Asian Science

Total Page:16

File Type:pdf, Size:1020Kb

Asian Science e ISSN–0976–7959 Asian Volume 11 | Issue 1 | June, 2016 | 78-86 DOI : 10.15740/HAS/AS/11.1/78-86 Science Visit us | www.researchjournal.co.in A CASE STUDY Mathematics in ancient India NIRANJAN SWAROOP Department of Mathematics, Christ Church College, KANPUR (U.P.) INDIA (Email: [email protected]) ABSTRACT “India was the motherland of our race and Sanskrit the mother of Europe’s languages. India was the mother of our philosophy, of much of our mathematics, of the ideals embodied in Christianity... of self-government and democracy. In many ways, Mother India is the mother of us all.”- Will Durant (American Historian 1885-1981). Mathematics had and is playing a very significant role in development of Indian culture and tradition. Mathematics in Ancient India or what we call it Vedic Mathematics had begun early Iron Age. The SHATAPATA BRAHAMANA AND THE SULABHSUTRAS includes concepts of irrational numbers, prime numbers, rule of three and square roots and had also solved many complex problems. Ancient Hindus have made tremendous contributions to the world of civilization in various fields such as Mathematics, Medicine, Astronomy, Navigation, Botany, Metallurgy, Civil Engineering, and Science of consciousness which includes Psychology and philosophy of Yoga. The object of this paper tries is to make society aware about the glorious past of our ancient science which has been until now being neglected without any fault of it. Key Words : Ancient, Mathematics, Ganita, Sulabhsutras View point paper : Swaroop, Niranjan (2016). Mathematics in ancient India. Asian Sci., 11 (1): 78-86, DOI : 10.15740/HAS/AS/11.1/78- 86. ny account of the classical sciences of India has wrote:- to begin with mathematics, the reasons being, “Occidental mathematics has in past centuries Athe ancient Sanskrit text Vedanga Jyotisa (ca. broken away from the Greek view and followed a course fourth century B.C.E.) says, which seems to have originated in India” Like the crest on the peacock’s head, Like the gem The love affair between Indian culture and numbers in the cobra’s hood so stands mathematics at the head has been long. When most societies had difficulty in of all the sciences. handling numbers beyond 1000, the Buddhist text Lalita- The Sanskrit word used for mathematics in this vistara (before the fourth century C.E.) not only has no verse is ganita, which literally means “reckoning.” problem with huge numbers, but seems to revel in giving The unique Indian view about the classical of them names (10145, the highest number quoted, being mathematics is that number was treated as the primary called dhvaja-nis’a-mani.) concept. Indian mathematics which we call today Ancient This thing has been substantiated by a distinguished Indian Mathematics has it’s origination in Indian Swiss mathematician-physicist in 1929 that when he subcontinent from 1200 BCE upto the end of the 18th HIND INSTITUTE OF SCIENCE AND TECHNOLOGY NIRANJAN SWAROOP century. In this classical period of Indian mathematics Ancient Indian was aware of the concept of zero, (400 CE to 1600 CE), not only important but excellent actually they are solely responsible for hugely important contributions were made by scholars such as invention in mathematics and it would be no hyperbole Aryabhata, Brahmagupta, Mahâvîra, Bhaskara II, to say that actually they invented the zero. Madhava of Sangamagrama and Nilakantha Somayaji. The earliest recorded date an inscription of zero on The decimal number system which we use today Sankheda Copper Plate was found in Gujrat In 585- was first recorded in Indian mathematics. Indian 586CE , not only this but also use of a circle which mathematicians made early contributions to the study of symbolizes the number zero is found in a 9th Century the concept of zero as a number, negative numbers, engraving in a temple in Gwalior in central India. But arithmetic, and algebra not only this but In addition, the brilliant conceptual leap to include zero as a number trigonometry was further advanced in India and in in its own right (not merely as a placeholder, a blank or particular, the modern definitions of sine and cosine were empty space within a number, as it had been treated developed here also in India. until that time) is usually associated to the 7th Century These mathematical concepts were transmitted to Indian mathematicians Brahmagupta - or possibly the Middle East, China, and Europe and led to further another Indian, Bhaskara I - even though it may well developments that now form the foundations of many have been in practical use for centuries before that. The areas of mathematics. use of zero as a number which could be used in Ancient and medieval Indian mathematical works, calculations and mathematical investigations would was composed in Sanskrit, which usually consisted of a revolutionize mathematics. section of sutras in which a set of rules or problems were Had there been no zero there would have been no stated with great beauty in verse in order to aid binary number system and as a result no computers and memorization by a student. This was followed by a how cumbersome would have been counting? second section consisting of a prose commentary The Hindu culture has positional number system in (sometimes multiple commentaries by different scholars) base ten they used a dot to represent an empty place, that explained the problem in more detail and provided sunya which meant empty was the name for this dot at justification for the solution. In the prose section, the this point earlier zero was a place holder and an aid in form (and therefore, its memorization) was not computation, by 500 C.E. the Hindus use a small circle considered as important as the ideas involved. to represent zero this circle was later on recognized as a All mathematical works were transmitted from one numeral zero. generation to other orally until approximately 500 BCE; thereafter, they were transmitted both orally and in The ancient Hindu symbol of a circle with a dot manuscript form. The oldest extant mathematical in the middle, known as bindu or bindhu, document produced on the Indian subcontinent is the symbolizing the void and the negation of the self, was probably instrumental in the use of a circle birch bark Bakhshali Manuscript, discovered in 1881 in as a representation of the concept of zero. the village of Bakhshali, near Peshawar (modern day Pakistan) and is likely from the 7th century CE. Fig. 2 : Bindu Zero in India The number 0 appear in the late 10th century in India. The concept of zero as a number and not merely a symbol for separation is attributed to India, where by the 9th century CE, practical calculation were carried out using zero, which was treated like any other number, even in case of division. The word for zero in Hindu-India is ‘Shunya” meaning void or empty. India is recognized with great respect for its invention of Zero by importance with technological world. These are the numbers that the Hindus and the Arabics use. Fig. 3 : Ancient Indian text explains concept of Infinity, as reciprocal of zero as well as they were also aware of Fig. 1 : The case of the “Pythagoras theorem” the concept of trigonometric functions Asian Sci., 11(1) June, 2016 : 78-86 79 HIND INSTITUTE OF SCIENCE AND TECHNOLOGY MATHEMATICS IN ANCIENT INDIA As x gets bigger and bigger 1 approaches zero. Conversely, as x gets smaller and The approximation formula : x smaller and approaches zero, 1 approaches infinity x The formula is given in verses 17 – 19, Chapter VII, Mahabhaskariya of Bhaskara I. A translation of the 1 5 x verses is given below: 4 (Now) I briefly state the rule (for finding 3 the bhujaphala and the kotiphala, etc.) without making 2 use of the Rsine-differences 225, etc. Subtract the 1 degrees of a bhuja (or koti) from the degrees of a half 0 circle (that is, 180 degrees). Then multiply the remainder -1 by the degrees of the bhuja or koti and put down the -2 result at two places. At one place subtract the result -3 from 40500. By one-fourth of the remainder (thus, obtained), divide the result at the other place as multiplied -4 anthyaphala (that is, the epicyclic radius). Thus, -5 by the ‘ is obtained the entirebahuphala (or, kotiphala) for the -5 -4 -4 -2 -1 0 1 2 3 4 5 sun, moon or the star-planets. So also are obtained the direct and inverse Rsines. (The reference “Rsine-differences 225” is an allusion to Aryabhata’s sine table.) In modern mathematical notations, for an angle x in degrees, this formula gives : 4x (180 – x) sin x0 40500 – x (180 – x) Equivalent forms of the formula : Bhaskara I’s sine approximation formula can be expressed using the radian measure of angles as follows (O’Connor and Robertson, 2000) : 16x( – x) sin x 2 5 – 4x( – x) For a positive integer n this takes the following form (George, 2009) : Fig. 4 : Sine approximation formula 16(n – 1) sin n 5n2 – 4n 4 In mathematics, Bhaskara I’s sine approximation formula is a rational expression in one variable for Equivalent forms of Bhaskara I’s formula have been the computation of the approximate values of given by almost all subsequent astronomers and the trigonometric sines discovered byBhaskara I (c. 600 mathematicians of India. For example, Brahmagupta’s – c. 680), a seventh-century Indian mathematician. This (598 – 668 CE) Brhma-Sphuta-Siddhanta (verses 23 formula is given in his treatise titled Mahabhaskariya. – 24, Chapter XIV) (Gupta, 1967) gives the formula in It is not known how Bhaskara I arrived at his the following form: approximation formula.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • International Journal for Scientific Research & Development| Vol. 5, Issue 12, 2018 | ISSN (Online): 2321-0613
    IJSRD - International Journal for Scientific Research & Development| Vol. 5, Issue 12, 2018 | ISSN (online): 2321-0613 A Case Study on Applications of Trigonometry in Oceanography Suvitha M.1 Kalaivani M.2 1,2Student 1,2Department of Mathematics 1,2Sri Krishna Arts and Science College, Coimbatore, Tamil Nadu, India Abstract— This article introduces a trigonometric field that bisected to create two right-angle triangles, most problems extends in the field of real numbers adding two elements: sin can be reduced to calculations on right-angle triangles. Thus and cos satisfying an axiom sin²+cos²=1.It is shown that the majority of applications relate to right-angle triangles. assigning meaningful names to particular elements to the One exception to this is spherical trigonometry, the study of field, All know trigonometric identities may be introduced triangles on spheres, surfaces of constant positive curvature, and proved. The main objective of this study is about in elliptic geometry (a fundamental part of astronomy and oceanography how the oceanographers guide everyone with navigation). Trigonometry on surfaces of negative curvature the awareness of the Tsunami waves and protect the marine is part of hyperbolic geometry. animals hitting the ships and cliffs. Key words: Trigonometric Identities, Trigonometric Ratios, II. HISTORY OF TRIGONOMETRY Trigonometric Functions I. INTRODUCTION A. Trigonometry Fig. 2: Hipparchus, credited with compiling the first trigonometric, is known as "the father of trigonometry". A thick ring-like shell object found at the Indus Fig. 1: Valley Civilization site of Lothal, with four slits each in two All of the trigonometric functions of an angle θ can be margins served as a compass to measure angles on plane constructed geometrically in terms of a unit circle centered at surfaces or in the horizon in multiples of 40degrees,upto 360 O.
    [Show full text]
  • Asian Contributions to Mathematics
    PORTLAND PUBLIC SCHOOLS GEOCULTURAL BASELINE ESSAY SERIES Asian Contributions to Mathematics By Ramesh Gangolli Ramesh Gangolli Dr. Ramesh Gangolli was born in India, and educated at the University of Bombay, Cambridge University and MIT. He held the Cambridge Society of India Scholarship while at Cambridge University, and was a College Scholar at Peterhouse. During 1966-68 he was a Sloan Foundation Fellow. In 1967, he was awarded the Paul Levy Prize by a Committee of the French Academy of Sciences. At present he is a Professor of Mathematics at the University of Washington, Seattle. He has been active in mathematical research as well as in mathematics education, and has held visiting positions at many universities in the U.S. and abroad. He has served professionally in several capacities: as Chair of the mathematics of the Committee on Education of the American Mathematical Society, and as a member of several committees of the U.S. National Academy of Sciences and the National Research Council. He is also a musician specializing in the Classical Music of India, and is an Adjunct Professor of Music in the School of Music at the University of Washington. Version: 1999-12-22 PPS Geocultural Baseline Essay Series AUTHOR: Gangolli SUBJECT: Math Contents 1. INTRODUCTION. 1 1.1 Purpose of this essay. 1 1.2 Scope. 2 1.3 Acknowledgments. 3 2. SOME VIEWS OF THE DEVELOPMENT OF MATHEMATICS. 5 3. THE PLACE OF MATHEMATICS IN ANCIENT CULTURES. 10 3.1 Agriculture, commerce, etc. 11 3.2 Ritual, worship, etc. 12 3.3 Intellectual curiosity and amusement.
    [Show full text]
  • Mathematics in African History and Cultures
    Paulus Gerdes & Ahmed Djebbar MATHEMATICS IN AFRICAN HISTORY AND CULTURES: AN ANNOTATED BIBLIOGRAPHY African Mathematical Union Commission on the History of Mathematics in Africa (AMUCHMA) Mathematics in African History and Cultures Second edition, 2007 First edition: African Mathematical Union, Cape Town, South Africa, 2004 ISBN: 978-1-4303-1537-7 Published by Lulu. Copyright © 2007 by Paulus Gerdes & Ahmed Djebbar Authors Paulus Gerdes Research Centre for Mathematics, Culture and Education, C.P. 915, Maputo, Mozambique E-mail: [email protected] Ahmed Djebbar Département de mathématiques, Bt. M 2, Université de Lille 1, 59655 Villeneuve D’Asq Cedex, France E-mail: [email protected], [email protected] Cover design inspired by a pattern on a mat woven in the 19th century by a Yombe woman from the Lower Congo area (Cf. GER-04b, p. 96). 2 Table of contents page Preface by the President of the African 7 Mathematical Union (Prof. Jan Persens) Introduction 9 Introduction to the new edition 14 Bibliography A 15 B 43 C 65 D 77 E 105 F 115 G 121 H 162 I 173 J 179 K 182 L 194 M 207 N 223 O 228 P 234 R 241 S 252 T 274 U 281 V 283 3 Mathematics in African History and Cultures page W 290 Y 296 Z 298 Appendices 1 On mathematicians of African descent / 307 Diaspora 2 Publications by Africans on the History of 313 Mathematics outside Africa (including reviews of these publications) 3 On Time-reckoning and Astronomy in 317 African History and Cultures 4 String figures in Africa 338 5 Examples of other Mathematical Books and 343
    [Show full text]
  • Ramiz Daniz the Scientist Passed Ahead of Centuries – Nasiraddin Tusi
    Ramiz Daniz Ramiz Daniz The scientist passed ahead of centuries – Nasiraddin Tusi Baku -2013 Scientific editor – the Associate Member of ANAS, Professor 1 Ramiz Daniz Eybali Mehraliyev Preface – the Associate Member of ANAS, Professor Ramiz Mammadov Scientific editor – the Associate Member of ANAS, Doctor of physics and mathematics, Academician Eyyub Guliyev Reviewers – the Associate Member of ANAS, Professor Rehim Husseinov, Associate Member of ANAS, Professor Rafig Aliyev, Professor Ajdar Agayev, senior lecturer Vidadi Bashirov Literary editor – the philologist Ganira Amirjanova Computer design – Sevinj Computer operator – Sinay Translator - Hokume Hebibova Ramiz Daniz “The scientist passed ahead of centuries – Nasiraddin Tusi”. “MM-S”, 2013, 297 p İSBN 978-9952-8230-3-5 Writing about the remarkable Azerbaijani scientist Nasiraddin Tusi, who has a great scientific heritage, is very responsible and honorable. Nasiraddin Tusi, who has a very significant place in the world encyclopedia together with well-known phenomenal scientists, is one of the most honorary personalities of our nation. It may be named precious stone of the Academy of Sciences in the East. Nasiraddin Tusi has masterpieces about mathematics, geometry, astronomy, geography and ethics and he is an inventor of a lot of unique inventions and discoveries. According to the scientist, America had been discovered hundreds of years ago. Unfortunately, most peoples don’t know this fact. I want to inform readers about Tusi’s achievements by means of this work. D 4702060103 © R.Daniz 2013 M 087-2013 2 Ramiz Daniz I’m grateful to leaders of the State Oil Company of Azerbaijan Republic for their material and moral supports for publication of the work The book has been published in accordance with the order of the “Partner” Science Development Support Social Union with the grant of the State Oil Company of Azerbaijan Republic Courageous step towards the great purpose 3 Ramiz Daniz I’m editing new work of the young writer.
    [Show full text]
  • 1. Essent Vol. 1
    ESSENT Society for Collaborative Research and Innovation, IIT Mandi Editor: Athar Aamir Khan Editorial Support: Hemant Jalota Tejas Lunawat Advisory Committee: Dr Venkata Krishnan, Indian Institute of Technology Mandi Dr Varun Dutt, Indian Institute of Technology Mandi Dr Manu V. Devadevan, Indian Institute of Technology Mandi Dr Suman, Indian Institute of Technology Mandi AcknowledgementAcknowledgements: Prof. Arghya Taraphdar, Indian Institute of Technology Kharagpur Dr Shail Shankar, Indian Institute of Technology Mandi Dr Rajeshwari Dutt, Indian Institute of Technology Mandi SCRI Support teamteam:::: Abhishek Kumar, Nagarjun Narayan, Avinash K. Chaudhary, Ankit Verma, Sourabh Singh, Chinmay Krishna, Chandan Satyarthi, Rajat Raj, Hrudaya Rn. Sahoo, Sarvesh K. Gupta, Gautam Vij, Devang Bacharwar, Sehaj Duggal, Gaurav Panwar, Sandesh K. Singh, Himanshu Ranjan, Swarna Latha, Kajal Meena, Shreya Tangri. ©SOCIETY FOR COLLABORATIVE RESEARCH AND INNOVATION (SCRI), IIT MANDI [email protected] Published in April 2013 Disclaimer: The views expressed in ESSENT belong to the authors and not to the Editorial board or the publishers. The publication of these views does not constitute endorsement by the magazine. The editorial board of ‘ESSENT’ does not represent or warrant that the information contained herein is in every respect accurate or complete and in no case are they responsible for any errors or omissions or for the results obtained from the use of such material. Readers are strongly advised to confirm the information contained herein with other dependable sources. ESSENT|Issue1|V ol1 ESSENT Society for Collaborative Research and Innovation, IIT Mandi CONTENTS Editorial 333 Innovation for a Better India Timothy A. Gonsalves, Director, Indian Institute of Technology Mandi 555 Research, Innovation and IIT Mandi 111111 Subrata Ray, School of Engineering, Indian Institute of Technology Mandi INTERVIEW with Nobel laureate, Professor Richard R.
    [Show full text]
  • Aryabhatiya with English Commentary
    ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11.
    [Show full text]
  • BOOK REVIEW a PASSAGE to INFINITY: Medieval Indian Mathematics from Kerala and Its Impact, by George Gheverghese Joseph, Sage Pu
    HARDY-RAMANUJAN JOURNAL 36 (2013), 43-46 BOOK REVIEW A PASSAGE TO INFINITY: Medieval Indian Mathematics from Kerala and its impact, by George Gheverghese Joseph, Sage Publications India Private Limited, 2009, 220p. With bibliography and index. ISBN 978-81-321-0168-0. Reviewed by M. Ram Murty, Queen's University. It is well-known that the profound concept of zero as a mathematical notion orig- inates in India. However, it is not so well-known that infinity as a mathematical concept also has its birth in India and we may largely credit the Kerala school of mathematics for its discovery. The book under review chronicles the evolution of this epoch making idea of the Kerala school in the 14th century and afterwards. Here is a short summary of the contents. After a brief introduction, chapters 2 and 3 deal with the social and mathematical origins of the Kerala school. The main mathematical contributions are discussed in the subsequent chapters with chapter 6 being devoted to Madhava's work and chapter 7 dealing with the power series for the sine and cosine function as developed by the Kerala school. The final chapters speculate on how some of these ideas may have travelled to Europe (via Jesuit mis- sionaries) well before the work of Newton and Leibniz. It is argued that just as the number system travelled from India to Arabia and then to Europe, similarly many of these concepts may have travelled as methods for computational expediency rather than the abstract concepts on which these algorithms were founded. Large numbers make their first appearance in the ancient writings like the Rig Veda and the Upanishads.
    [Show full text]
  • Vedic Math Seminar
    Seminar on Vedic Mathematics Dr. Chandrasekharan Raman December 5, 2015 Bridgewater Temple Hall, NJ Ancient Indian Mathematics • Sulba Sutras (700 BC) – rational approximation to √2, proof to Pythagoras theorem etc. • Pingala’s Chandas (300 BC) – combinatorics • Jain Mathematicians (300 BC) – concept of infinity and zero (shunya) • Classical period (400 AD – 1600 AD) ▫ Aryabhata – sine table, trigonometry, π ▫ Brahmagupta – cyclic quadrilateral, indeterm Equ. ▫ Bhaskara II – Lilavati, Bijaganita ▫ Madhava – infinite series for π • Excellent source : Wikipedia (Indian Mathematics) Vedic Mathematics What is Vedic Mathematics? “Vedic Mathematics” is the name given to a work in Indian Mathematics by Sri Bharati Krsna Tirthaji (1884-1960). Vedic Math is based on sixteen Sutras or principles What it is not? It is not from the Vedas It is not ancient Why Vedic Mathematics? Gives an insight into the structure of numbers Very much amenable to mental calculations Decimal Number System in Ancient India • The decimal number system – representing numbers in base 10, was a contribution to the world by Indians • The Place Value System was also a contribution of India Name Value Name Value Eka 100 Arbudam 107 Dasa 101 Nyarbudam 108 Shatam 102 Samudra 109 Sahasram 103 Madhyam 1010 Ayutam 104 Anta 1011 Niyutam 105 Parardha 1012 Prayutam 106 Maths in day-to-day life of a vendor in India 1 11 21 31 41 • You buy some stuff from 2 12 22 32 42 a vendor for Rs 23 3 13 23 33 43 • You pay a 50-rupee note 4 14 24 34 44 5 15 25 35 45 • He pays you back 6
    [Show full text]
  • The Mathematical Work of John Napier (1550-1617)
    BULL. AUSTRAL. MATH. SOC. 0IA40, 0 I A45 VOL. 26 (1982), 455-468. THE MATHEMATICAL WORK OF JOHN NAPIER (1550-1617) WILLIAM F. HAWKINS John Napier, Baron of Merchiston near Edinburgh, lived during one of the most troubled periods in the history of Scotland. He attended St Andrews University for a short time and matriculated at the age of 13, leaving no subsequent record. But a letter to his father, written by his uncle Adam Bothwell, reformed Bishop of Orkney, in December 1560, reports as follows: "I pray you Sir, to send your son John to the Schools either to France or Flanders; for he can learn no good at home, nor gain any profit in this most perilous world." He took an active part in the Reform Movement and in 1593 he produced a bitter polemic against the Papacy and Rome which was called The Whole Revelation of St John. This was an instant success and was translated into German, French and Dutch by continental reformers. Napier's reputation as a theologian was considerable throughout reformed Europe, and he would have regarded this as his chief claim to scholarship. Throughout the middle ages Latin was the medium of communication amongst scholars, and translations into vernaculars were the exception until the 17th and l8th centuries. Napier has suffered badly through this change, for up till 1889 only one of his four works had been translated from Latin into English. Received 16 August 1982. Thesis submitted to University of Auckland, March 1981. Degree approved April 1982. Supervisors: Mr Garry J. Tee Professor H.A.
    [Show full text]
  • How Cubic Equations (And Not Quadratic) Led to Complex Numbers
    How Cubic Equations (and Not Quadratic) Led to Complex Numbers J. B. Thoo Yuba College 2013 AMATYC Conference, Anaheim, California This presentation was produced usingLATEX with C. Campani’s BeamerLATEX class and saved as a PDF file: <http://bitbucket.org/rivanvx/beamer>. See Norm Matloff’s web page <http://heather.cs.ucdavis.edu/~matloff/beamer.html> for a quick tutorial. Disclaimer: Our slides here won’t show off what Beamer can do. Sorry. :-) Are you sitting in the right room? This talk is about the solution of the general cubic equation, and how the solution of the general cubic equation led mathematicians to study complex numbers seriously. This, in turn, encouraged mathematicians to forge ahead in algebra to arrive at the modern theory of groups and rings. Hence, the solution of the general cubic equation marks a watershed in the history of algebra. We shall spend a fair amount of time on Cardano’s solution of the general cubic equation as it appears in his seminal work, Ars magna (The Great Art). Outline of the talk Motivation: square roots of negative numbers The quadratic formula: long known The cubic formula: what is it? Brief history of the solution of the cubic equation Examples from Cardano’s Ars magna Bombelli’s famous example Brief history of complex numbers The fundamental theorem of algebra References Girolamo Cardano, The Rules of Algebra (Ars Magna), translated by T. Richard Witmer, Dover Publications, Inc. (1968). Roger Cooke, The History of Mathematics: A Brief Course, second edition, Wiley Interscience (2005). Victor J. Katz, A History of Mathematics: An Introduction, third edition, Addison-Wesley (2009).
    [Show full text]
  • Equation Solving in Indian Mathematics
    U.U.D.M. Project Report 2018:27 Equation Solving in Indian Mathematics Rania Al Homsi Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Juni 2018 Department of Mathematics Uppsala University Equation Solving in Indian Mathematics Rania Al Homsi “We owe a lot to the ancient Indians teaching us how to count. Without which most modern scientific discoveries would have been impossible” Albert Einstein Sammanfattning Matematik i antika och medeltida Indien har påverkat utvecklingen av modern matematik signifi- kant. Vissa människor vet de matematiska prestationer som har sitt urspring i Indien och har haft djupgående inverkan på matematiska världen, medan andra gör det inte. Ekvationer var ett av de områden som indiska lärda var mycket intresserade av. Vad är de viktigaste indiska bidrag i mate- matik? Hur kunde de indiska matematikerna lösa matematiska problem samt ekvationer? Indiska matematiker uppfann geniala metoder för att hitta lösningar för ekvationer av första graden med en eller flera okända. De studerade också ekvationer av andra graden och hittade heltalslösningar för dem. Denna uppsats presenterar en litteraturstudie om indisk matematik. Den ger en kort översyn om ma- tematikens historia i Indien under många hundra år och handlar om de olika indiska metoderna för att lösa olika typer av ekvationer. Uppsatsen kommer att delas in i fyra avsnitt: 1) Kvadratisk och kubisk extraktion av Aryabhata 2) Kuttaka av Aryabhata för att lösa den linjära ekvationen på formen 푐 = 푎푥 + 푏푦 3) Bhavana-metoden av Brahmagupta för att lösa kvadratisk ekvation på formen 퐷푥2 + 1 = 푦2 4) Chakravala-metoden som är en annan metod av Bhaskara och Jayadeva för att lösa kvadratisk ekvation 퐷푥2 + 1 = 푦2.
    [Show full text]