Chapter 4 Digital Transmission

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Digital Transmission Chapter 4 Digital Transmission Digital-to-Digital Conversion Analog-to-Digital Conversion Transmission Modes Wireless System Lab, NCNU 1 Digital Transmission Before transmission, information is converted to Digital signal Analog signal Chapter 3 discusses advantages of digital transmission over analog transmission. Techniques used to transmit data digitally Digital-to-digital conversion. Analog-to-digital conversion. Transmission modes of data transmission. Wireless System Lab, NCNU 2 Digital Transmission Before transmission, information is converted to Digital signal Analog signal Chapter 3 discusses advantages of digital transmission over analog transmission. Techniques used to transmit data digitally Digital-to-digital conversion. Analog-to-digital conversion. Transmission modes of data transmission. Wireless System Lab, NCNU 3 Chapter 4 Digital Transmission Digital-to-Digital Conversion Wireless System Lab, NCNU 4 Digital-to-Digital Conversion How to represent digital data (0101011 bit stream) by using digital signals. Three techniques: Line coding Block coding Scrambling Line coding is always needed; block coding and scrambling may or may not be needed. Wireless System Lab, NCNU 5 Line Coding and Decoding Digital data: text, numbers, images, audio, or video, are converted as bit stream. Sender encodes digital data into digital signal. Receiver decodes the digital signal to digital data. Line coding maps binary information sequence into digital signal. (絞肉機) Ex: “1” mapped to +A square pulse; “0” to –A pulse Wireless System Lab, NCNU 6 Signal Element versus Data Element Data element The smallest entity that can represent a piece of information: this is bit. Signal element The shortest unit (timewise) of a digital signal. In other words Data element are what we need to send. Signal elements are what we can send. Wireless System Lab, NCNU 7 Signal Element v.s. Data Element A signal element (signal) can carry multiple data elements (bits). It is not an 1-to-1 mapping. Wireless System Lab, NCNU 8 Data Rate v.s. Signal Rate Data rate (bit rate) The number of data elements (bits) sent in 1s The unit is bits per second (bps) Called bit rate Signal rate (baud rate) The number of signal elements sent in 1s The unit is the baud Signal rate is sometimes called the pulse rate, the modulation rate, or the baud rate Wireless System Lab, NCNU 9 Data Rate v.s. Signal Rate A signal carries r data bits, bit rate = r * signal rate. Although the actual bandwidth of a digital signal is infinite, the effective bandwidth is finite. The signal rate determines the effective bandwidth of digital signal. Which one is better? (c: 4bits in 2 signals, d: 4bits in 3 signals) Wireless System Lab, NCNU 10 Main Considerations of Line Code Transmitted power: Power consumption = $ Bit timing: Level transitions in signal (“+A””-A”) can help timing recovery Bandwidth efficiency: Excessive transitions wastes bw Low frequency content (DC component): Long periods of +A or of –A Waveform should not have low-frequency content, which cannot go through transformer and capacitor Built-in error detection. Immunity to Noise and Interference. Complexity/cost: Is the code implementable in chip? Wireless System Lab, NCNU 11 DC Components DC Components When the voltage level in a digital signal is constant for a while, the spectrum creates very low frequencies (results of Fourier analysis). These frequencies around zero, call DC (direct- current) components. A channel may not pass low frequencies. Ex: telephone line cannot pass frequencies below 200 Hz. A system that uses electrical coupling. (Lower frequencies cannot go through a transformer or capacitor). Wireless System Lab, NCNU 12 Self-synchronization To correctly interpret the signals from the sender, the receiver's bit intervals must correspond exactly to the sender's bit intervals. If faster or slower, the bit intervals are not matched and the receiver might misinterpret the signals. Self-synchronization Digital signal includes timing information in the data being transmitted. This can be achieved if there are transitions in the signal that alert the receiver to the beginning, middle, or end of the pulse. Wireless System Lab, NCNU 13 Effect of Lack of Synchronization Bit intervals are different in the following example. Wireless System Lab, NCNU 14 Self-synchronization in Coding A widely-used coding scheme 0: negative, 1: positive. Without self-synchronization: If a string of “1”. 1 1 Which one? 1 1 1 1 1 With self-synchronization: Transitions (“+””-”) can provide timing information. If a string of “1”. 1 1 1 1 1 Wireless System Lab, NCNU 15 Example In a digital transmission, the receiver clock is 0.1 percent faster than the sender clock. How many extra bits per second does the receiver receive if the data rate is 1 kbps? How many if the data rate is 1 Mbps? Solution At 1 kbps, the receiver receives 1001 bps instead of 1000 bps. (103*0.1%=1) At 1 Mbps, the receiver receives 1,001,000 bps instead of 1,000,000 bps. (106*0.1%=1000) Wireless System Lab, NCNU 16 Typical Line Coding Schemes Wireless System Lab, NCNU 17 Line coding examples 1 0 1 0 1 1 1 0 0 Unipolar NRZ Polar NRZ NRZ-inverted (differential encoding) Bipolar encoding Manchester encoding Differential Manchester encoding Wireless System Lab, NCNU 18 Spectra of Line codes Assume 1s & 0s independent & equally-probable NRZ has high content at low frequency Bipolar tightly packed around ½ fT 1.2 Manchester wastes bandwidth NRZ 1 0.8 Bipolar 0.6 0.4 Manchester pow erdensity 0.2 0 0 1 2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 -0.2 0.2 fT Wireless System Lab, NCNU 19 Unipolar NRZ Scheme “1” maps to +V pulse, “0” maps to no pulse Unipolar (單極性): all the signal levels are on one side of the time axis, either above or below. NRZ: non-return-to-zero (during a bit interval) Wireless System Lab, NCNU 20 Properties of Unipolar NRZ High average Power: 0.5*V2 +0.5*02=V2/2 Long strings of “1” or “0” Poor timing Low-frequency content Simple Bit rate = signal rate. Wireless System Lab, NCNU 21 Polar NRZ Scheme 1 0 1 0 1 1 1 0 0 Unipolar NRZ Polar NRZ “1” maps to +V/2 pulse, “0” maps to –V/2 pulse Polar (極性): Voltages are on the both sides of the time axis. (e.g., ”1”: positive; “0”: negative) Better Average Power: 0.5*(V/2)2 +0.5*(-V/2)2=V2/4 Long strings of +V/2 or –V/2 Poor timing Low-frequency content Simple Wireless System Lab, NCNU 22 Polar NRZ-L and NRZ-I Schemes NRZ-L (NRZ-Level) : Voltage level determines the value of the bit. NRZ-I (NRZ-Invert) : Whether inversion or not determines the value of the bit. (No inversion: 0, inversion:1) NRZ-L and NRZ-I have a DC component problem. (PSD) Most of the energy is concentrated in frequencies between 0 and NI2. Wireless System Lab, NCNU 23 Problems in Polar NRZ-L and NRZ-I Synchronization problem: Long string of “0” in both schemes. Long string of “1” affects only NRZ-L. Sudden change of polarity 0: negative, 1: positive 1: negative, 0: positive Only affects NRZ-L. Wireless System Lab, NCNU 24 RZ scheme NRZ RZ Synchronization issue in NRZ: The receiver does not know when one bit ends and the next bit is starting. One possible solution: Return-to-zero (RZ) uses three values: positive, negative, and zero. Signal goes to 0 in the middle of each bit until the next bit. Bit rate = ½ signal rate. Wireless System Lab, NCNU 25 Polar RZ scheme No DC component (see its PSD). Disadvantages: two signal changes to encode a bit and therefore occupies greater bandwidth. Complexity: RZ uses three levels of voltage, more complex to create and detect. Not used today. Replaced by the better-performing Manchester schemes. Wireless System Lab, NCNU 26 Biphase: Manchester and Differential Manchester Manchester Differential Manchester Biphase: The voltage remains at one level during the first half, and transits to the other level in the second half. Transition at the middle of bit provides synchronization. Differential Manchester: the bit values are determined at the beginning of the bit. Next bit: “0”, transition; “1” no transition. Wireless System Lab, NCNU 27 Properties of Manchester and Differential Manchester No DC component. Disadvantage: Min. bandwidth of Manchester and differential Manchester is twice that of NRZ. Bit rate = ½ signal rate. Wireless System Lab, NCNU 28 Bipolar Code 1 0 1 0 1 1 1 0 0 Bipolar Encoding Three signal levels: {-A, 0, +A}. (Multilevel binary) “1” maps to +A or –A in alternation “0” maps to no pulse Every +pulse matched by –pulse so little content at low frequencies String of 1s will not produce a square wave Long string of 0s causes receiver to lose synch Wireless System Lab, NCNU 29 Bipolar Schemes: AMI and Pseudoternary Alternate mark inversion (AMI): “0”: zero voltage. “1”: alternating positive and negative voltages. Pseudoternary: “1”: zero. “0”: alternating positive and negative. No DC component. Spectrum centered at N/2 Wireless System Lab, NCNU 30 Average Bandwidth 1 0 1 0 1 1 1 0 0 Unipolar NRZ Polar NRZ NRZ-inverted Bipolar encoding Data rate = N. (r=1) Signal rate = N. (determining the bandwidth) By Nyquist bit rate formula: (a rough evaluation.) Rmax = 2*Bandwidth*log2L. N = 2*Bandwidth*log22 Bandwidth = N/2. Wireless System Lab, NCNU 31 Average Bandwidth 1 0 1 0 1 1 1 0 0 Manchester encoding Differential Manchester encoding Data rate = N. Signal rate = 2N. (r=½ ) By Nyquist bit rate formula: 2N = 2*Bandwidth*log22 BW = N.
Recommended publications
  • Development of an SNMP Managing Application for Adaptation of Coding & Modulation on DVB-S Satellite Modems Is Structured As Follows
    Development of an SNMP Managing Application for Adaptation of Coding & Modulation on DVB-S Satellite Modems by Dipl.-Ing. Dr.techn. Gerhard VRISK Submitted in a partial fulfilment of the requirements for the degree of Master of Sciences of the Post-graduate University Course Space Sciences (Main Track: Space Communication and Navigation ) Karl-Franzens University of Graz Graz, Austria 2009 Acknowledgments / Danksagung This master thesis has been written at the IKS ( Institute of Communication Networks and Satellite Communications / Institut für Kommunikationsnetze und Satellitenkommunikation ) at Graz University of Technology in the years 2009. First, I would like to thank my thesis advisor, Univ.-Prof. Dipl.-Ing. Dr. Otto Koudelka, Chair of the IKS, who offered me to work on this subject. Furthermore, I would like to thank (em.)Univ.-Prof. DDr. Willibald Riedler, retired Director of the former Institute of Communications and Wave Propagation at the Technical University of Graz and retired Director of the Space Research Institute of the Austrian Academy of Sciences, for his complaisant attendance to act as 2nd reviewer of this master thesis. Last but not least I would like to thank Univ.-Prof. Dr. Helmut Rucker, Research Director at the Space Research Institute of the Austrian Academy of Sciences, especially for his support during the course and generally for organization and managing the 4th MSc University Course Space Sciences . A big kiss goes to my wife Gerlinde for her support und patience during my studies and for the photographs, too. Am Schluss möchte ich mich noch bei meinen Eltern bedanken, für all die Förderung von früh an und für ihre Unterstützung während meinen Studienzeiten.
    [Show full text]
  • Shahabi-Adib-Masc-ECE-August
    A New Line Code for a Digital Communication System by Adib Shahabi Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science at Dalhousie University Halifax, Nova Scotia August 2019 © Copyright by Adib Shahabi, 2019 To my wife Shahideh ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ v LIST OF FIGURES .......................................................................................................... vi ABSTRACT ....................................................................................................................viii LIST OF ABBREVIATIONS USED ............................................................................... ix ACKNOWLEDGEMENTS ............................................................................................... x CHAPTER 1 INTRODUCTION ....................................................................................... 1 1.1 BACKGROUND ........................................................................................... 1 1.2 THESIS SYNOPSIS ...................................................................................... 4 1.3 ORGANIZATION OF THE THESIS ............................................................ 5 CHAPTER 2 MODELLING THE LINE CHANNEL ....................................................... 7 2.1 CABLE MODELLING .................................................................................. 7 2.2 TRANSFORMER COUPLING ..................................................................
    [Show full text]
  • Digital Transmission 01204325 Data Communications and Computer Networks
    Digital Transmission 01204325 Data Communications and Computer Networks Chaiporn Jaikaeo Department of Computer Engineering Kasetsart University Based on lecture materials from Data Communications and Networking, 5th ed., Behrouz A. Forouzan, McGraw Hill, 2012. Revised 2021-05-07 Outline • Line coding • Encoding considerations • DC components in signals • Synchronization • Various line coding methods • Analog to digital conversion 2 Line Coding • Process of converting binary data to digital signal 3 Signal vs. Data Elements 1 data element = 1 symbol 4 Encoding Considerations • Signal spectrum ◦ Lack of DC components ◦ Lack of high frequency components • Clocking/synchronization • Error detection • Noise immunity • Cost and complexity 5 DC Components • DC components in signals are not desirable ◦ Cannot pass thru certain devices ◦ Leave extra (useless) energy on the line ◦ Voltage built up due to stray capacitance in long cables v Signal with t DC component v Signal without t DC component 6 Synchronization • To correctly decode a signal, receiver and sender must agree on bit interval 0 1 0 0 1 1 0 1 Sender sends: v 01001101 t 0 1 0 0 0 1 1 0 1 1 Receiver sees: v 0100011011 t 7 Providing Synchronization • Separate clock wire Sender data Receiver clock • Self-synchronization 0 1 0 0 1 1 0 1 v t 8 Line Coding Methods • Unipolar ◦ Uses only one voltage level (one side of time axis) • Polar ◦ Uses two voltage levels (negative and positive) ◦ E.g., NRZ, RZ, Manchester, Differential Manchester • Bipolar ◦ Uses three voltage levels (+, 0, and
    [Show full text]
  • Criteria for Choosing Line Codes in Data Communication
    ISTANBUL UNIVERSITY – YEAR : 2003 (843-857) JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING VOLUME : 3 NUMBER : 2 CRITERIA FOR CHOOSING LINE CODES IN DATA COMMUNICATION Demir Öner Istanbul University, Engineering Faculty, Electrical and Electronics Engineering Department Avcılar, 34850, İstanbul, Turkey E-mail: [email protected] ABSTRACT In this paper, line codes used in data communication are investigated. The need for the line codes is emphasized, classification of line codes is presented, coding techniques of widely used line codes are explained with their advantages and disadvantages and criteria for chosing a line code are given. Keywords: Line codes, correlative coding, criteria for chosing line codes.. coding is either performed just before the 1. INTRODUCTION modulation or it is combined with the modulation process. The place of line coding in High-voltage-high-power pulse current The transmission systems is shown in Figure 1. purpose of applying line coding to digital signals before transmission is to reduce the undesirable The line coder at the transmitter and the effects of transmission medium such as noise, corresponding decoder at the receiver must attenuation, distortion and interference and to operate at the transmitted symbol rate. For this ensure reliable transmission by putting the signal reason, epecially for high-speed systems, a into a form that is suitable for the properties of reasonably simple design is usually essential. the transmission medium. For example, a sampled and quantized signal is not in a suitable form for transmission. Such a signal can be put 2. ISSUES TO BE CONSIDERED IN into a more suitable form by coding the LINE CODING quantized samples.
    [Show full text]
  • Telematics Chapter 3: Physical Layer
    Telematics User Server watching with video Chapter 3: Physical Layer video clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Computer Systems and Telematics (CST) Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Theoretical Basis for Data Communication ● Analog Data and Digital Signals ● Data Encoding ● Transmission Media ● Guided Transmission Media ● Wireless Transmission (see Mobile Communications) ● The Last Mile Problem ● Multiplexing ● Integrated Services Digital Network (ISDN) ● Digital Subscriber Line (DSL) ● Mobile Telephone System Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.3 Design Issues ● Connection parameters ● mechanical OSI Reference Model ● electric and electronic Application Layer ● functional and procedural Presentation Layer ● More detailed ● Physical transmission medium (copper cable, Session Layer optical fiber, radio, ...) ● Pin usage in network connectors Transport Layer ● Representation of raw bits (code, voltage,…) Network Layer ● Data rate ● Control of bit flow: Data Link Layer ● serial or parallel transmission of bits Physical Layer ● synchronous or asynchronous transmission ● simplex, half-duplex, or full-duplex transmission mode Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.4 Design Issues Transmitter Receiver Source Transmission System Destination NIC NIC Input Abcdef djasdja dak jd ashda kshd akjsd asdkjhasjd as kdjh askjda Univ.-Prof.
    [Show full text]
  • An Efficient Utilization of Power Spectrum Density for Smart Cities
    sensors Article Moving towards IoT Based Digital Communication: An Efficient Utilization of Power Spectrum Density for Smart Cities Tariq Ali 1,*, Abdullah S. Alwadie 1, Abdul Rasheed Rizwan 2, Ahthasham Sajid 3 , Muhammad Irfan 1 and Muhammad Awais 4 1 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; [email protected] (A.S.A.); [email protected] (M.I.) 2 Department of Computer Science, Punjab Education System, Depaalpur 56180, Pakistan; [email protected] 3 Department of Computer Science, Faculty of ICT, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan; [email protected] 4 School of Computing and Communications, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK; [email protected] * Correspondence: [email protected] Received: 8 April 2020; Accepted: 14 May 2020; Published: 18 May 2020 Abstract: The future of the Internet of Things (IoT) is interlinked with digital communication in smart cities. The digital signal power spectrum of smart IoT devices is greatly needed to provide communication support. The line codes play a significant role in data bit transmission in digital communication. The existing line-coding techniques are designed for traditional computing network technology and power spectrum density to translate data bits into a signal using various line code waveforms. The existing line-code techniques have multiple kinds of issues, such as the utilization of bandwidth, connection synchronization (CS), the direct current (DC) component, and power spectrum density (PSD). These highlighted issues are not adequate in IoT devices in smart cities due to their small size.
    [Show full text]
  • CODING for Transmission
    CODING for Transmission Professor Izzat Darwazeh Head of Communicaons and Informaon System Group University College London [email protected] Acknowledgement: Dr A. Chorti, Princeton University for slides on FEC coding Dr P.Moreira, CERN, for slides on the CERN Gigabit Transmitter (GBT) Dr J. Mitchell, UCL, for the sampled music and voice. June 2011 Coding • Defini7ons and basic concepts • Source coding • Line coding • Error control coding Digital Line System Message Message source Distortion, sink interference Input Output signal and noise signal Encoder- Demodulator modulator -decoder Communication Transmitted channel Received signal signal Claude Shannon • Shannon’s Theorem predicts reliable communicaon in the presence of noise “Given a discrete, memoryless channel with capacity C, and a source with a posi8ve rate R (R<C), there exist a code such that the output of the source can be transmi@ed over the channel with an arbitrarily small probability of error.” • B is the channel bandwidth in Hz and S/N is the signal power to noise power rao ⎛⎞S CBc =+log2 ⎜⎟ 1 ⎝⎠N Types of Coding • Source Coding – Encoding the raw data • Line (or channel) Coding – Formang of the data stream to benefit transmission • Error Detec7on Coding – Detec7on of errors in the data seQuence • Error Correcon Coding – Detec7on and Correc7on of Errors • Spread Spectrum Coding – Used for wireless communicaons Signals and sources: Discrete - Con8nuous m(t) n Continuous Time and Amplitude n Discrete Time, continuous Amplitude – PAM signal n Discrete Time, and Amplitude
    [Show full text]
  • 4.1 DIGITAL-TO-DIGITAL CONVERSION in Chapter 3, We Discussed Data and Signals
    A computer network is designed to send information from one point to another. This information needs to be converted to either a digital signal or an analog signal for trans• mission. In this chapter, we discuss the first choice, conversion to digital signals; in Chapter 5, we discuss the second choice, conversion to analog signals. We discussed the advantages and disadvantages of digital transmission over analog transmission in Chapter 3. In this chapter, we show the schemes and techniques that we use to transmit data digitally. First, we discuss digital-to-digital conversion tech• niques, methods which convert digital data to digital signals. Second, we discuss analog- to-digital conversion techniques, methods which change an analog signal to a digital signal. Finally, we discuss transmission modes. 4.1 DIGITAL-TO-DIGITAL CONVERSION In Chapter 3, we discussed data and signals. We said that data can be either digital or analog. We also said that signals that represent data can also be digital or analog. In this section, we see how we can represent digital data by using digital signals. The conver• sion involves three techniques: line coding, block coding, and scrambling. Line coding is always needed; block coding and scrambling may or may not be needed. Line Coding Line coding is the process of converting digital data to digital signals. We assume that data, in the form of text, numbers, graphical images, audio, or video, are stored in com• puter memory as sequences of bits (see Chapter 1). Line coding converts a sequence of bits to a digital signal. At the sender, digital data are encoded into a digital signal; at the receiver, the digital data are recreated by decoding the digital signal.
    [Show full text]
  • UNIT: 3 Digital and Analog Transmission
    UNIT: 3 Digital and Analog Transmission DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. Figure 5.1 shows the relationship between the digital information, the digital-to-analog modulating process, and the resultant analog signal. A sine wave is defined by three characteristics: amplitude, frequency, and phase. When we vary anyone of these characteristics, we create a different version of that wave. So, by changing one characteristic of a simple electric signal, we can use it to represent digital data. Before we discuss specific methods of digital-to-analog modulation, two basic issues must be reviewed: bit and baud rates and the carrier signal. Aspects of Digital-to-Analog Conversion Before we discuss specific methods of digital-to-analog modulation, two basic issues must be reviewed: bit and baud rates and the carrier signal. Data Element Versus Signal Element Data element is the smallest piece of information to be exchanged, the bit. We also defined a signal element as the smallest unit of a signal that is constant. Data Rate Versus Signal Rate We can define the data rate (bit rate) and the signal rate (baud rate). The relationship between them is S= N/r baud where N is the data rate (bps) and r is the number of data elements carried in one signal element. The value of r in analog transmission is r =log2 L, where L is the type of signal element, not the level. Carrier Signal In analog transmission, the sending device produces a high-frequency signal that acts as a base for the information signal.
    [Show full text]
  • ETRI PHY Proposal on VLC Line Code for Illumination
    September 2009 doc.: IEEE 802.15-09-0675-00-0007 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ETRI PHY Proposal on VLC Line Code for Illumination] Date Submitted: [23 September, 2009] Source: [Dae Ho Kim, Tae-Gyu Kang, Sang-Kyu Lim, Ill Soon Jang, Dong Won Han] Company [ETRI] Address [138 Gajeongno, Yuseong-gu, Daejeon, 305-700] Voice:[+82-42-860-5648], FAX: [+82-42-860-5218], E-Mail:[[email protected]] Re: [Response to call for proposals] Abstract: [This document describes a proposal of PHY line code for LED illumination ] Purpose: [Proposal to IEEE 802.15.7 VLC TG]] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. TG VLC Submission Slide 1 Dae-Ho Kim, ETRI September 2009 doc.: IEEE 802.15-09-0675-00-0007 ETRI PHY Proposal on VLC Line code for Illumination Dae Ho Kim [email protected] ETRI TG VLC Submission Slide 2 Dae-Ho Kim, ETRI September 2009 doc.: IEEE 802.15-09-0675-00-0007 Contents • ETRI PHY Considerations and Scope • Summary of ETRI PHY Proposal • Flickering issue at LED illumination • Proposed Line Code – Modified-4B5B
    [Show full text]
  • Modulation  Copper Access Technologies  Wireless Subscriber Line  Cable Television
    Dr. Beinschróth József Telecommunication informatics I. Part 2 ÓE-KVK Budapest, 2019. Dr. Beinschróth József: : Telecommunication informatics I. Content Network architectures: collection of recommendations The Physical Layer: transporting bits The Data Link Layer: Logical Link Control and Media Access Control Examles for technologies based on the Data Link Layer The Network Layer 1: functions and protocols The Network Layer 2: routing Examle for technology based on the Network Layer The Transport Layer The Application Layer Criptography IPSec, VPN and border protection QoS and multimedia Additional chapters Dr. Beinschróth József: : Telecommunication informatics I. 2 Content of this chapter (1) Network models Theory Media for Data Transmission Twisted Pair Coaxial cable and optical fiber Wireless Data transmission Network topology PSTN Data Transmission Main Parameters of the Physical Layer Mechanical and electrical parameters Functional parameters Approaching from the physical layer Baseband transmission Bitflow (stream) transmission with modulation Copper access technologies Wireless subscriber line Cable Television Dr. Beinschróth József: : Telecommunication informatics I. 3 The physical layer: The lowest layer of the OSI model OSI TCP/IP Hybrid Application Layer Presentation Layer Application Layer Application Layer Session Layer Transport Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Network
    [Show full text]
  • IEEE802.3Z Gigabit Ethernet UTP5 Proposal V2.0 November, 1996
    IEEE802.3z Gigabit Ethernet UTP5 Proposal V2.0 Project: IEEE 802.3z Gigabit Ethernet Task Force Source: Steve Dabecki ([email protected]) Barry Hagglund ([email protected]) Richard Cam ([email protected]) Vern Little ([email protected]) Iain Verigin ([email protected]) PMC-Sierra Inc 105-8555 Baxter Place Burnaby BC Canada V5A 4V7 Tel: 604.415.6000 Web: http://www.pmc-sierra.com Title: Physical Layer Proposal for 1 Gbit/s Full / Half Duplex Ethernet Transmission over Single (4-pair) or Dual (8-pair) UTP-5 Cable. Issue: 2.0 Date: November 11-14, 1996 Abstract The extension of the current IEEE802.3 specifications to support a bit rate of 1Gbps is currently under investigation by the HSSG. These bit rates are regarded to be essential to support the high bandwidth requirements of mixed 10BASE and 100BASE networks, and many applications requiring a dedicated high speed link to a server. The HSSG has already made excellent progress in the way of defining 1000BASE for fibre. This contribution outlines an approach for supporting 1Gbps, either half or full- duplex, over single (4-pair) or dual (8-pair) unshielded twisted pair category 5 (UTP-5) cable. Notice This contribution has been prepared to assist the IEEE802.3z HSSG. This document is offered to the IEEE802.3z HSSG as a basis for discussion and is not a binding proposal on PMC-Sierra, Inc. or any other company. The statements are subject to change in form and/or content after further study. Specifically, PMC-Sierra, Inc.
    [Show full text]