An Anecdote on Mādhava School of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

An Anecdote on Mādhava School of Mathematics Insight: An International Journal for Arts and Humanities Peer Reviewed and Refereed Vol: 1; Issue: 3 ISSN: 2582-8002 An Anecdote on Mādhava School of Mathematics Athira K Babu Research Scholar, Department of Sanskrit Sahitya, Sree Sankaracharya University of Sanskrit, Kalady, Abstract The Sanskrit term ‘Gaṇitaśāstra’, meaning literally the “science of calculation” is used for mathematics. The mathematical tradition of ancient India is an ocean of knowledge that is dealing with many topics such as the Vedic, Jain and Buddhist traditions, the mathematical astronomy, The Bhakshali manuscripts, The Kerala School of mathematics and the like. Thus India has made a valuable contribution to the world of mathematics. The origin and development of Indian mathematics are connected with Jyotiśāstra1. This paper tries to deconstructing the concept of mathematical tradition of Kerala with respect to Niḷā valley civilization especially under the background of medieval Kerala and also tries to look into the Mādhava School of mathematics through the life and works of great mathematician Mādhava of Saṅgamagrāma and his pupils who lived in and around the river Niḷā. Keywords: Niḷā, Literature review, Mathematical Tradition of medieval Kerala, Mādhava of Saṅgamagrāma, Great lineage of Mādhava. Introduction Niḷā, the Nile of Kerala is famous for the great ‘Māmāṅkam’ festival. The word ‘Niḷā’point out a culture more than just a river. It has a great role in the formation of the cultural life of south Malabar part of Kerala. It could be seen that the word ‘Peraar’ indicating the same river in ancient scripts and documents. The Niḷā is the life line of many places such as Chittur, Ottappalam, Shornur, Cheruthuruthy, Pattambi, Thrithala, Thiruvegappura, Kudallur, Pallippuram, Kumbidi, 1 The Sanskrit word used for Astronomy is Jyotiśāstra. In ancient times Jyotiśāstra was treated as a part of Jyotiṣa which deals with all aspects of Astronomy. Śāstra is the word used to denote science in India. But the meaning of science in western context is quite different from that of śāstra. The word śāstra derived from the root śās which means some rules about a particular knowledge. Jyotiśāstra is the study of the sun moons, stars, planets, comets, galaxies, dust and other non- earthly bodies and phenomena, or may be defined as the scientific study of celestial bodies. It is one of the oldest sciences. It is one of the oldest sciences. Indian Astronomy continues to play an integral role from prehistoric to modern times. Indian astronomers and astronomy credited with interesting theories and discoveries. Page | 180 Insight: An International Journal for Arts and Humanities Peer Reviewed and Refereed Vol: 1; Issue: 3 ISSN: 2582-8002 Thirunavaya, Alathiyur, Trikkandiyur and Kottakkal which has a great cultural and scientific tradition. Literature Review In 1832, a paper ‘On the Hindu Quadrature of the Circle, and the Infinite Series of the Proportion of the Circumference to the Diameter Exhibited in the Four Sastras, the Tantra Sangraham, Yucti Bhasha, Carana Padhati, and Sadratnamala’ was presented by Charles M. Whish at the Royal Asiatic Society in London. 2 It was a pioneer work in highlighting the mathematical arena of Kerala. The eminent scholars Rama Varma Maru Tampuran, Akhilesvara Ayyar, C. T. Rajagopal, T. A. Sarasvati Amma, R. C. Gupta, K. V. Sarma, S. Madhavan, George Ghevarghese Joseph and the like have done several noteworthy efforts to spread out a light in the mathematical tradition of Niḷā Basin. This noteworthy efforts and works help to reveal the vital role and contributions of mathematicians Saṅgamagrāma Mādhava, Vaṭaśśeri Parameśvara, Nīlakaṇṭha Somayāji, Jyeṣṭhadeva and the like who lived in and around the Niḷā valley. More precisely it can be said that the mathematical tradition of Kerala flourished in and around Niḷā basin. Among these mathematicians Saṅgamagrāma Mādhava has a significant place. Due to the presence of the great mathematician Āryabhaṭa in the writings of Kerala mathematicians, Sarasvati Amma refers to that mathematical tradition as Āryabhaṭa School. Some scholars say it as Kerala School; without consider both history and geography. Kim Plofker, in her work ‘Mathematics in India’ names this as ‘School of Mādhava’. Before this, in ‘Mathematics of India: Concepts, Methods, Connections’, P. P. Divakaran prefers to call this the Niḷā School. Mathematical tradition of Medieval Kerala In the beginning of the seventh chapter of the book ‘Indian Mathematics’, Kim Plofker says: “Probably the most famous school in Indian mathematics, and the one that produced many of its most remarkable discoveries, is the guru-paraṃparā or “chain of teachers” originating with Mādhava in the late fourteenth century and continuing at least into the beginning of the seventeenth. These scholars lived in the region known as Kerala on the southwestern coast of India, in its central part between modern Kochi (or Cochin) and 2 Charles M Whish (1794-1833), who was appointed as a civil servant by the Madras Establishment of the East India Company in Kochi, near to the old capital of Mahodayapuram. In 1832, he presented a paper at the Royal Asiatic Society in London on four manuscripts, which are collected by him in Malabar. The manuscripts were Nīlakaṇṭha's Tantrasaṅgraha , Jyeṣṭhadeva's Yuktibhāṣa (a Malayalam text), Nīlakaṇṭha Somayājī's Karaṇapaddhati, Śaṅkara Varmā's Sadratnamālā . The first two of them are the key text of the Niḷā corpus. Page | 181 Insight: An International Journal for Arts and Humanities Peer Reviewed and Refereed Vol: 1; Issue: 3 ISSN: 2582-8002 Kozhikode (or Calicut). What survives of their work includes writings in Sanskrit and in the local Dravidian vernacular called Malayalam. In astronomy they are generally considered to be followers of the Ārya-pakṣa, but they also wrote on texts in other pakṣas, as well as on astronomical systems unique to Kerala. A narrow strip of land between the Western Ghats Mountains and the Arabian Sea, Kerala in the mid-second millennium maintained a distinct regional culture without being entirely isolated from the neighboring parts of southern India. Moreover, its pepper production and geographical location had made it a major international hub, with trading connections stretching back for many centuries. ” (Plofker 2009, 218) This quote hints the fact about that Kerala, where the śāstras like Astronomy, Mathematics and Ayurveda have been flourished in a traditional lineage of guruśiṣyaparaṃparā and its possible knowledge transmission to other parts of the world; influence of Āryabhaṭa and other Indian scholars and the like. Kerala School has credited with a number of commentaries and original works related to Mathematics and Astronomy; which were based on Āryabhaṭīya, Laghubhāskarīya, Mahābhāskarīya, Bṛhajjātaka and the like. Especially a number of astronomical works are produced from Kerala School by the influence of Āryabhaṭa. Most of the available commentaries on the Āryabhaṭīya have been written by the scholars such as Vaṭaśśeri Parameśvara, Nīlakaṇṭha Somayājī and the like and they have generally made the correction, supplementation and revision of Āryabhaṭa system in order to get accuracy in results. Parahita system is an example for the correction to the Āryabhaṭa system. The system put forward the correction called bhaṭābdasaṃskāra or śakābdasamskāra which presents all the data, directions and sine tables necessary for the computation of the planets. The system is introduced by Haridatta through his astronomical works Grahacāranibandhana and Mahāmārganibandhana at the occasion of the great Māmāṅkam festival. Saṅkara Varma in his Sadratnamālā says about this Māmāṅkam event as follows: आचार्ाार्ाभटप्रणीतगणणतं प्रार्ः स्फुटं तत् खलु गोत्रोत्तु敍गणिताब्दके व्यणभचरन् ब्रह्माददणिद्धाꅍतके । दृ嵍वैषम्र्वशाद् िहास्थलणिते क쥍र्ब्धके णनणितः िंस्कारो णवबुधैर्ातः परणहत配वं तेषु वीनेष्वर्ि् ।। Later this system gave way to the Dṛggaṇita system introduced by Parameśvara who revised the Parahita system. Page | 182 Insight: An International Journal for Arts and Humanities Peer Reviewed and Refereed Vol: 1; Issue: 3 ISSN: 2582-8002 Āryabhaṭa introduced a numeral system based on the Sanskrit alphabets and the schemes of representation of values of this system are shown below: Ña Ka=1 Kha=2 Ga=3 Gha=4 Ṅa =5 Ca=6 Cha=7 Ja=8 Jha=9 =10 Ṭa Ṭha Ḍha Ṇa Ḍa =13 Ta=16 Tha=17 Da=18 Dha=19 Na=20 =11 =12 =14 =15 Pa=21 Pha=22 Ba=23 Bha=24 Ma=25 Ya=30 Ra=40 La=50 Va=60 Śa=70 Ṣa Sa=90 Ha=100 =80 The twenty-five Vargīyavyañjanas (stops both oral and nasal) from Ka to Ma are consisting of the five Vargas which represent numbers from one to twenty-five. The numbers from 26 to 29 and the numbers in between the other multiples of ten such as 31 to 39, 41 to 49, 51 to 59, etc. are represented by sequences of two letters. In this system, the numbers are to be read from backward, i.e. from right to left (aṅgānām vāmato gatiḥ). But it is difficult for pronunciation.3 Even though the Kerala astronomers had been the strong influence of the Āryabhaṭa School of astronomy, they didn’t follow the Āryabhaṭa system of numerals. Instead of that system, Kaṭapayādi system was used by them. This is an easy method of expressing numbers through letters. This is also a numeral system based on Sanskrit alphabets somewhere similar to Kacaṭapayādi system or Āryabhaṭa system. The system was more popular in south India, especially in Kerala. This is also termed as ‘Paralpperu’ or ‘Akṣarasaṃkhyā’. The legendary figure Vararuci is credited with this innovation. The value of letters in this system is as follows: 1 2 3 4 5 6 7 8 9 0 ka kha ga gha ṅa ca cha ja jha ña ṭa ṭha ḍa ḍha ṇa ta tha da dha na pa pha ba bha ma ya ra la va śa ṣa sa ha ḷa 3 Example: cakha =26 (ca=6, kha =2), gaja=83 (ga =3 ja =8) Page | 183 Insight: An International Journal for Arts and Humanities Peer Reviewed and Refereed Vol: 1; Issue: 3 ISSN: 2582-8002 The chronograms using the above systems are widely used to determine the date of the manuscripts and also of the inscriptions.
Recommended publications
  • 1. Essent Vol. 1
    ESSENT Society for Collaborative Research and Innovation, IIT Mandi Editor: Athar Aamir Khan Editorial Support: Hemant Jalota Tejas Lunawat Advisory Committee: Dr Venkata Krishnan, Indian Institute of Technology Mandi Dr Varun Dutt, Indian Institute of Technology Mandi Dr Manu V. Devadevan, Indian Institute of Technology Mandi Dr Suman, Indian Institute of Technology Mandi AcknowledgementAcknowledgements: Prof. Arghya Taraphdar, Indian Institute of Technology Kharagpur Dr Shail Shankar, Indian Institute of Technology Mandi Dr Rajeshwari Dutt, Indian Institute of Technology Mandi SCRI Support teamteam:::: Abhishek Kumar, Nagarjun Narayan, Avinash K. Chaudhary, Ankit Verma, Sourabh Singh, Chinmay Krishna, Chandan Satyarthi, Rajat Raj, Hrudaya Rn. Sahoo, Sarvesh K. Gupta, Gautam Vij, Devang Bacharwar, Sehaj Duggal, Gaurav Panwar, Sandesh K. Singh, Himanshu Ranjan, Swarna Latha, Kajal Meena, Shreya Tangri. ©SOCIETY FOR COLLABORATIVE RESEARCH AND INNOVATION (SCRI), IIT MANDI [email protected] Published in April 2013 Disclaimer: The views expressed in ESSENT belong to the authors and not to the Editorial board or the publishers. The publication of these views does not constitute endorsement by the magazine. The editorial board of ‘ESSENT’ does not represent or warrant that the information contained herein is in every respect accurate or complete and in no case are they responsible for any errors or omissions or for the results obtained from the use of such material. Readers are strongly advised to confirm the information contained herein with other dependable sources. ESSENT|Issue1|V ol1 ESSENT Society for Collaborative Research and Innovation, IIT Mandi CONTENTS Editorial 333 Innovation for a Better India Timothy A. Gonsalves, Director, Indian Institute of Technology Mandi 555 Research, Innovation and IIT Mandi 111111 Subrata Ray, School of Engineering, Indian Institute of Technology Mandi INTERVIEW with Nobel laureate, Professor Richard R.
    [Show full text]
  • Aryabhatiya with English Commentary
    ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11.
    [Show full text]
  • Kamala¯Kara Commentary on the Work, Called Tattvavivekodāharan
    K related to the Siddhānta-Tattvaviveka, one a regular Kamala¯kara commentary on the work, called Tattvavivekodāharan. a, and the other a supplement to that work, called Śes.āvasanā, in which he supplied elucidations and new K. V. SARMA material for a proper understanding of his main work. He held the Sūryasiddhānta in great esteem and also wrote a Kamalākara was one of the most erudite and forward- commentary on that work. looking Indian astronomers who flourished in Varanasi Kamalākara was a critic of Bhāskara and his during the seventeenth century. Belonging to Mahar- Siddhāntaśiroman. i, and an arch-rival of Munīśvara, a ashtrian stock, and born in about 1610, Kamalākara close follower of Bhāskara. This rivalry erupted into came from a long unbroken line of astronomers, bitter critiques on the astronomical front. Thus Ranga- originally settled at the village of Godā on the northern nātha, younger brother of Kamalākara, wrote, at the . banks of the river Godāvarī. Towards AD 1500, the insistence of the latter, a critique on Munīśvara’s Bhangī family migrated to Varanasi and came to be regarded as method (winding method) of true planets, entitled . reputed astronomers and astrologers. Kamalākara Bhangī-vibhangī (Defacement of the Bhangi), to which . studied traditional Hindu astronomy under his elder Munīśvara replied with a Khand.ana (Counter). Munīś- brother Divākara, but extended the range of his studies vara attacked the theory of precession advocated by to Islamic astronomy, particularly to the school of Kamalākara, and Ranganātha refuted the criticisms of his Ulugh Beg of Samarkand. He also studied Greek brother in his Loha-gola-khan.
    [Show full text]
  • A Study on the Encoding Systems in Vedic Era and Modern Era 1K
    International Journal of Pure and Applied Mathematics Volume 114 No. 7 2017, 425-433 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A Study on the Encoding Systems in Vedic Era and Modern Era 1K. Lakshmi Priya and 2R. Parameswaran 1Department of Mathematics, School of Arts and Sciences, Amrita University, Kochi. [email protected] 2Department of Mathematics, School of Arts and Sciences, Amrita University, Kochi. [email protected] Abstract Encoding is the action of transferring a message in to codes. In this paper I present a study on the encoding systems in vedic era and modern era. The Sanskrit verses written in the vedic era are not just the praises of the Gods they are also numerical codes. In ancient India there were three means of recording numerals in Sanskrit words which are Katapayadi system, Bhutasamkhya system and Aryabhata numeration. These systems were used by many ancient mathematicians in India. In this paper the Katapayadi system used in vedic times is applied to modern ciphers– Vigenere Cipher and Affine Cipher. Key Words:Katapayadi system, vigenere cipher, affine cipher. 425 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction Encoding is the process of transforming messages into an arrangement required for data transmission, storage and compression/decompression. In cryptography, encryption is the method of transforming information using an algorithm to make it illegible to anyone except those owning special information, usually called as a key. In vedic era, Sanskrit is the language used. It is supposed to be the ancient language, from which most of the modern dialects are developed.
    [Show full text]
  • BOOK REVIEW a PASSAGE to INFINITY: Medieval Indian Mathematics from Kerala and Its Impact, by George Gheverghese Joseph, Sage Pu
    HARDY-RAMANUJAN JOURNAL 36 (2013), 43-46 BOOK REVIEW A PASSAGE TO INFINITY: Medieval Indian Mathematics from Kerala and its impact, by George Gheverghese Joseph, Sage Publications India Private Limited, 2009, 220p. With bibliography and index. ISBN 978-81-321-0168-0. Reviewed by M. Ram Murty, Queen's University. It is well-known that the profound concept of zero as a mathematical notion orig- inates in India. However, it is not so well-known that infinity as a mathematical concept also has its birth in India and we may largely credit the Kerala school of mathematics for its discovery. The book under review chronicles the evolution of this epoch making idea of the Kerala school in the 14th century and afterwards. Here is a short summary of the contents. After a brief introduction, chapters 2 and 3 deal with the social and mathematical origins of the Kerala school. The main mathematical contributions are discussed in the subsequent chapters with chapter 6 being devoted to Madhava's work and chapter 7 dealing with the power series for the sine and cosine function as developed by the Kerala school. The final chapters speculate on how some of these ideas may have travelled to Europe (via Jesuit mis- sionaries) well before the work of Newton and Leibniz. It is argued that just as the number system travelled from India to Arabia and then to Europe, similarly many of these concepts may have travelled as methods for computational expediency rather than the abstract concepts on which these algorithms were founded. Large numbers make their first appearance in the ancient writings like the Rig Veda and the Upanishads.
    [Show full text]
  • Nptel Course on Mathematics in India: from Vedic Period
    NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES Lecture 40 Mathematics in Modern India 2 M. D. Srinivas Centre for Policy Studies, Chennai 1 Outline I Rediscovering the Tradition (1900-1950) I Rediscovering the Tradition (1950-2010) I Modern Scholarship on Indian Mathematics (1900-2010) I Development of Higher Education in India (1900-1950) I Development of Scientific Research in India (1900-1950) I Development of Modern Mathematics in India (1910-1950) I Development of Modern Mathematics in India (1950-2010) I Development of Higher Education in India (1950-2010) I Halting Growth of Higher Education and Science in India (1980-2010) I Halting Growth of Mathematics in India (1980-2010) 2 Rediscovering the Tradition (1900-1950) Several important texts of Indian mathematics and astronomy were published in the period 1900-1950. Harilal Dhruva published the Rekh¯agan. ita, translation of Euclid from Tusi’s Persian version (Bombay 1901). Vindhyesvari Prasad Dvivedi published some of the ancient siddh¯antas in Jyotis.asiddh¯anta-sa_ngraha (Benares 1912). Babuaji Misra edited the Khan. d. akh¯adyaka of Brahmagupta with Amarja¯ ’s commentary (Calcutta 1925) and Siddh¯anta´sekhara of Sr¯ıpati´ with Makkibhat.t.a’s commentary (Calcutta 1932, 47). Padmakara Dvivedi, edited Gan. itakaumud¯ı of N¯ar¯ayan. a Pan. d. ita in two volumes (1936, 1942). Gopinatha Kaviraja edited the Siddh¯antas¯arvabhauma of Mun¯ı´svara, 2 Vols. (Benares 1933, 3); 3rd Vol. Ed. by Mithalal Ojha (Benres 1978) Kapadia edited the Gan. itatilaka of Sr¯ıdhara´ with commentary (Gaekwad Oriental Series 1935) 3 Rediscovering the Tradition (1900-1950) Several important works were published from the Anand¯a´srama¯ Pune: Karan.
    [Show full text]
  • The Kriyākramakarī's Integrative Approach to Mathematical Knowledge
    History of Science in South Asia A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia The Kriyākramakarī’s Integrative Approach to Mathematical Knowledge Roy Wagner Eidgenössische Technische Hochschule Zürich MLA style citation form: Roy Wagner. “The Kriyākramakarī’s Integrative Approach to Mathematical Knowl- edge.” History of Science in South Asia, 6 (2018): 84–126. doi: 10.18732/hssa.v6i0.23. Online version available at: http://hssa-journal.org HISTORY OF SCIENCE IN SOUTH ASIA A journal for the history of all forms of scientific thought and action, ancient and modern, inall regions of South Asia, published online at http://hssa-journal.org ISSN 2369-775X Editorial Board: • Dominik Wujastyk, University of Alberta, Edmonton, Canada • Kim Plofker, Union College, Schenectady, United States • Dhruv Raina, Jawaharlal Nehru University, New Delhi, India • Sreeramula Rajeswara Sarma, formerly Aligarh Muslim University, Düsseldorf, Germany • Fabrizio Speziale, Université Sorbonne Nouvelle – CNRS, Paris, France • Michio Yano, Kyoto Sangyo University, Kyoto, Japan Publisher: History of Science in South Asia Principal Contact: Dominik Wujastyk, Editor, University of Alberta Email: ⟨[email protected]⟩ Mailing Address: History of Science in South Asia, Department of History and Classics, 2–81 HM Tory Building, University of Alberta, Edmonton, AB, T6G 2H4 Canada This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Copyrights of all the articles rest with the respective authors and published under the provisions of Creative Commons Attribution-ShareAlike 4.0 License.
    [Show full text]
  • Chapter Two Astrological Works in Sanskrit
    51 CHAPTER TWO ASTROLOGICAL WORKS IN SANSKRIT Astrology can be defined as the 'philosophy of discovery' which analyzing past impulses and future actions of both individuals and communities in the light of planetary configurations. Astrology explains life's reaction to planetary movements. In Sanskrit it is called hora sastra the science of time-'^rwRH ^5R5fai«fH5iref ^ ^Tm ^ ^ % ^i^J' 11 L.R. Chawdhary documented the use of astrology as "astrology is important to male or female as is the case of psychology, this branch of knowledge deals with the human soul deriving awareness of the mind from the careful examination of the facts of consciousness. Astrology complements everything in psychology because it explains the facts of planetary influences on the conscious and subconscious providing a guideline towards all aspects of life, harmony of mind, body and spirit. This is the real use of astrology^. Dr. ^.V.Raman implies that "astrology in India is a part of the whole of Indian culture and plays an integral part in guiding life for all at all stages of life" ^. Predictive astrology is a part of astronomy that exists by the influence of ganita and astronomical doctrines. Winternitz observes that an astrologer is required to possess all possible noble quantities and a comprehensive knowledge of astronomy, ' Quoted from Sabdakalpadruma, kanta-ll, p.550 ^ L.R.Chawdhari, Secrets of astrology. Sterling Paper backs, New Delhi,1998, p.3 ^Raman.B.V, Planetary influence of Human affairs, U.B.S. Publishers, New Delhi, 1996,p.147 52 mathematics and astrology^ Astrology or predictive astrology is said to be coconnected with 'astronomy'.
    [Show full text]
  • Serilerin Ortaya Çikişi: Arşimet Ve Madhava Örneği
    SERİLERİN ORTAYA ÇIKIŞI: ARŞİMET VE MADHAVA ÖRNEĞİ Yüksek Lisans Tezi Emre İNCEKALAN Eskişehir 2018 SERİLERİN ORTAYA ÇIKIŞI: ARŞİMET VE MADHAVA ÖRNEĞİ Emre İNCEKALAN YÜKSEK LİSANS TEZİ Matematik Anabilim Dalı Danışman: Prof. Dr. Bünyamin DEMİR Eskişehir Anadolu Üniversitesi Fen Bilimleri Enstitüsü Haziran 2018 JÜRİ VE ENSTİTÜ ONAYI Emre İNCEKALAN’ın “Serilerin Ortaya Çıkışı: Arşimet ve Madhava Örneği” başlıklı tezi 07/06/2018 tarihinde aşağıdaki jüri tarafından değerlendirilerek “Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği”nin ilgili maddeleri uyarınca, Matematik Anabilim dalında Yüksek Lisans tezi olarak kabul edilmiştir. Jüri Üyeleri Unvanı Adı Soyadı İmza Üye (Tez Danışmanı) : Prof. Dr. Bünyamin DEMİR ……………………………… Üye : Prof. Dr. Ziya AKÇA ……………………………… Üye : Doç. Dr. Yunus ÖZDEMİR ……………………………… Prof. Dr. Ersin YÜCEL Fen Bilimleri Enstitüsü Müdürü ÖZET SERİLERİN ORTAYA ÇIKIŞI:ARŞİMET VE MADHAVA ÖRNEĞİ Emre İNCEKALAN Matematik Anabilim Dalı Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Haziran 2018 Danışman: Prof. Dr. Bünyamin DEMİR Bu tezde, Arşimed’in bir parabol kesiminin alanını hesaplama yöntemi ve Madhava’nın seriler konusundaki çalışmaları, özellikle 휋 sayısını serilerle hesaplama yöntemi incelenmiştir. Bununla birlikte farklı medeniyetlerin serilerle ilgili yaklaşımlarına örnekler verilmiştir. Seriler XIX. yüzyıla gelininceye kadar farklı medeniyetlerde emekleme denilebilecek tarzda uygulama alanları bulmuştur. Örneğin Mısırlılarda ve Mezopotamyalılardaki serileri çağrıştıran örnekler incelendikten sonra,
    [Show full text]
  • Algorithms for the Computation of Sine and Cosine Functions1
    TechS Vidya e-Journal of Research ISSN 2322 - 0791 Vol. 1 (2012-13) pp. 88-108. On Sangamagrama¯ Madhava’s¯ (c.1350 - c.1425 CE) algorithms for the computation of sine and cosine functions1 V.N. Krishnachandran∗, Reji C. Joy, K.B. Siji Department of Computer Applications Vidya Academy of Science & Technology, Thrissur, India ∗Corresponding author e-mail: [email protected] Abstract: Sangamagrama¯ Madhava¯ (c.1350 - 1425 CE), the founder of the Kerala School of Astronomy and Mathematics, is credited with the discovery of the power series expansions of the trigonometric sine and cosine functions more than two centuries before these series were rediscovered in Europe by Sir Isaac Newton and Gottfried Wilhelm Leibniz in c.1665 CE. This paper exam- ines and analyzes Madhava’s¯ contribution from an algorithmic point of view and shows that modern algorithms for the computation of the values of sine and cosine functions employ essentially the same ideas and methods used by Madhava¯ for the computation of the values of these functions. For this pur- pose Madhava’s¯ algorithms have been compared with modern computer pro- grammes for the evaluation of these functions which are included in standard run time C libraries. The paper also observes that Madhava¯ had used Horner’s scheme for the evaluation of polynomials, a fact that has not been noticed by researchers so far. The descriptions of the power series expansions of the sine and cosine functions in Madhava’s¯ own words and also their rendering in mod- ern notations are discussed in this paper. The sine table computed by Madhava¯ has also been reproduced.
    [Show full text]
  • Nptel Course on Mathematics in India: from Vedic Period
    NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES Lecture 30 Development of Calculus in India 1 M. D. Srinivas Centre for Policy Studies, Chennai 1 Outline Background to the Development of Calculus (c.500-1350) I The notions of zero and infinity I Irrationals and iterative approximations I Second order differences and interpolation in computation of Rsines I Summation of infinite geometric series I Instantaneous velocity (t¯atk¯alika-gati) I Surface area and volume of a sphere I Summations and repeated summations (sa_nkalita and v¯arasa_nkalita) 2 Outline The Kerala School of Astronomy and the Development of Calculus I Kerala School: M¯adhava (c. 1340-1420) and his successors to Acyuta Pis.¯arat.i (c. 1550-1621) I N¯ılakan. t.ha (c.1450-1550) on the irrationality of π I N¯ılakan. t.ha and the notion of the sum of infinite geometric series I Binomial series expansion k k k I Estimating the sum 1 + 2 + :::n for large n 3 Notions of Zero and Infinity Background ¯ I The concept of p¯urn. a in the invocatory verse of I´sopanis.ad is closely related to the notion of infinite. :pUa:NRa:ma:dH :pUa:NRa: a.ma:dM :pUa:Na.Ra:tpUa:NRa:mua:d:.cya:tea Á :pUa:NRa:~ya :pUa:NRa:ma.a:d.a:ya :pUa:NRa:mea:va.a:va: a.Za:Sya:tea Á Á That (Brahman) is p¯urn. a; this (universe) is p¯urn. a; this p¯urn. a emanates from that p¯urn. a.
    [Show full text]
  • Development of Infinite Series in India
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Development of Infinite Series in India Sanjay M. Deshpande1, Dr. Anant W. Vyawahare2 1Professor, Department of Mathematics, Bhawabhuti Mahavidyalaya, Amgaon, Dist. Gondia, Maharashtra, India, Pin 441 902 249 Gajanan Nagar , Wardha Road, NAGPUR, Maharashtra, India, Pin 440 015 Abstract: India has a long tradition of study of Mathematics. In India, all Mathematicians and mathematics were deeply respected. The development of mathematical ideas in India should be studied from the history of Indian Mathematicians and their texts. Indian Mathematicians made significant contribution in the field of mathematics and produced a large contribution in which some concepts of calculus are present. The idea of calculus in India starts with the development of decimal number system, concept of zero and infinity, irrational numbers, trigonometry, arithmetic and geometric progression, finding the value of π and calculating the first order and second order differences of sine values. Now our aim is to discuss the background of Indian Mathematicians in the field of calculus. The most important core concept of calculus is infinite series. Indian mathematicians developed the concept of infinite series without using the concept of set theory and functions. We discuss how the concept of infinite series is development in India. Keywords: Arithmetic Progression, Geometric Progression, Infinite geometric series, Infinite series for π, Sine series and Cosine series 1. Introduction 2. Arithmetic Progression Indian mathematicians studied arithmetic and geometric Āryabhata – I (499 A.D.) stated following results on series at a very early date.
    [Show full text]