landscaped Areas 2:1 o Slopes exceeding 2:1 o Minimum Slope of Asphalt: 1.5% o Minimum Slope of Concrete: 0.75% o Minimum Slope of Concrete Curb: 0.75% o Loading Dock grading: 2.0% for 60’ • ADA Requirements • Cut-Fill Analysis • Rock Ledge walls D. Other Grading Features • Berms • Swales • Ridge Lines • Retaining Walls E. Problem Areas and Other Locations of Importance • Landscaped Islands and Peninsulas • ADA Parking Spaces • Longitudinal Islands with Sidewalks • Flush Ramps • Drainage Outfall Location • Setting the Finished Floor • Property Line grading F. Summary and Conclusion www.SunCam.com Copyright 2014 Joshua A. Tiner, P.E. Page 2 of 24 188.pdf Fundamentals of Site Grading A SunCam online continuing education course A. Introduction This course is developed to identify the fundamentals of site grading design to those who are not experienced with site grading design, as well as a refresher to anyone who has worked in Civil Engineering and/or Land Development.
    [Show full text]
  • Table of Trenching and Standard Bedding Material
    REVISIONS DESCRIPTION DATE GRADING TEMPLATE RE-ISSUE W/METRIC 1999 SPECS. TABLE OF TRENCHING AND STD. BACKFILL MATERIAL Recalc. Std. Bed. Dims. & Quants. lgc 7/99 GRADING TEMPLATE. STANDARD BEDDING MATERIAL QUANTITIES TOP OF INITIAL EMBANKMENT 600 600 SINGLE PIPE DOUBLE PIPE TRIPLE PIPE SPECIAL TRENCHING SINGLE, DOUBLE & PIPE PIPE STANDARD STANDARD STANDARD TRIPLE PIPE OPTIONS TOP OF INITIAL EMBANKMENT. DIAM. DIAM. TRENCHING TRENCHING TRENCHING W+300 mm NATURAL GROUND OR OR STANDARD STANDARD STANDARD ADD'L STANDARD 100 100 600 OR 150 EXCAVATION BACKFILL OR 150 DESIGN DESIGN ( MIN.) BEDDING BEDDING BEDDING BEDDING ELLIPTICAL PIPE PHASE PHASE 300 EQUIV. EQUIV. H T W MATERIAL W MATERIAL W MATERIAL MATERIAL (MIN.) CONDUIT. METHOD NO. 2 ( T ) WALL 3 3 3 3 ( OPTIONAL INSTALLATION FOR R. C. PIPE ) CONCRETE / METAL IN. mm mm mm mm m /m mm m /m mm m /m m /m THICKNESS 18 450 976 63 876 0.594 1401 0.846 1851 1.025 0.293 H TRENCH EXCAVATION IN EMBANKMENT SECTIONS MATERIAL. HEIGHT OF AVERAGE HEIGHT OF EMBANKMENT HEIGHT PRIOR TO EXCAVATION 24 600 1150 75 1200 0.938 2100 1.531 3000 2.125 0.345 TRENCH EXCAVATION. PIPE SIZES FROM 450 mm TO 1050 mm = = 750 mm 30 750 1326 88 1376 1.151 2501 1.969 3626 2.788 0.398 STANDARD BEDDING PIPE SIZES FROM 1200 mm TO 2100 mm = = 2/3 DIAMETER 36 900 1500 100 1850 1.825 3200 2.899 4550 3.974 0.450 W PIPE SIZES LARGER THAN 2100 mm = = 1500 mm 42 1050 1676 113 2026 2.117 3601 3.478 5176 4.839 0.503 METHOD NO.
    [Show full text]
  • Neurophysiologic Pattern and Severity Grading Scale of Carpal Tunnel
    Research Article iMedPub Journals JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2017 www.imedpub.com ISSN 2171-6625 Vol. 8 No. 4: 213 DOI: 10.21767/2171-6625.1000213 Neurophysiologic Pattern and Severity Salah El-Magzoub M1, MohaMmed El-Najid Grading Scale of Carpal Tunnel Mustafa2 and Syndrome in Sudanese Patients Sami F Abdalla3 1 Faculty of Medicine, National Ribat University, Khartoum, Sudan 2 Faculty of Medicine, International Abstract University of Sudan, Khartoum, Sudan Background: Carpal tunnel syndrome is the most frequent compression-induced 3 Faculty of Medicine, Almaarefa Colleges, neuropathy, where the median nerve is compressed at the wrist causing sensory College of Applied Sciences Medicine, and motor deficits. It is more common in females than males and accounts for Riyadh, Saudi Arabia a higher number of days off work than all other work-related musculoskeletal disorders. Objectives: The aim of this study is to describe electrophysiological criteria for *Corresponding author: Sami F. Abdalla diagnosis of CTS among Sudanese patients, to classify patients with CTS according to severity based on NCS results and clinical presentation, and to determine the [email protected] age group most affected beyond finding any gender difference. Material and methods: This is a retrospective analytic electrophyisologic study Faculty of Medicine, Almaarefa Colleges, performed in 671 clinically diagnosed CTS patients. NCS was performed in more College of Applied Sciences Medicine, Saudi than 1089 hands which included the median and ulnar nerves. Onset and peak Arabia. latencies, amplitude, conduction velocity, F waves and distance were calculated. Tel: 00966538199174 Result and discussion: Out of 671patients with CTS; females were 81.7% and males Fax: +96638199174 were 18.3%.
    [Show full text]
  • Preliminary Soils Reports Geotechnical Reports "As Graded" Soils Reports
    APPENDIX A - Guidelines for: Preliminary Soils Reports Geotechnical Reports "As Graded" Soils Reports PRELIMINARY SOILS REPORTS A. GENERAL 1. Signature and professional registration number of project Geotechnical Engineer (G.E.) or Registered Civil Engineer (R.C.E.); 2. Job Address. 3. Location description and/or location index map with north arrow, bar scale, etc.; 4. Description of site conditions including topography, relief, vegetation index map with north arrow, ban, man-made features, drainage and watershed; 5. Proposed grading including general scope, amount, special equipment and/or methods if applicable; 6. Planned construction including type of structure and use, type of construction and foundation/floor system, number of stories. B. FIELD INVESTIGATION 1. Scope of work including date of work, investigative methods, logs of exploratory excavations, and real or assumed elevation of exploratory excavations for reference of soil materials and samples to finished grade or footing elevations. 2. Plan with legend including site limits, terrain features, man-made features, locations of exploratory excavations, soil of formational contacts, proposed improvements (including slopes with ratios, daylight lines, paving areas, retaining/crib walls, subdrains, overexcavation/cleanout/uncompacted fill areas). 3. Location of all surface and subsurface soil samples collected. 4. Ground water conditions and potential for future natural or artificial seepages. C. ENGINEERING/MATERIAL CHARACTERISTICS AND TESTING 1. Test methods used, type or condition of samples, applicable engineering graphics, results of all tests, and locations of all test samples. 2. Unified soil classification of materials. 3. Material competency and strength a. Field densities and moisture content, as well as relative compactions where pertinent. b.
    [Show full text]
  • 1 Section 32 90 00 Fine Grading and Soil
    SECTION 32 90 00 FINE GRADING AND SOIL PREPARATION PART 1 ‐ GENERAL 1.01 SECTION INCLUDES A. Examination. B. Preparation. C. Subsoil Preparation. D. Placing Topsoil. E. Soil Tests. F. Coordination of Soil Amendments. G. Fine Grading. H. Tolerances. I. Field Quality Control J. Adjusting. K. Cleaning L. Protection. 1.02 REFERENCES A. Colorado Division of Labor Rules and Regulations: Excavation. B. State Department of Highways, Division of Highways, State of Colorado, Standard Specifications for Road and Bridge Construction, Section 207 of the latest edition. C. ANSI/ASTM D698 ‐ Test Methods for Moisture‐Density Relations of Soils and Soil‐Aggregate Mixtures, Using 5.5 lb (2.49 Kg) Rammer and 12 inch (304.8 mm) Drop. D. ANSI/ASTM D1556 ‐ Test Method for Density of Soil in Place by the Sand‐Cone Method. E. Association of Official Agricultural Chemists: Topsoil Analysis. 1.03 DEFINITIONS A. WEEDS: Includes Goatheads, Bindweed, Twitch, Dandelion, Jimsonweed, Quackgrass, Horsetail, Morning Glory, Rush Grass, Mustard, Lambsquarter, Chickweed, Cress, Crabgrass, Canadian Thistle, Nutgrass, Poison Oak, Blackberry, Tansy Ragwort, Bermuda Grass, Johnson Grass, Poison Ivy, Nut Sedge, Nimble Weed, Bindweed, Bent Grass, Wild Garlic, Perennial Sorrel, and Broom Grass. 1.04 SUBMITTAL PROCEDURES A. TOPSOIL TESTING: 1. After topsoil spreading, submit, for Architect's approval, topsoil samples and test results from: a. Each topsoil source. 2. Each location submission shall include: Great Work Montessori School FINE GRADING AND SOIL PREPARATION 32 90 00 ‐ 1 a. 1 qt. representative sample in air tight container. b. Agricultural analysis by a qualified soils laboratory made in accordance with “Methods of Soils Analysis – Agronomy #9” as published by the American Society of Agronomy, and testing will be done at the Contractor’s expense.
    [Show full text]
  • Appendix D General Earthwork and Grading Specifications for Rough Grading
    Appendix D General Earthwork and Grading Specifications for Rough Grading LEIGHTON AND ASSOCIATES, INC. General Earthwork and Grading Specifications 1.0 General 1.1 Intent These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing. During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.
    [Show full text]