Population Ecology of Insect Invasions and Their Management*

Total Page:16

File Type:pdf, Size:1020Kb

Population Ecology of Insect Invasions and Their Management* ANRV330-EN53-20 ARI 2 November 2007 19:36 Population Ecology of Insect Invasions and Their Management∗ Andrew M. Liebhold and Patrick C. Tobin Forest Service, U.S. Department of Agriculture, Northern Research Station, Morgantown, West Virginia 26505; email: [email protected], [email protected] Annu. Rev. Entomol. 2008. 53:387–408 Key Words First published online as a Review in Advance on Allee effect, establishment, nonindigenous species, spread, September 17, 2007 stratified dispersal The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: During the establishment phase of a biological invasion, popula- 10.1146/annurev.ento.52.110405.091401 by 150.185.73.180 on 05/02/08. For personal use only. tion dynamics are strongly influenced by Allee effects and stochastic Copyright c 2008 by Annual Reviews. dynamics, both of which may lead to extinction of low-density pop- All rights reserved ulations. Allee effects refer to a decline in population growth rate 0066-4170/08/0107-0387$20.00 with a decline in abundance and can arise from various mechanisms. ∗ The U.S. Government has the right to retain a Strategies to eradicate newly established populations should focus Annu. Rev. Entomol. 2008.53:387-408. Downloaded from arjournals.annualreviews.org nonexclusive, royalty-free license in and to any on either enhancing Allee effects or suppressing populations below copyright covering this paper. Allee thresholds, such that extinction proceeds without further inter- vention. The spread phase of invasions results from the coupling of population growth with dispersal. Reaction-diffusion is the simplest form of spread, resulting in continuous expansion and asymptotically constant radial rates of spread. However, spread of most nonindige- nous insects is characterized by occasional long-distance dispersal, which results in the formation of isolated colonies that grow, co- alesce, and greatly increase spread. Allee effects also affect spread, generally in a negative fashion. Efforts to slow, stop, or reverse spread should incorporate the spread dynamics unique to the target species. 387 ANRV330-EN53-20 ARI 2 November 2007 19:36 INTRODUCTION Table 1 The three successive invasion phases with corresponding management activities Geographical barriers such as oceans, moun- Arrival: transport of tain ranges, and glaciers have compartmen- Invasion phase Management activities a nonindigenous talized the world’s biota into disjunct commu- Arrival International quarantines species to new areas nities during the ∼400 million years of insect Inspection outside of its native evolution. As continents separated or collided, Establishment Detection range climates changed, and oceans receded, species Eradication Establishment: ranges have constantly shifted, sometimes Spread Domestic quarantines growth of a Barrier zones population to with the result that species were introduced sufficient levels such into communities where they had previously that natural not evolved. But these changes have been Biological invasions can be broken down extinction is highly relatively slow. Increases in the world’s hu- into three distinct population processes: ar- unlikely man population over the last 1000 years have rival (the process by which individuals are Spread: expansion brought about changes in our behavior that transported to new areas outside of their of the nonindigenous have greatly accelerated the breakdown of native range), establishment (the process by species’ range into new areas barriers to species movement. For example, which populations grow to sufficient lev- the conquest of far reaches of the world by els such that extinction is highly unlikely), Europeans was accompanied by movements and spread (the expansion of an invading of various species both intentionally (e.g., species’ range into new areas) (25, 74, 92, introduction of domestic species such as the 119) (Table 1). Here we concentrate on pop- honey bee) and accidentally (e.g., inadvertent ulation processes operating during the estab- movement of species, such as cockroaches, lishment and spread phases. We then dis- hitchhiking on vessels) (21). More recent cuss management activities associated with sophistication of human societies has re- the establishment and spread phases and clar- sulted in remarkable increases in worldwide ify how knowledge of population processes movement of humans and their goods. This can be used in the selection of effective strate- mobility has unfortunately resulted in a rapid gies. The arrival phase is an equally important acceleration of introductions of insect species phase of the invasion process but mostly does beyond their native ranges (31, 62, 69, 108, not involve population processes; readers are 121). encouraged to consult other sources (34, 52, Many intentionally introduced insects are 81, 149, 127) that have investigated invasion by 150.185.73.180 on 05/02/08. For personal use only. generally considered beneficial, and most ac- pathways and arrival processes. cidentally introduced insect species rarely reach high population levels and are seldom noticed. However, a highly conspicuous mi- ESTABLISHMENT Annu. Rev. Entomol. 2008.53:387-408. Downloaded from arjournals.annualreviews.org nority of nonindigenous species sometimes While rising levels of world trade and travel become particularly abundant and cause con- have resulted in an ever-increasing arrival of siderable ecological, economic, and evolu- alien species, most of them have failed to es- tionary impacts (85, 100, 129). The reasons tablish (124, 146). The establishment phase why populations of alien species sometimes thus represents a critical period during which explode and the characteristics of their im- populations grow and expand their distribu- pacts are not covered in this review. Instead, tion such that extinction is highly unlikely. we focus here on the basic population pro- Founder populations typically are small and cesses that operate during the invasion pro- consequently are at great risk of extinction. cess and how this information can be applied Generally, the smaller the founder popula- to develop effective strategies for mitigating tion, the less likely is establishment (79, 84). invasions. This is conceptually illustrated by historical 388 Liebhold · Tobin ANRV330-EN53-20 ARI 2 November 2007 19:36 records of introductions of natural enemies a as part of biological control programs, in which establishment frequencies are consis- tently higher from releases of large numbers of individuals (6, 35, 50). Much of what we know about the popu- N /N 1 t +1 t lation biology of low-density invading popu- lations is extracted from a rich literature on the population ecology of rare species (i.e., conservation biology). All populations are af- fected by stochastic abiotic influences (e.g., weather), but low-density populations are par- C K N ticularly influenced by such effects. We can t mathematically represent the generational change in population density as b = + ε , Nt+1 f (Nt ) t 1. where N is population density in year t or + t 1, f (Nt) is a function that encompasses ε birth and death processes, and t is varia- N /N 1 tion due to stochasticity. In addition to en- t +1 t vironmental stochasticity, all populations are affected by demographic stochasticity, which refers to random variation in birth and death processes (32). The important result of de- mographic and environmental stochasticity is that low-density populations (e.g., newly N founded invading populations) can be driven t to extinction purely due to inimical random Figure 1 variation. However, there is another factor Schematic representation of the Allee effect. Change in population density, contributing to the extinction of low-density Nt +1/Nt is plotted as a function of density at the beginning of the generation, Nt .(a) Illustration of equilibria. When density is less than C, the by 150.185.73.180 on 05/02/08. For personal use only. populations that must also be considered: Allee threshold, it will decrease toward extinction. When density exceeds Allee effects. C, it will increase toward K, the carrying capacity. When populations exceed the carrying capacity, they will decrease. (b) Illustration of eradication strategies. The first strategy is to reduce the population density (solid purple Allee Effects dot) to a density that is below the Allee threshold. In the second strategy, the Annu. Rev. Entomol. 2008.53:387-408. Downloaded from arjournals.annualreviews.org Warder Allee (1) studied animal ecology and Allee threshold (solid red dot) is increased to a level that exceeds the population density. Both strategies result in population extinction. is generally thought to be among the first to recognize the concept that animal populations must be composed of some minimum num- of extinction from the perspective of conser- ber of individuals to remain viable. Certain vation biology (128). Of late, there has been processes may lead to decreasing net popula- growing recognition of its importance dur- tion growth with decreasing density, and thus ing the establishment phase of biological in- there may exist a threshold below which low- vasions (26, 68, 133). Allee effect: density populations are driven toward extinc- Causes of Allee effects include failure to decreased population tion (Figure 1a). This phenomenon is known locate mates (8, 50), inbreeding depression growth correlated with decreasing as the Allee effect (19, 24), and it has been (66), the failure to satiate predators (39), and abundance
Recommended publications
  • Invasive Insects (Adventive Pest Insects) in Florida1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. ENY-827 Invasive Insects (Adventive Pest Insects) in Florida1 J. H. Frank and M. C. Thomas2 What is an Invasive Insect? include some of the more obscure native species, which still are unrecorded; they do not include some The term 'invasive species' is defined as of the adventive species that have not yet been 'non-native species which threaten ecosystems, detected and/or identified; and they do not specify the habitats, or species' by the European Environment origin (native or adventive) of many species. Agency (2004). It is widely used by the news media and it has become a bureaucratese expression. This is How to Recognize a Pest the definition we accept here, except that for several reasons we prefer the word adventive (meaning they A value judgment must be made: among all arrived) to non-native. So, 'invasive insects' in adventive species in a defined area (Florida, for Florida are by definition a subset (those that are example), which ones are pests? We can classify the pests) of the species that have arrived from abroad more prominent examples, but cannot easily decide (adventive species = non-native species = whether the vast bulk of them are 'invasive' (= pests) nonindigenous species). We need to know which or not, for lack of evidence. To classify them all into insect species are adventive and, of those, which are pests and non-pests we must draw a line somewhere pests. in a continuum ranging from important pests through those that are uncommon and feed on nothing of How to Know That a Species is consequence to humans, to those that are beneficial.
    [Show full text]
  • Heteroptera: Coreidae: Coreinae: Leptoscelini)
    Brailovsky: A Revision of the Genus Amblyomia 475 A REVISION OF THE GENUS AMBLYOMIA STÅL (HETEROPTERA: COREIDAE: COREINAE: LEPTOSCELINI) HARRY BRAILOVSKY Instituto de Biología, UNAM, Departamento de Zoología, Apdo Postal 70153 México 04510 D.F. México ABSTRACT The genus Amblyomia Stål is revised and two new species, A. foreroi and A. prome- ceops from Colombia, are described. New host plant and distributional records of A. bifasciata Stål are given; habitus illustrations and drawings of male and female gen- italia are included as well as a key to the known species. The group feeds on bromeli- ads. Key Words: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeliaceae RESUMEN El género Amblyomia Stål es revisado y dos nuevas especies, A. foreroi y A. prome- ceops, recolectadas en Colombia, son descritas. Plantas hospederas y nuevas local- idades para A. bifasciata Stål son incluidas; se ofrece una clave para la separación de las especies conocidas, las cuales son ilustradas incluyendo los genitales de ambos sexos. Las preferencias tróficas del grupo están orientadas hacia bromelias. Palabras clave: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeli- aceae The neotropical genus Amblyomia Stål was previously known from a single Mexi- can species, A. bifasciata Stål 1870. In the present paper the genus is redefined to in- clude two new species collected in Colombia. This genus apparently is restricted to feeding on members of the Bromeliaceae, and specimens were collected on the heart of Ananas comosus and Aechmea bracteata.
    [Show full text]
  • LOUISIANA SCIENTIST Vol. 1A No. 3
    LOUISIANA SCIENTIST THE NEWSLETTER of the LOUISIANA ACADEMY OF SCIENCES Volume 1A, No. 3 (2007 Annual Meeting Abstracts) Published by THE LOUISIANA ACADEMY OF SCIENCES 15 June 2012 Louisiana Academy of Sciences Abstracts of Presentations 2007 Annual Meeting Southern University and A&M College Baton Rouge, Louisiana 16 March 2007 Table of Contents Division/Section Page Division of Agriculture, Forestry, and Wildlife . 5 Division of Biological Sciences . 11 Botany Section . 11 Environmental Sciences Section . 11 Microbiology Section . 17 Molecular and Biomedical Biology Section . 21 Zoology Section . 23 Division of Physical Sciences . 28 Chemistry Section . 28 Computer Science Section . 34 Earth Sciences Section . 41 Materials Science and Engineering Section . 43 Mathematics and Statistics Section . 46 Physics Section . 49 Division of Science Education . 52 Higher Education Section . 52 K-12 Education Section . 55 Division of Social Sciences . 57 Acknowledgement . 64 2 The following abstracts of oral and poster presentations represent those received by the Abstract Editor. Authors’ affiliations are abbreviated as follows: ACHRI Arkansas Children’s Hospital Research Institute ARS Agriculture Research Services, Little Rock, AR AVMA-PLIT American Veterinary Medical BGSU Bowling Green State University BNL Brookhaven National Laboratory, Upton, NY BRCC Baton Rouge Community College CC Centenary College CIT California Institute of Technology CL Corrigan Laboratory, Baton Rouge, LA CTF Cora Texas Manufacturing CU Clemson University DNIRI Delta
    [Show full text]
  • Appendix 7-1: Summary of South Florida's Nonindigenous Species
    2014 South Florida Environmental Report Appendix 7-1 Appendix 7-1: Summary of South Florida’s Nonindigenous Species by RECOVER Module LeRoy Rodgers and David Black App. 7-1-1 Appendix 7-1 Volume I: The South Florida Environment Table 1. Summary of South Florida’s nonindigenous animal species and Category I invasive plant species by RECOVER module.1 KY SE GE BC NW NE LO KR Amphibians *Bufo marinus Giant toad x x x x x x x x Eleutherodactylus planirostris Greenhouse frog x x x x x x x x *Osteopilus septentrionallis Cuban treefrog x x x x x x x x Reptiles Agama agama African redhead agama x x x x x Ameiva ameiva Giant ameiva x x Anolis chlorocyanus Hispaniolan green anole x x x Anolis cristatellus cristatellus Puerto Rican crested anole x Anolis cybotes Largehead anole x x x *Anolis distichus Bark anole x x x x x x x *Anolis equestris equestris Knight anole x x x x x x x x Anolis extremus Barbados anole x *Anolis garmani Jamaican giant anole x x x x x Anolis porcatus Cuban green anole x x *Anolis sagrei Brown anole x x x x x x x x Basiliscus vittatus Brown basilisk x x x x x x x *Boa constrictor Common boa x Caiman crocodilus Spectacled caiman x x x Calotes mystaceus Indochinese tree agama x x Table Key KY = Keys NW = Northern Estuaries West Green Found in one module SE = Southern Estuaries NE = Northern Estuaries East Orange Found in all modules GE = Greater Everglades LO = Lake Okeechobee Blue Found in all but one module BC = Big Cypress KR = Kissimmee River Pink Status changed since 2011 *Species that make significant use of less disturbed portions of the module.
    [Show full text]
  • The Mcguire Center for Lepidoptera and Biodiversity
    Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens.
    [Show full text]
  • Lovebug Plecia Nearcticahardy (Insecta: Diptera: Bibionidae)1 H
    EENY 47 Lovebug Plecia nearcticaHardy (Insecta: Diptera: Bibionidae)1 H. A. Denmark, F. W. Mead, and T. R. Fasulo2 Introduction University of Florida entomologists introduced this species into Florida. However, Buschman (1976) documented the The lovebug, Plecia nearctica Hardy, is a bibionid fly species progressive movement of this fly species around the Gulf that motorists may encounter as a serious nuisance when Coast into Florida. Research was conducted by University traveling in southern states. It was first described by Hardy of Florida and US Department of Agriculture entomologists (1940) from Galveston, Texas. At that time he reported it to only after the lovebug was well established in Florida. be widely spread, but more common in Texas and Louisiana than other Gulf Coast states. Figure 1. Swarm of lovebugs, Plecia nearctica Hardy, on flowers. Credits: James Castner, UF/IFAS Figure 2. Adult lovebugs, Plecia nearctica Hardy, swarm on a building. Credits: Debra Young, used with permission Within Florida, this fly was first collected in 1949 in Escambia County, the westernmost county of the Florida panhandle. Today, it is found throughout Florida. With numerous variations, it is a widely held myth that 1. This document is EENY 47, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 1998. Revised April 2015. Reviewed February 2021. Visit the EDIS website at https://edis.ifas.ufl.edu for the lastest version of this publication. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures/. 2. H. A. Denmark, courtesy professor; F.
    [Show full text]
  • Living with Lovebugs1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. ENY-840 Living With Lovebugs1 Norman C. Leppla2 The "lovebug," Plecia nearctica Hardy (Diptera: suborder Nematocera. Flies in the other suborder, Bibionidae), is a seasonally abundant member of a Brachycera, have five or fewer antennal segments. generally unnoticed family of small flies related to Some families of Nematocera contain pests of gnats and mosquitoes. The males are about 1/4 inch agriculture and vectors of pathogens that cause and the females 1/3 inch in length, both entirely black human and animal diseases, e.g., sand flies except for red on top of their thoraxes (middle insect (Psychodidae), mosquitoes (Culicidae), biting body segment). Other common names for this insect midges (Ceratopogonidae), black flies (Simuliidae), include March flies, double-headed bugs, honeymoon fungus gnats (Mycetophilidae) and gall midges flies, united bugs and some expletives that are not (Cecidomyiidae). Bibionids have antennae with repeatable. Lovebugs characteristically appear in seven to 12 segments and ocelli (simple eyes) on their excessive abundance throughout Florida as heads (Figure 2 A, a,o). Their wings each have an male-female pairs for only a few weeks every undivided medial cell, a costal vein (front of wing) April-May and August-September (IPM Florida that ends at or before the wing tip, a large anal area 2006). Although they exist over the entire state and two basal cells (Figure 2 E, mc, c, a, bc). All during these months, they can reach outbreak levels members of the genus Plecia have an upper branch to in some areas and be absent in others.
    [Show full text]
  • Far Eastern Entomologist Number 429: 8-11 April 2021
    Far Eastern Entomologist ISSN 1026-051X (print edition) Number 429: 8-11 ISSN 2713-2196 (online edition) April 2021 https://doi.org/10.25221/fee.429.2 http://zoobank.org/References/36A71DD0-FE2B-4D2B-BBEC-9BA2C73FA989 FIRST RECORD OF NOCTUID MOTH CALLOPISTRIA AETHIOPS BUTLER, 1878 (LEPIDOPTERA: NOCTUIDAE) FROM SOUTHERN PRIMORYE AS AN EXAMPLE OF THE EAST ASIAN SPECIES PENETRATING IN RUSSIAN FAUNA V. V. Dubatolov1, 2) 1) Federal State Institution "Zapovednoe Priamurye", Yubileinaya street, 8, Bychikha village, Khabarovskii Krai, 680502, Russia. E-mail: [email protected] 2) Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze str. 11, Novosibirsk, 630091, Russia. Summary. An East Asian-Oriental noctuid species Callopistria aethiops Butler, 1878 is recorded from Russia for the first time. The trend of invasions of the southern Macroheterocera species into the Russian Far East has existed at least during last century but is noticeably increased during last 20 years. Key words: Lepidoptera, Noctuidae, fauna, new record, invasion, Primorskii Krai, Russia. В. В. Дубатолов. Первая находка совки Callopistria aethiops Butler, 1878 (Lepidoptera: Noctuidae) в Южном Приморье как пример внедрения восточноазиатских видов в фауну России // Дальневосточный энтомолог. 2021. N 429. С. 8-11. Резюме. Восточноазиатско-ориентальная совка Callopistria aethiops Butler, 1878 впервые найдена в России. Показано, что тенденция проникновения южных видов макрочешуекрылых на Дальний Восток России отмечена, по крайней мере, в течение ста лет, но наиболее ярко она выражена в последние два десятилетия. INTRODUCTION During an excursion to Vitjaz Bay (Khasan District in Primorskii Krai) in September 2020, a new for Russian fauna noctuid moth was collected among other 73 late summer and autumn Macroheterocera species.
    [Show full text]
  • Phylogenomics Reveals Major Diversification Rate Shifts in The
    bioRxiv preprint doi: https://doi.org/10.1101/517995; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Phylogenomics reveals major diversification rate shifts in the evolution of silk moths and 2 relatives 3 4 Hamilton CA1,2*, St Laurent RA1, Dexter, K1, Kitching IJ3, Breinholt JW1,4, Zwick A5, Timmermans 5 MJTN6, Barber JR7, Kawahara AY1* 6 7 Institutional Affiliations: 8 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA 9 2Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID 10 83844 USA 11 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 12 4RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL 32601. USA 13 5Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, 14 Australia 15 6Department of Natural Sciences, Middlesex University, The Burroughs, London NW4 4BT, UK 16 7Department of Biological Sciences, Boise State University, Boise, ID 83725, USA 17 *Correspondence: [email protected] (CAH) or [email protected] (AYK) 18 19 20 Abstract 21 The silkmoths and their relatives (Bombycoidea) are an ecologically and taxonomically 22 diverse superfamily that includes some of the most charismatic species of all the Lepidoptera. 23 Despite displaying some of the most spectacular forms and ecological traits among insects, 24 relatively little attention has been given to understanding their evolution and the drivers of 25 their diversity.
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]
  • West Marsh Preserve Wildlife Species List
    WMP Wildlife Species List Designated Status Scientific Name Common Name FWC FWS FNAI MAMMALS Order: Xenarthra Family: Dasypodidae (armadillos) Dasypus novemcinctus nine-banded armadillo * G5 Order: Carnivora Family: Felidae (cats) Lynx rufus bobcat G5 Family: Canidae (wolves and foxes) Canis latrans coyote G5 Family: Mustelidae (weasels, otters and relatives) Lutra canadensis northern river otter G5 Family: Procyonidae (raccoons) Procyon lotor raccoon G5/S5 Order: Artiodactyla Family: Suidae (old world swine) Sus scrofa feral hog * G5 Family: Cervidae (deer) Odocoileus virginianus white-tailed deer G5/S5 Order: Rodentia Family: Sciuridae (squirrels and their allies) Sciurus carolinensis eastern gray squirrel G5 Order: Lagomorpha Family: Leporidae (rabbits and hares) Sylvilagus palustris marsh rabbit G5 BIRDS Order: Anseriformes Family: Anatidae (swans, geese, and ducks) Dendrocygna autumnalis black-bellied whistling duck G5 Cairina moschata muscovy duck G4 Aix sponsa wood duck G5 Spatula discors blue-winged teal G5 Spatula clypeata northern shoveler G5 Mareca strepera gadwall G5 Mareca americana American wigeon G5 Anas platyrhynchos mallard G5 Anas fulvigula mottled duck G4/S3S4 Anas acuta northern pintail G5 Anas crecca green-winged teal G5 Aythya americana redhead G5 Aythya collaris ring-necked duck G5 Aythya affinis lesser scaup G5/S5 Lophodytes cucullatus hooded merganser G5 Mergus serrator red-breasted merganser G5 Oxyura jamaicensis ruddy duck G5 Order: Galliformes Family: Odontophoridae (new world quails) Colinus virginianus northern
    [Show full text]
  • Sue's Pdf Quark Setting
    Cambridge University Press 978-0-521-83488-9 - Insect Ecology: Behavior, Populations and Communities Peter W. Price, Robert F. Denno, Micky D. Eubanks, Deborah L. Finke and Ian Kaplan Index More information AUTHOR INDEX Aanen, D.K., 227 Amman, G.D., 600 Bach, C.E., 152 Abrahamson, W.G., 16, 161, 162, Andersen, A.N., 580 Bacher, 275 165 Andersen, N.M., 401 Bacher, S., 275 Abrams, 274 Anderson, J.M., 114 Bachman, S., 567 Abrams, P.A., 195, 273, 276 Anderson, R.M., 336, 337, 338 Ba¨ckhed, F., 225 Acorn, J., 250 Anderson, R.S., 415 Badenes-Perez, F.R., 400 Adams, D.C., 203 Andersson, M., 82, 83, 87 Baerends, G.P., 29 Adams, E.S., 435 Andow, D.A., 127, 128, 179, 276, 513, Bailey, J.K., 426, 474, 475, 603 Adamson, R.S., 573 528 Bailey, V.A., 279, 356 Addicott, J.F., 242, 507 Andres, M.R., 116, 117, 118 Baker, R.R., 54 Addy, N.D., 574, 601, 602 Andrew, N.R., 566 Baker, I., 247 Adjei-Maafo, I.K., 530 Andrewartha, H.G., 27, 260, 261, 279, Baker, T.C., 53 Adler, L.S., 155 356, 404 Baker, W.L., 166 Adler, P.H., 8 Andrews, J.H., 310 Baldwin, I.T., 121, 122, 125, 126, 127, Agarwal, V.M., 506 Aneshansley, D.J., 48 129, 143, 144, 166, 174, 179, 187, Agnew, P., 369 Anonymous, 18 197, 201, 204, 208, 221, 492, 498 Agrawal, A.A., 99, 108, 114, 118, 121, Anstett, M.-C., 236, 243, 244 Ballabeni, P., 162 122, 125, 126, 128, 129, 130, 133, Antonovics, J., 471 Baltensweiler, 414 136, 139, 156, 161, 197, 204, 205, Aoki, S., 80 Baltensweiler, W., 407, 410, 424 208, 216, 219, 299, 444, 471, 492, Appel, H.M., 124, 128 Bangert, 465, 472 493, 502, 507, 509, 512, 513
    [Show full text]