Ecological Coassociations Influence Species Responses To
Molecular Ecology (2013) 22, 3345–3361 doi: 10.1111/mec.12318 Ecological coassociations influence species’ responses to past climatic change: an example from a Sonoran Desert bark beetle RYAN C. GARRICK,* JOHN D. NASON,† JUAN F. FERNANDEZ-MANJARRES‡ and RODNEY J. DYER§ *Department of Biology, University of Mississippi, Oxford, MS 38677, USA, †Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA, ‡Laboratoire d’Ecologie, Systematique et Evolution, UMR CNRS 8079, B^at 360, Universite Paris-Sud 11, 91405, Orsay Cedex, France, §Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA Abstract Ecologically interacting species may have phylogeographical histories that are shaped both by features of their abiotic landscape and by biotic constraints imposed by their coassociation. The Baja California peninsula provides an excellent opportunity to exam- ine the influence of abiotic vs. biotic factors on patterns of diversity in plant-insect spe- cies. This is because past climatic and geological changes impacted the genetic structure of plants quite differently to that of codistributed free-living animals (e.g. herpetofauna and small mammals). Thus, ‘plant-like’ patterns should be discernible in host-specific insect herbivores. Here, we investigate the population history of a monophagous bark beetle, Araptus attenuatus, and consider drivers of phylogeographical patterns in the light of previous work on its host plant, Euphorbia lomelii. Using a combination of phylogenetic, coalescent-simulation-based and exploratory analyses of mitochondrial DNA sequences and nuclear genotypic data, we found that the evolutionary history of A. attenuatus exhibits similarities to its host plant that are attributable to both biotic and abiotic processes.
[Show full text]