Diverse Late Jurassic Anomuran Assemblages from the Swabian Alb and Evolutionary History of Paguroids Based on Carapace Morphology

Total Page:16

File Type:pdf, Size:1020Kb

Diverse Late Jurassic Anomuran Assemblages from the Swabian Alb and Evolutionary History of Paguroids Based on Carapace Morphology 132 R.H.B. Fraaije et al. Pilgrimcheles vonmeyeri n. sp. Material: Holotype (MAB k.3253), a near-complete shield Fig. 7A-C (total length 1.5 mm, max. width 1.5 mm). Etymology: Named in honour of christian erich her- Locality and horizon: Small local quarry at the Wester- Mann von Meyer (1801-1869), a well-known German pa- berg, with well-bedded sponge-microbial limestones and laeontologist. marls of the Aulacostephanus pseudomutabilis Zone of late Kimmeridgian (= ‘Malm delta 3-4’) age. Material: Holotype MAB k.3235, a near-complete shield with a maximum length and width of 4.0 mm and 4.0 mm, Diagnosis: Shield well calcified, of near-equal length and respectively; paratypes MAB k.3334 and MAB k.3335 with width, well areolated, with distinct regions, including an- a maximum length and width of 4.5, 5.0 mm and 4.5, 5.0 gular massetic region. Small triangular rostrum and about mm, respectively. similarly sized post-ocular spines. Post-antennal projections less distinct. Anterior portion of gastric region delimited by Locality and horizon: Small local quarry at the Wester- post-rostral ridge with central gastric groove. Long central berg, with well-bedded sponge-microbial limestones and gastric groove fading into median gastric rim posteriorly. marls of the Aulacostephanus pseudomutabilis Zone of late Typically reniform keraial regions. Kimmeridgian (= ‘Malm delta 3-4’) age. Description: Well-calcified and clearly areolated shield, of Diagnosis: Shield well calcified, length slightly exceeding about equal length and width, convex transversely, slightly width, well areolated, with many distinct regions, including convex longitudinally. Small short triangular rostrum and a massetic region. Rimmed, broad-based, triangular ros- about equally sized post-ocular spines. Post-antennal pro- trum and smaller triangular, post-ocular projections. Post- jections less distinct. Ocular-frontal area equalling about 57 antennal projections less distinct and not rimmed. Anterior per cent of total maximum width. Gastric region, bounded portion of gastric region delimited by post-rostral ridge posteriorly by cervical groove; anterior part delimited by with central gastric groove. Large globose massetic region post-rostral ridge. Post-rostral ridge centrally indented by bordered posterocentrally by smaller, yet distinct globose relatively long gastric groove fading posteriorly into central submassetic region. Typically reniform keraial regions. No rim, anteriorly a broad frontal ridge extending to rostrum. posterior parts of the carapace preserved. Prominent, angular and elongated massetic region about 140 per cent of length of narrow anterior branchial area. Description: Well-calcified and clearly areolated shield, Cervical groove anteriorly curving around reniform keraial length slightly exceeding width, convex transversely, slight- region and laterally incising lateral margin below anterior ly convex longitudinally. Rimmed, broad-based, triangular branchial area. Anterior of keraial region and bordering an- rostrum and post-ocular projections. Post-antennal pro- terior massetic region distinct oval submassetic region. No jections less distinct and not rimmed. Ocular-frontal area posterior parts of carapace preserved. equaling about 55 per cent of total maximum width. Pos- teriorly pointed, bluntly arrowhead-shaped gastric region, Remarks: Pilgrimcheles vonmeyeri n. sp. and P. kersteni bounded posteriorly by deep cervical groove; anterior part n. sp. can be distinguished from the type species of the ge- delimited by slightly undulose, post-rostral ridge and when nus, P. karolinae, in having a longer central gastric groove, cuticule is absent, covered by transverse crenulations. Post- smaller massetic region, longer anterior branchial area and rostral ridge centrally indented by relatively long gastric a central gastric rim. Pilgrimcheles vonmeyeri n. sp. is eas- groove fading posteriorly into faint central rim. Prominent, ily differentiated from the coeval P. kersteni n. sp. in having globose and elongated massetic region about 160 % length a less angular massetic region, a more convex postrostral of elongated anterior branchial area. Posterior part of cervi- ridge, a more distinctly rimmed frontal margin and a dis- cal groove pronounced and very deep, anteriorly curving tinct oval submassetic region. around reniform keraial region and laterally incising lateral margin below anterior branchial area. Anterior of keraial region a distinct oval submassetic region, bordering mas- Family Parapylochelidae Fraaije, kloMpMaker & setic region. Except for some very small parts posterior of artal anterior branchial area, no other posterior parts of carapace , 2012 preserved. Genus Housacheles Fraaije, van Bakel, jagt & sku- pien, 2013 Pilgrimcheles kersteni n. sp. Type species: Housacheles timidus raaije an akel Fig. 7D F , v B , jagt & skupien, 2013, by original designation. Etymology: Named in honour of geon kersten, a Dutch amateur palaeontologist and friend, who helped during sev- eral field trips and donated some of the material studied Housacheles ovalis n. sp. herein. Fig. 7F .
Recommended publications
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • First Record and Correlation Value of Aulacostephanus Cf. Subundorae (PAVLOW) (Ammonoidea, Upper Jurassic) from SW Germany
    N. Jb. Geol. Paläont. Mh. 2005 (2) 65-82 Stuttgart, Februar 2005 First record and correlation value of Aulacostephanus cf. subundorae (PAVLOW) (Ammonoidea, Upper Jurassic) from SW Germany Günter Schweigert and Lothar H. Vallon, Stuttgart With 7 figures and 1 table SCHWEIGERT, G. & VALLON, L. H. (2005): First record and correlation value of Aulacostephanus cf. subundorae (PAVLOW) (Ammonoidea, Upper Jurassic) from SW Germany. - N. Jb. Geol. Paläont. Mh., 2005: 65-82; Stuttgart. Abstract: Aulacostephanus cf. subundorae (PAVLOW) is recorded lor the first time from the Upper Jurassic Brenztaltrümmerkalk Member in Eastern Swabia (SW Germany). Together with Gravesia iritis (D'OKBIGNY), this ammonite species of Subboreal origin is indicative of the youngest Late Kimmeridgian Autissiodorensis Zone. The co-occurring ammonites from this formation have a Submediterranean origin. Hence, a correlation is possible between the Subboreal and the Submedi- terranean zonation around the Kimmeridgian/Tithonian boundary. Zusammenfassung: Die subboreale Ammonitenart Aulacostephanus cf. subundorae (PAVLOW) wird erstmals aus der Brenztaltrümmerkalk-Subformation im Oberjura der östlichen Schwäbischen Alb nachgewiesen. Zusammen mit Gravesia irius (D'ORBIGNY) kennzeichnet die Art die Autissiodorensis-Zone des jüngsten Kim- meridgium. Die begleitende Ammonitenfauna ist der Submediterranen Faunen- provinz zuzurechnen. Hierdurch wird eine Korrelation zwischen der subborealen und der submediterranen Zonengliederung im Kimmeridgium/Tithonium-Grenzbereich ermöglicht. 0028-3630/05/2005-0065 $ 4.50 © 2005 E. Schweizerbart'sche Verlagsbuchhandlung, D-70176 Stuttgart 66 G. Schweigert and L. H. Vallon 1. Introduction In the eastern part of Swabia, the Brenztaltrümmerkalk is a locally developed bioclastic deposit in the higher part of the Upper Jurassic. The Brenztal- trümmerkalk has a maximum thickness of about 100 meters and is mainly restricted to the near surroundings of Heidenheim and Schnaitheim, where it was quarried for several centuries as an important building stone.
    [Show full text]
  • Late Jurassic Ammonites from Alaska
    Late Jurassic Ammonites From Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Late Jurassic Ammonites From Alaska By RALPH W. IMLAY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Studies of the Late jurassic ammonites of Alaska enables fairly close age determinations and correlations to be made with Upper Jurassic ammonite and stratigraphic sequences elsewhere in the world UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress catalog-card No. 81-600164 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ----------------------------------------- 1 Ages and correlations -----------------------------­ 19 19 Introduction -------------------------------------- 2 Early to early middle Oxfordian --------------­ Biologic analysis _________________________________ _ 14 Late middle Oxfordian to early late Kimmeridgian 20 Latest Kimmeridgian and early Tithonian _____ _ 21 Biostratigraphic summary ------------------------- 14 Late Tithonian ______________________________ _ 21 ~ortheastern Alaska -------------------------­ 14 Ammonite faunal setting --------------------------­ 22 Wrangell Mountains -------------------------- 15 Geographic distribution ---------------------------- 23 Talkeetna Mountains -------------------------­ 17 Systematic descriptions ___________________________ _ 28 Tuxedni Bay-Iniskin Bay area ----------------- 17 References
    [Show full text]
  • 1501 Rogov.Vp
    Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography MIKHAIL A. ROGOV & TERRY P. POULTON We present the first description of aulacostephanid (Perisphinctoidea) ammonites from the Kimmeridgian of Canada, and the first illustration of these ammonites in the Americas. These ammonites include Rasenia ex gr. cymodoce, Zenostephanus (Xenostephanoides) thurrelli, and Zonovia sp. A from British Columbia (western Canada). They belong to genera that are widely distributed in the subboreal Eurasian Arctic and Northwest Europe, and they also occur even in those Boreal regions dominated by cardioceratids. They are important markers for a narrow stratigraphic interval in the Cymodoce Zone (top of Lower Kimmeridgian) and the lower part of the Mutabilis Zone (base of Upper Kimmeridgian) of the Northwest European standard succession. In Spitsbergen and Franz Josef Land, the only Upper Kimmeridgian aulacostephanid-bearing level is the Zenostephanus (Zenostephanus) sachsi biohorizon, which very likely belongs to the Mutabilis Zone. Expansion of Zenostephanus from Eurasia, where it is present over a large area, into British Columbia, is approximately correlative with a transgressive event that also led to expansion of the Submediterranean ammonite ge- nus Crussoliceras through the Submediterranean and Subboreal areas slightly before Zenostephanus. • Key words: Kimmeridgian, aulacostephanids, Zenostephanus, Rasenia, British Columbia, palaeobiogeography, sea-level changes. ROGOV, M.A. & POULTON, T.P. 2015. Aulacostephanid ammonites from the Kimmeridgian (Upper Jurassic) of British Columbia (western Canada) and their significance for correlation and palaeobiogeography. Bulletin of Geosciences 90(1), 7–20 (5 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received January 31, 2014; ac- cepted in revised form October 2, 2014; published online November 25, 2014; issued January 26, 2015.
    [Show full text]
  • Characteristic Jurassic Mollusks from Northern Alaska
    Characteristic Jurassic Mollusks From Northern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D Characteristic Jurassic Mollusks From Northern Alaska By RALPH W. IMLAY A SHORTER CONTRIBUTION TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D A study showing that the northern Alaskan faunal succession agrees with that elsewhere in the Boreal region and in other parts of North America and in northwest Europe UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - BMMH§ts (paper cover) Price $1.00 CONTENTS Page Abstract_________________ 69 Introduction _________________ 69 Biologic analysis____________ 69 Stratigraphic summary. _______ 70 Ages of fossils________________ 73 Comparisons with other faunas. 75 Ecological considerations___ _ 75 Geographic distribution____. 78 Summary of results ___________ 81 Systematic descriptions__ _. 82 Literature cited____________ 92 Index_____________________ 95 ILLUSTRATIONS [Plates &-13 follow Index] PLATE 8. Inoceramus and Gryphaea 9. Aucella 10. Amaltheus, Dactylioceras, "Arietites," Phylloceras, and Posidonia 11. Ludwigella, Dactylioceras, and Harpoceras. 12. Pseudocadoceras, Arcticoceras, Amoeboceras, Tmetoceras, Coeloceras, and Pseudolioceras 13. Reineckeia, Erycites, and Cylindroteuthis. Page FIGXTKE 20. Index map showing Jurassic fossil collection localities in northern Alaska.
    [Show full text]
  • Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles.
    [Show full text]
  • Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
    Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals.
    [Show full text]
  • Cuesta Del Cura Limestone
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 49, PP. 1651-1694. 7 PLS., 6 FIGS. NOVEM BER 1, 1938 STUDIES OF THE MEXICAN GEOSYNCLINE BY EALPH W. IMLAY CONTENTS Page Abstract....................................................................................................................................... 1652 Introduction............................................................................................................................... 1652 Acknowledgments..................................................................................................................... 1654 Earlier investigations............................................................................................................... 1654 Geography................................................................................................................................... 1654 Topography and drainage.............................................................................................. 1654 Culture................................................................................................................................ 1655 Sedimentary rocks..................................................................................................................... 1657 General discussion.......................................................................................................... 1657 Jurassic system................................................................................................................. 1657 Zuloaga
    [Show full text]
  • Aulacostephanus Im Oberjura (Taxionomie, Stratigraphie, Biologie)
    SONDER-ABDRUCK aus PALAEONTOGRAPHICA BEITRÄGE ZUR NATURGESCHICHTE DER VORZEIT Band 119. Abt. A. MITTEILUNGEN AUS DEM PALÄONTOLOGISCHEN INSTITUT DER UNIVERSITÄT ZÜRICH, Nr. 17 DIE AMMONITEN-GATTUNG AULACOSTEPHANUS IM OBERJURA (TAXIONOMIE, STRATIGRAPHIE, BIOLOGIE) VON BERNHARD ZIEGLER (PALÄONTOLOGISCHES INSTITUT DER UNIVERSITÄT ZÜRICH) MIT 22 TAFELN SOWIE 85 ABBILDUNGEN UND 5 TABELLEN IM TEXT UND AUF 12 BEILAGEN STUTTGART E. SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG (NÄGELE u. OBERMILLER) 1962 Alle Rechte, auch das der Übersetzung, vorbehalten Printed in Germany Jegliche Vervielfältigung einschließlich photomechanischer Wiedergabe nur mit ausdrücklicher Genehmigung durch den Verlag Satz und Druck: Druckerei E. Schwend KG, Schwäbisch Hall Palaeontographica Abt. A 119 Liefg. 1-4 1—172 Stuttgart, Juni 1962 DIE AMMONITEN-GATTUNG AULACOSTEPHANUS IM OBERJURA (TAXIONOMIE, STRATIGRAPHIE, BIOLOGIE) VON BERNHARD ZIEGLER (PALÄONTOLOGISCHES INSTITUT DER UNIVERSITÄT ZÜRICH) MIT 22 TAFELN SOWIE 85 ABBILDUNGEN UND 5 TABELLEN IM TEXT UND AUF 12 BEILAGEN Inhalt Seite Vorwort 2 Einleitung ... 3 Material . 3 Historisches 6 Grundbegriffe 9 Stratigraphie ... 9 Großbritannien 9 Frankreich 14 Mitteleuropa 20 Osteuropa 24 Mexico 25 Parallelisierung ... 26 Diskussion des Artbegriffes 28 Morphologie und Anatomie 32 Taxionomie 42 Aulacostephanites 44 Aul. eulepidus 44 Aul. peregrinus 48 Aulacostephanoides 50 Aul. desmonotus 50 Aul. variocostatus 52 Aul. linealis . 54 Aul. circumplicatus 57 Aul. oblongatus 60 Aul. mutabilis 62 Aul. sosvaensis 66 Aul. attenuatus 67 Aulacostephanoceras 68 Aul. pusillus . 69 Aul. mammatus 73 Aul. volongensis 74 Aul. undorae .... 75 Aul. rigidus .... 77 Aul. phorcus 78 Habilitationsschrift zur Erlangung der venia legendi der Philosophischen Fakultät II der Universität Zürich. Seite Aul. eudoxus 80 Aul. volgensis 90 Aul. kirghisensis 95 Aul. jasonoides 97 Aul. autissiodorensis 99 Aulacostephanus 104 Aul.
    [Show full text]
  • ”Alten Steinbruch” Ludwag, Ofr., Nördliche Frankenalb (Hypselocyclum-Zone, Kimmeridgium 1B)
    Geol. Bl. 59 Erlangen Heft 1-4 Seite 249-258 NO-Bayern (2009) Dezember 2009 Ein großwüchsiges Rasenia aus dem ”Alten Steinbruch” Ludwag, Ofr., Nördliche Frankenalb (hypselocyclum-Zone, Kimmeridgium 1b) von Thomas Hornung1 mit 6 Abbildungen im Text. Zusammenfassung Aus dem Kimmeridgium 1b (hypselocyclum-Zone) des »Alten Steinbruchs« Ludwag (Oberfranken, Nördliche Frankenalb) wird ein Ammonit der Gattung Rasenia be- schrieben, welcher in kein derzeit für die Ammonitenfauna Nordbayerns bekann- tes Klassifikationsschema passt: mit einem Durchmesser von 381 mm noch voll gekammert, dürfte der Enddurchmesser des Exemplars bei etwa 600 mm gelegen haben. Das ist für die Gattung Rasenia eher unüblich und fand in dieser Form bislang nicht Einzug in einschlägige Fachliteratur. Differentialdiagnosen schließen eine mögliche Zugehörigkeit zu den Untergattungen Rasenia, Prorasenia, Semira- senia, Involuticeras und zu den Gattungen Aulacostephanus und Ringsteadia aus, machen aber wohl eine Zuordnung zur Untergattung Eurasenia und dort zur Art Rasenia (E.) pendula wahrscheinlich. Summary From the »old quarry« of Ludwag (Northern Franconian Alb), a large Rasenia from the Kimmeridgian 1b (hypselocyclum ammonite zone) is described. The fact that the diameter of 381 mm is chambered without parts of the living chamber, suggests not only a whole measure of somewhat 600 mm, but rather led fit this specimen to no classification scheme actually known for the ammonite faunas of Northern Bavaria. With respect to the genus Rasenia, that large dimension is completely un- usual as most specimens are sized dwarfish to small. Thus, no literature could be found that dealt with very large-sized rasenoid ammonites. As for the differential diagnosis, a possible affiliation to the subgenera Rasenia, Prorasenia, Semirasenia, Involuticeras and to the genera of Aulacostephanus und Ringsteadia can be excluded, 1GWU Geologie-Wasser-Umwelt-GmbH, Bayerhamerstraße 57, A-5020 Salzburg — thomas.
    [Show full text]
  • (AMMONOIDEA) the Hypothesis of Sexual Dimorphis
    ACT A PAL A EON T 0 LOG I CAP 0 LON ICA Vol. 21 1 976 No 1 WOJCIECH BROCHWICZ-LEWINSKI & ZDZISLAW ROZAK SOME DIFFICULTIES IN RECOGNITION OF SEXUAL DIMORPHISM IN JURASSIC PERISPHINCTIDS (AMMONOIDEA) Abstract. - The recent studies on perisphinctids have shown repeated occurrence of peristomal modifications and thus their limited reliability as a sign of ceasing of shell growth. Moreover, they have shown a trend to disappearance of the lappets at larger shell diameters. New evidence for the occurrence of the lappets on small-sized "macroconchs" is given and the transition from "micro-" to "macroconchs" seems possible. It is concluded that the perisphinctids may represent a new type of dimor­ phism not encountered in other groups of ammonites and that the Makowski-Callo­ mon hypothesis of the sexual dimorphism is not so universal as it was considered to be. The criterion of identity of inner whorls may be applied in the systematics of ammonites without making reference to the dimorphism as it was applied by Neumayr (1873) and Siemiradzki (1891). INTRODUCTION The hypothesis of sexual dimorphism in ammonites, put fOll"ward in the XIX C., revived and attracted much attention thanks to the papers by Ma­ kowski (1962) and Callomon (1963). The premise for differentiation of the dimorphism was the cooccurrence of two groups of ammonites differing in the ultimate shell size, ornamentation of outer whorl(s) and the type of pe­ ristomal modifications and displaying identical or practically indistinguis­ hable inner whmls (Makowski, 1962; Callomon, 1963, 1969; and others). The dimorphism was interpreted as sexual in nature.
    [Show full text]