Turfgrass Water Conservation Essentials: Modified Rootzones & Current Water Management Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Turfgrass Water Conservation Essentials: Modified Rootzones & Current Water Management Technologies FieldScience | By Stephen T. Cockerham, Bernd Leinauer, Paul E. Reike, James A. Murphy, and Robert Green Turfgrass water conservation essentials: modified rootzones & current water management technologies URFGRASS WATER CONSERVATION is not just a concept of the The California design is a 1-layer sys- minimum amount of water that can be used for turfgrass survival, it is tem consisting of a specified well-draining also the concept of optimizing water use as a significant factor in getting sand placed over compacted (imperme- the maximum performance from turf and not wasting water. Key ele- able) native soil. Drain tiles are installed in T ments of this concept are modifying root zones to promote optimal turf trenches in the native soil. Water retained growth and taking advantage of improvements in turf irrigation technology. at the bottom of the root zone is more typical of a perched water table if there is MODIFIED ROOTZONES such as golf putting greens and other sports very limited or no drainage into the un- FOR EFFICIENT WATER USE turfs to ensure adequate water infiltration, derlying soil. Soil uniformity. Uniform soil condi- percolation, and drainage, and to prevent Drainage from the 2-layer USGA put- tions make it easier to grow uniform turf the buildup of excessive soil water content. ting green profile tends to be independent and provide more efficient irrigation. Profile designs that encourage the develop- of the sand mix, while the 1-layer Califor- However, turfgrass is frequently grown ment of a water table can conserve water. nia green profile drains slower, with finer on nonuniform modified soils where top- These designs on limited slopes and when sand mixes. Thus, the 1-layer profile tends soil has been removed or mixed with sub- drained to field capacity can have a water to hold more water for turf use than does soil. Sod is often laid on compacted content distribution ranging from unsatu- the 2-layer profile. The 2-layer profile has subsoils, which limit rooting into the rated and well-aerated at surface depths to only a short-term effect on the perched underlying soil. nearly saturated at the lowest depths. water table due to the downslope subsur- Soil variability increases the need for Placing a finer-textured sand over face movement of water. If the root zone site-specific management in irrigation pro- coarser material such as gravel creates a mix is too deep, water stress increases, gramming, using the knowledge of soil zone of greater water retention (a perched, leading to localized dry spots, especially in properties such as texture, structure, or- or suspended, water table) in the sand the highest elevations of a putting green. If ganic matter content, compaction, above the interface with the gravel layer. the top mix is too shallow on putting drainage, slope, fertility, and pH, as well as For example, the USGA Green Section greens, it may be difficult to place the hole lighting and air movement. Water relations specifications for putting greens use a 2- liner, and wet areas may occur, which can in soils depend on retention and transmis- layer or 3-layer profile. The 2-layer profile enhance development of black layer. sion of water: soluble salts can control how is most widely used and has a 300-mm Better turf performance has been ob- much water is available to roots in salt-af- sand root zone mix of a specific particle served on root zones that retain more fected soils. As a soil dries or as soluble salt size distribution placed over appropriately water with reduced rooting compared with content increases, less water becomes avail- sized gravel. Drain tiles are installed in the root zones that retain less water with able for plant uptake. gravel layer. During construction, these greater rooting. In sand-based root zones, Sand-based designs. Sand-based profiles specifications are sometimes followed care- greater rooting depth has not been related that have relatively narrow particle size dis- fully, sometimes not; if not, undesired to better turf performance or greater effi- tribution are widely used with or without conditions may occur in plant-available ciency in water use. There is evidence to amendment for highly trafficked turf areas water or drainage patterns. suggest that greater water conservation can Further Reading Establishing and Maintaining the Natural Turf Athletic Field. 2004. S. T. Cockerham, V. A. Gibeault, and D. B. Silva. Oakland: University of California Division of Agricul- ture and Natural Resources Publication 21617. Handbook of Turfgrass Management and Physiology. 2008. M. Pessarakli, ed. Boca Raton: CRC Press. Turfgrass and Irrigation Water Quality: Assessment and Management. 2009. R. R. Duncan, R. N. Carrow, and M. T. Huck. Boca Raton: CRC Press. Turfgrass Water Conservation. 2011. 2nd ed. Oakland: University of California Division of Agriculture and Natural Resources. 12 SportsTurf | January 2012 www.sportsturfonline.com FieldScience be achieved with sand-based root zones Avoiding black layer. Sand sports sur- potential (model) ET estimates (ETp and that retain more water. faces grown with aggressive, high-density ETo). ETp and ETo estimates are most Subirrigation. Subirrigation can use 70 cultivars of creeping bentgrass and commonly used when turfgrass irrigation to 90% less irrigation water than surface bermudagrass can accumulate excess or- scheduling is based on ET losses. irrigation. Drainage tiles placed on top of ganic matter, which can seal the surface, To match actual turfgrass ET, most ET plastic liners in subirrigation systems can causing loss of roots, turf stress, and the estimates require adjustments in the form be closed to prevent leaching. These tiles formation of black layer. Management of multipliers or crop coefficients (Kc) to can be attached to pumps to draw water practices to prevent or remove black layer meet local climatic conditions and specific out or pump water into the sand profile. include providing more oxygen to the af- maintenance situations. Kc can vary from The water table can be raised or lowered as fected zone through reduced irrigation 0.4 to 1.1, depending on ET reference, needed, depending on root depth. The (with emphasis on syringing), cultivation, quality expectations, season, grass type, particle size range and depth of the sand topdressing to prevent layer formation, maintenance level, and micro- and macro- dictate the degree of capillary rise of water. improving drainage, controlling organic climate. Crop coefficients can also be used Problems with subirrigation include man- matter, and monitoring fertility practices. to calculate irrigation amounts. Irrigation aging high levels of soluble salts and below 100% ET replacement (deficit irri- sodium, as well as maintaining uniform CURRENT WATER gation) does not necessarily result in a sig- root zone water content in sloping putting MANAGEMENT TECHNOLOGIES nificant loss of turfgrass quality and greens. Strategies to reduce unnecessary irriga- function. Topdressing with sand. Repeated sand tion water use should include efficient irri- Several states offer automated, Web- topdressing increases infiltration on native gation systems and scheduling irrigation based potential and reference ET values soil putting greens and other sports turfs. based on the actual water requirement of for irrigation scheduling. In California, Water that had previously run off sloping turf needed to maintain a desired quality the most commonly accepted source of ET turf surfaces tends to be held in the sand level. data is the California Irrigation Manage- layer. When dry, topdressed sports fields High-efficiency irrigation. To achieve ment Information System (CIMIS, www- have a lower surface hardness. However, high-efficiency irrigation, minimize losses cimis.water.ca.gov). hydrophobic soil conditions, as found in such as droplet evaporation, surface Smart controllers. Smart controllers au- localized dry spots or dry patches, fre- runoff, leaching, and wind drift. Correct tomatically adjust to daily changes in quently develop in sand media. These sprinkler head selection and spacing can evapotranspiration. Using them instead of spots often occur in areas where irrigation match water spray patterns with the shape traditional irrigation scheduling can yield coverage is inadequate, on slopes where of the landscape, which helps avoid areas water savings as high as 80%. Some mu- water tends to run off rather than infil- that are over- or underirrigated. Divide nicipal water authorities and utilities have trate, and on slopes facing the sun. Fully larger irrigated areas into hydrozones, introduced rebate programs for installing developed localized dry spots are difficult areas of similar watering requirements. smart irrigation controllers. Irrigation to rewet. Application of wetting agents, Consider subsurface irrigation systems: scheduling based on soil moisture aims to cultivation (aerification), thatch control, they have shown great potential for water keep the root zone within a target mois- careful monitoring of soil water levels, and conservation, despite difficulties associated ture range by replenishing ET and syringing are the most common corrective with determining spacing and depth of drainage losses. This is considered to be practices. trays, pipes, or emitters; higher cost of in- the most intuitive way of determining how stallation; difficulty in monitoring and/or much and when to irrigate. troubleshooting damaged parts; potential Soil moisture sensors. Soil moisture Several states offer interference
Recommended publications
  • AAHS New Objective Grading System to Provide Prognostic Value To
    New Objective Grading System to Provide Prognostic Value to Cubital Tunnel Surgery Cory Lebowitz, DO; Lauryn Bianco, MS; Manuel Pontes, PhD; Mitchel K. Freedman, DO; Michael Rivlin, MD INTRODUCTION TABLE 1: ELECTRODIAGNOSTIC GRADING SYSTEM RESULTS CONCLUSION • The use of electrodiagnostic (EDX) • • 101 patients; 60 male & 41 Electrodiagnostic studies is well documented on its female studies not only aid a value as diagnostic tool, however, little clinical diagnosis of is known about its prognostic value for • Overall quickDASH went from 38 to 41 CuTS but can cubital tunnel surgery (CuTS) provide a framework • We report which EDX results yield • Discovered a cut off of a for the outcome of prognostic value for the surgical Sensory Amplitude of 38 treatment for CuTS based on patients surgery • We form an EDX based grading quickDASH improvement • system for CuTS that is predictive of • Patients with a sensory Specifically when outcome amplitude that was looking at the considered normal MCV across the METHODS based off the literature elbow with the but abnormal (i.e <38) sensory • Patients with CuTS were treated based off our data amplitude surgically with an ulnar nerve failed to improve in decompression +/- transposition their quickDASH • The grading system • Pre & Postoperative quickDASH scores is reproducible and scores and demographics reviewed • 97 patients (96%) fit in to can aid in following • Preoperative EDX reviewed: similar patient for • EMG the grading system • 93.8% inter-observer outcome evaluation • Motor Amplitudes and clinical studies • Motor Conduction Velocities reliability to use the • Sensory Amplitude grading system • Conduction Block • Those with a grade 3 had • Grading system constructed solely on the largest quickDASH EDX: nerve conduction studies and improvement electromyography variable.
    [Show full text]
  • Electrophysiological Grading of Carpal Tunnel Syndrome
    ORIGINAL ARTICLE Electrophysiological Grading of Carpal Tunnel Syndrome MUHAMMAD WAZIR ALI KHAN ABSTRACT Background: Carpal Tunnel Syndrome (CTS) is the most common entrapment neuropathy caused by a conduction block of distal median nerve at wrist. Women are affected more commonly than men. Clinical signs are quite helpful in diagnosis but electrophysiological tests yield accurate diagnosis and severity grading along with follow-up and management. Aim: To utilize nerve conduction studies (NCS) to diagnose carpal tunnel syndrome and further classify its severity according to the AAEM criteria. Methods: This descriptive study was conducted at the Department of Neurology, Sh. Zayed Medical College/Hospital, Rahim Yar Khan from June 2013 to Dec 2014. Overall, 90 patients and 180 hands were evaluated through nerve conduction studies. Patients with clinically high suspicion of CTS were included for NCS. Clinical grading was done using the AAEM criteria for CTS. Other variables like duration of symptoms, handedness, bilateral disease and gender were noted. Mean and median were calculated for age of the patients. Results: Ninety patients and 126 hands were identified with carpal tunnel syndrome. Most patients (80%) were females with age range from 19 to 75 years. More than one third had bilateral disease. Dominant hand was involved in majority of the patients. Most patients had (42.8%) severe CTS as per AAEM criteria. Also duration of symptoms directly correlated with severity of disease. Conclusion: Nerve conduction study is a valuable tool in accurate diagnosis and grading of carpal tunnel syndrome. Keywords: Phalen sign, Tinel Sign, electrophysiology, median nerve INTRODUCTION 4,5,6 electrophysiological findings, are quite valuable .
    [Show full text]
  • CHAPTER 9. SITE DEVELOPMENT Article 1. Grading, Excavation and Filling Sec
    Walnut Creek Municipal Code TITLE 9. BUILDING REGULATIONS CHAPTER 9. SITE DEVELOPMENT CHAPTER 9. SITE DEVELOPMENT Article 1. Grading, Excavation and Filling Sec. 9-9.01. Purpose. It is the declared intent of the City of Walnut Creek to promote the conservation of natural resources, including the natural beauties of the land, streams and water sheds, hills and vegetation, and as described in Sec. 10-2.1301 of the Walnut Creek Municipal Code and Government Code §65560(b) (1) to protect the health and safety, including the reduction or elimination of the hazards of earth slides, mud flows, rock falls, undue settlement, erosion, siltation and flooding, or other special conditions as described in Government Code §65560(b) (4) by minimizing the adverse effects of grading, cut and fill operations, water runoff and soil erosion. Therefore, the following regulatory provisions of this chapter are hereby adopted for the purpose of stringent control of all aspects of grading operations. (§1, Ord. 1193, eff. December 26, 1973) Sec. 9-9.02. Permits Required. No person shall do any grading without first having obtained a grading permit from the City except for the following: a. An excavation below finished grade for basements and footings of a building, retaining wall, swimming pool or other structure authorized by a valid building permit. This statement shall not exempt from permit requirements any fill made with the material from such excavation nor exempt any excavation having an unsupported height greater than five feet after the completion of such structure; b. Cemetery graves; c. Refuse disposal sites controlled by other regulations; d.
    [Show full text]
  • Section 31 22 13 ‐ Site Grading
    University of Houston Master Construction Specifications Insert Project Name SECTION 31 22 13 ‐ SITE GRADING PART 1 ‐ GENERAL 1.1 SCOPE OF WORK A. This Section pertains to the earthwork generally consisting of excavation, filling, backfilling and subgrade preparation as required for construction of site retaining walls/structures, slab on grade walks, pavement surfaces, landscaped areas and the general shaping of the site as shown, described or reasonably inferred on the drawings. B. Subsurface data is available from the *Owner. Contractor is urged to carefully analyze the site conditions. C. This section excludes work necessary for building pad preparations. Work within the building footprint and surrounding 5 feet shall be accomplished under technical specification 31 23 00 Excavation and Fill prepared by *STRUCTURAL ENGINEER]. D. Construction Means, Methods, Techniques, Sequences and Procedures: 1. The Contractor is solely responsible for, and has sole control over, construction means, methods, techniques, sequences and procedures, and for coordinating all portions of the Work. 2. Shoring that is required to complete the Work, is considered a method or technique and is the sole responsibility of the Contractor. If a regulatory agency requires a licensed engineer to design, approve or provide drawings for shoring, then it is the sole responsibility of the Contractor to engage the services of a qualified Engineer for shoring design services. 1.2 RELATED WORK SPECIFIED ELSEWHERE A. Drawings and general provisions of the Contract, including A‐procurement and Contracting Requirements, Division 00 and Division 01 apply to this section. B. Section 31 11 00 Clearing and Grubbing C. Section 31 23 33 Trenching, Backfilling and Compaction D.
    [Show full text]
  • Unsealed Road Grading Your Questions Answered
    Unsealed Road Grading Your Questions Answered What is maintenance grading? Council grades unsealed roads to reshape and re-compact the road, to reduce lumps and bumps and ensure that the road will shed water away from the centre after rain. A grading maintenance schedule is adhered to every 6 or 12 months, depending upon the road condition, the amount of use and the effects of wet weather. What is gravel re-sheeting? Gravel re-sheeting is when new gravel is added to the road. This is due to the severe deterioration of the road that can compromise the safety of road users. The gravel is generally laid in loose layers and then trimmed and compacted using a grader, water cart and roller so that the new road generally has a depth of about 150mm. Why does my road lose gravel? Gravel wears away over time due to the combination of the environment (wetness and dryness), the type and volume of traffic and excessive traffic speed. Softer gravel rock will wear away faster than harder gravel rock. Unsealed roads are made up of a mixture of gravel of differing sizes, clay and soils. This mixture affects the strength of the pavement and how long it will last. The rock gives the pavement strength and the clay and other soils binds the gravel together. Where possible, the grader drivers will recover as much of the loose gravel as they can during the grading of a road and turn it from the edge back into the centre of the road. Why is does my road appear to be shrinking? As the road wears down over time the edges of the road pavement will wear and the width can become less.
    [Show full text]
  • Chapter 3 Earthwork
    Topic #625-000-007 Plans Preparation Manual, Volume 1 January 1, 2016 Chapter 3 Earthwork 3.1 General ...................................................................................... 3-1 3.2 Classification of Soils ................................................................. 3-3 3.3 Cross Sections - A Design Tool .................................................. 3-3 3.4 Earthwork Quantities .................................................................. 3-4 3.4.1 Method of Calculating ................................................. 3-4 3.4.2 Earthwork Tabulation ................................................. 3-4 3.4.3 Earthwork Accuracy ................................................... 3-5 3.4.3.1 Projects with Horizontal and Vertical Controlled Cross Sections .......................... 3-5 3.4.3.2 Projects without Horizontal and Vertical Controlled Cross Sections .......................... 3-6 3.4.4 Variation in Quantities ................................................ 3-6 3.5 Earthwork Items of Payment ...................................................... 3-7 3.5.1 Guidelines for Selecting Earthwork Pay Items ............ 3-7 3.5.2 Regular Excavation .................................................... 3-8 3.5.3 Embankment .............................................................. 3-9 3.5.4 Subsoil Excavation ..................................................... 3-9 3.5.5 Lateral Ditch Excavation ............................................. 3-9 3.5.6 Channel Excavation ................................................
    [Show full text]
  • Fundamentals of Site Grading Design
    188.pdf A SunCam online continuing education course Fundamentals of Site Grading Design by Joshua A. Tiner, P.E. 188.pdf Fundamentals of Site Grading A SunCam online continuing education course Table of Contents A. Introduction B. Basics • Background: • Existing Conditions: • Contour Lines: • Spot Elevations / Spot Grades: • Other Standard Annotations: • Slope • Plan Setup • Limit of Disturbance / Transition between Existing and New Grades • The Inverse Slope/Contour Calculation Method C. Design Parameters and Other Limitations • Design Parameters • Positive Drainage • Rules of Thumb o Maximum Access Drive Slope: 8% o Maximum Parking Lot Slope: 5% o Maximum Slope in Maintainable Grassed Landscaped Areas 3:1 o Maximum Slope in Stabilized Landscaped Areas 2:1 o Slopes exceeding 2:1 o Minimum Slope of Asphalt: 1.5% o Minimum Slope of Concrete: 0.75% o Minimum Slope of Concrete Curb: 0.75% o Loading Dock grading: 2.0% for 60’ • ADA Requirements • Cut-Fill Analysis • Rock Ledge walls D. Other Grading Features • Berms • Swales • Ridge Lines • Retaining Walls E. Problem Areas and Other Locations of Importance • Landscaped Islands and Peninsulas • ADA Parking Spaces • Longitudinal Islands with Sidewalks • Flush Ramps • Drainage Outfall Location • Setting the Finished Floor • Property Line grading F. Summary and Conclusion www.SunCam.com Copyright 2014 Joshua A. Tiner, P.E. Page 2 of 24 188.pdf Fundamentals of Site Grading A SunCam online continuing education course A. Introduction This course is developed to identify the fundamentals of site grading design to those who are not experienced with site grading design, as well as a refresher to anyone who has worked in Civil Engineering and/or Land Development.
    [Show full text]
  • Table of Trenching and Standard Bedding Material
    REVISIONS DESCRIPTION DATE GRADING TEMPLATE RE-ISSUE W/METRIC 1999 SPECS. TABLE OF TRENCHING AND STD. BACKFILL MATERIAL Recalc. Std. Bed. Dims. & Quants. lgc 7/99 GRADING TEMPLATE. STANDARD BEDDING MATERIAL QUANTITIES TOP OF INITIAL EMBANKMENT 600 600 SINGLE PIPE DOUBLE PIPE TRIPLE PIPE SPECIAL TRENCHING SINGLE, DOUBLE & PIPE PIPE STANDARD STANDARD STANDARD TRIPLE PIPE OPTIONS TOP OF INITIAL EMBANKMENT. DIAM. DIAM. TRENCHING TRENCHING TRENCHING W+300 mm NATURAL GROUND OR OR STANDARD STANDARD STANDARD ADD'L STANDARD 100 100 600 OR 150 EXCAVATION BACKFILL OR 150 DESIGN DESIGN ( MIN.) BEDDING BEDDING BEDDING BEDDING ELLIPTICAL PIPE PHASE PHASE 300 EQUIV. EQUIV. H T W MATERIAL W MATERIAL W MATERIAL MATERIAL (MIN.) CONDUIT. METHOD NO. 2 ( T ) WALL 3 3 3 3 ( OPTIONAL INSTALLATION FOR R. C. PIPE ) CONCRETE / METAL IN. mm mm mm mm m /m mm m /m mm m /m m /m THICKNESS 18 450 976 63 876 0.594 1401 0.846 1851 1.025 0.293 H TRENCH EXCAVATION IN EMBANKMENT SECTIONS MATERIAL. HEIGHT OF AVERAGE HEIGHT OF EMBANKMENT HEIGHT PRIOR TO EXCAVATION 24 600 1150 75 1200 0.938 2100 1.531 3000 2.125 0.345 TRENCH EXCAVATION. PIPE SIZES FROM 450 mm TO 1050 mm = = 750 mm 30 750 1326 88 1376 1.151 2501 1.969 3626 2.788 0.398 STANDARD BEDDING PIPE SIZES FROM 1200 mm TO 2100 mm = = 2/3 DIAMETER 36 900 1500 100 1850 1.825 3200 2.899 4550 3.974 0.450 W PIPE SIZES LARGER THAN 2100 mm = = 1500 mm 42 1050 1676 113 2026 2.117 3601 3.478 5176 4.839 0.503 METHOD NO.
    [Show full text]
  • Neurophysiologic Pattern and Severity Grading Scale of Carpal Tunnel
    Research Article iMedPub Journals JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2017 www.imedpub.com ISSN 2171-6625 Vol. 8 No. 4: 213 DOI: 10.21767/2171-6625.1000213 Neurophysiologic Pattern and Severity Salah El-Magzoub M1, MohaMmed El-Najid Grading Scale of Carpal Tunnel Mustafa2 and Syndrome in Sudanese Patients Sami F Abdalla3 1 Faculty of Medicine, National Ribat University, Khartoum, Sudan 2 Faculty of Medicine, International Abstract University of Sudan, Khartoum, Sudan Background: Carpal tunnel syndrome is the most frequent compression-induced 3 Faculty of Medicine, Almaarefa Colleges, neuropathy, where the median nerve is compressed at the wrist causing sensory College of Applied Sciences Medicine, and motor deficits. It is more common in females than males and accounts for Riyadh, Saudi Arabia a higher number of days off work than all other work-related musculoskeletal disorders. Objectives: The aim of this study is to describe electrophysiological criteria for *Corresponding author: Sami F. Abdalla diagnosis of CTS among Sudanese patients, to classify patients with CTS according to severity based on NCS results and clinical presentation, and to determine the [email protected] age group most affected beyond finding any gender difference. Material and methods: This is a retrospective analytic electrophyisologic study Faculty of Medicine, Almaarefa Colleges, performed in 671 clinically diagnosed CTS patients. NCS was performed in more College of Applied Sciences Medicine, Saudi than 1089 hands which included the median and ulnar nerves. Onset and peak Arabia. latencies, amplitude, conduction velocity, F waves and distance were calculated. Tel: 00966538199174 Result and discussion: Out of 671patients with CTS; females were 81.7% and males Fax: +96638199174 were 18.3%.
    [Show full text]
  • Preliminary Soils Reports Geotechnical Reports "As Graded" Soils Reports
    APPENDIX A - Guidelines for: Preliminary Soils Reports Geotechnical Reports "As Graded" Soils Reports PRELIMINARY SOILS REPORTS A. GENERAL 1. Signature and professional registration number of project Geotechnical Engineer (G.E.) or Registered Civil Engineer (R.C.E.); 2. Job Address. 3. Location description and/or location index map with north arrow, bar scale, etc.; 4. Description of site conditions including topography, relief, vegetation index map with north arrow, ban, man-made features, drainage and watershed; 5. Proposed grading including general scope, amount, special equipment and/or methods if applicable; 6. Planned construction including type of structure and use, type of construction and foundation/floor system, number of stories. B. FIELD INVESTIGATION 1. Scope of work including date of work, investigative methods, logs of exploratory excavations, and real or assumed elevation of exploratory excavations for reference of soil materials and samples to finished grade or footing elevations. 2. Plan with legend including site limits, terrain features, man-made features, locations of exploratory excavations, soil of formational contacts, proposed improvements (including slopes with ratios, daylight lines, paving areas, retaining/crib walls, subdrains, overexcavation/cleanout/uncompacted fill areas). 3. Location of all surface and subsurface soil samples collected. 4. Ground water conditions and potential for future natural or artificial seepages. C. ENGINEERING/MATERIAL CHARACTERISTICS AND TESTING 1. Test methods used, type or condition of samples, applicable engineering graphics, results of all tests, and locations of all test samples. 2. Unified soil classification of materials. 3. Material competency and strength a. Field densities and moisture content, as well as relative compactions where pertinent. b.
    [Show full text]
  • 1 Section 32 90 00 Fine Grading and Soil
    SECTION 32 90 00 FINE GRADING AND SOIL PREPARATION PART 1 ‐ GENERAL 1.01 SECTION INCLUDES A. Examination. B. Preparation. C. Subsoil Preparation. D. Placing Topsoil. E. Soil Tests. F. Coordination of Soil Amendments. G. Fine Grading. H. Tolerances. I. Field Quality Control J. Adjusting. K. Cleaning L. Protection. 1.02 REFERENCES A. Colorado Division of Labor Rules and Regulations: Excavation. B. State Department of Highways, Division of Highways, State of Colorado, Standard Specifications for Road and Bridge Construction, Section 207 of the latest edition. C. ANSI/ASTM D698 ‐ Test Methods for Moisture‐Density Relations of Soils and Soil‐Aggregate Mixtures, Using 5.5 lb (2.49 Kg) Rammer and 12 inch (304.8 mm) Drop. D. ANSI/ASTM D1556 ‐ Test Method for Density of Soil in Place by the Sand‐Cone Method. E. Association of Official Agricultural Chemists: Topsoil Analysis. 1.03 DEFINITIONS A. WEEDS: Includes Goatheads, Bindweed, Twitch, Dandelion, Jimsonweed, Quackgrass, Horsetail, Morning Glory, Rush Grass, Mustard, Lambsquarter, Chickweed, Cress, Crabgrass, Canadian Thistle, Nutgrass, Poison Oak, Blackberry, Tansy Ragwort, Bermuda Grass, Johnson Grass, Poison Ivy, Nut Sedge, Nimble Weed, Bindweed, Bent Grass, Wild Garlic, Perennial Sorrel, and Broom Grass. 1.04 SUBMITTAL PROCEDURES A. TOPSOIL TESTING: 1. After topsoil spreading, submit, for Architect's approval, topsoil samples and test results from: a. Each topsoil source. 2. Each location submission shall include: Great Work Montessori School FINE GRADING AND SOIL PREPARATION 32 90 00 ‐ 1 a. 1 qt. representative sample in air tight container. b. Agricultural analysis by a qualified soils laboratory made in accordance with “Methods of Soils Analysis – Agronomy #9” as published by the American Society of Agronomy, and testing will be done at the Contractor’s expense.
    [Show full text]
  • Appendix D General Earthwork and Grading Specifications for Rough Grading
    Appendix D General Earthwork and Grading Specifications for Rough Grading LEIGHTON AND ASSOCIATES, INC. General Earthwork and Grading Specifications 1.0 General 1.1 Intent These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing. During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.
    [Show full text]