Summary of July 2013 Summer Field Season Direct and Indirect Effects of Sea Otter Recovery on the Central Coast of British Colum

Total Page:16

File Type:pdf, Size:1020Kb

Summary of July 2013 Summer Field Season Direct and Indirect Effects of Sea Otter Recovery on the Central Coast of British Colum Direct and Indirect Effects of Sea Otter Recovery on the Central Coast of British Columbia Summary of July 2013 Summer Field Season Report by Josh Silberg, Leah Honka, Kyle Demes, Jenn Burt and Anne Salomon Coastal Marine Ecology and Conservation Lab School of Resource & Environmental Management (REM) Hakai Network for Coastal People, Ecosystems & Management Simon Fraser University Full Citation: Silberg, J.N., Honka, L., Demes, K.W., Burt, J.M., and Salomon, A.K. 2014. Direct and indirect effects of sea otter recovery on the Central Coast of British Columbia: 2013 Field Report. Coastal Marine Ecology and Conservation Lab. Simon Fraser University School of Resource and Environmental Management. Executive Summary Sea otters (Enhydra lutris) are well known to consume large quantities of herbivorous marine invertebrates, thus releasing macroalgae from grazing pressure and allowing kelp beds to flourish. By triggering a cascade of direct and indirect effects, which drive transitions between alternative kelp-depleted and kelp-dominated states, the presence of sea otters can affect both nearshore marine ecosystems and the social systems that depend on them. Sea otter populations along British Columbia’s (BC) Central Coast are growing and expanding their range at a rapid rate. This has provided a natural gradient of sea otter occupation time across 20 different sites that allowed us to examine the direct and indirect effects of sea otter recovery. Specifically, we investigated what drives variation in kelp forest and reef fish communities, as well as patterns and drivers of sea otter foraging strategies. Preliminary results support prior research from BC, Alaska, and California that described the relationship between sea otters and sea urchin densities, as well as the association between sea urchin densities and herbivory on kelp. On the Central Coast, sea urchin density declined rapidly in the presence of sea otters until a tipping point was reached at 3 years. Therefore, on average, sea otters transform an urchin barren to a reef devoid of sizeable, conspicuous urchins in approximately 3 years. Contrary to our predictions, there was no evidence for the ensuing indirect relationship between sea otter occupation and overall canopy kelp abundance at the sites sampled, or between sea otter occupancy time and overall kelp bed size. However, the patchiness of kelp beds did decrease rapidly up until 3.1 years of sea otter occupancy time, followed by a period of more gradual decline. Neither hook-and-line fishing nor underwater visual surveys showed evidence that sea otter occupation time was the most important factor in determining reef fish biomass within the kelp forests. However, preliminary analysis showed potential effects of sea otter presence on the isotopic signature (i.e. trophic feeding level) of kelp greenling. This research also was the first study of sea otter foraging habits on the Central Coast of BC. Results were consistent with other studies that showed that urchins provide an initially rich, but relatively short-term food resource for sea otters. Once urchins are depleted, sea otters diversify their diet to include crabs, clams, abalone and mussels. 2 Contents Acknowledgements ....................................................................................................................................... 4 Field Crew ..................................................................................................................................................... 5 Introduction ................................................................................................................................................... 8 Kelp Forest Monitoring ............................................................................................................................... 10 Project Rationale & Summary ................................................................................................................ 10 Methods .................................................................................................................................................. 10 Results ..................................................................................................................................................... 12 Discussion ............................................................................................................................................... 17 Indirect Effects of Sea Otters on Rocky Reef Fish ..................................................................................... 18 Project Rationale & Summary ................................................................................................................ 18 Methods .................................................................................................................................................. 19 Results ..................................................................................................................................................... 20 Discussion ............................................................................................................................................... 27 Sea Otter Foraging Observations ................................................................................................................ 28 Project Rationale and Summary .............................................................................................................. 28 Methods .................................................................................................................................................. 29 Results ..................................................................................................................................................... 34 Discussion ............................................................................................................................................... 42 Literature Cited ........................................................................................................................................... 28 3 Acknowledgements Thanks to our field crew; Nate Glickman, Evan Henderson, Stewart Humchitt, Patrick Johnson, Britt Keeling, and Angeleen Olson for helping us collect data above and below the water. The skills and expertise of Hakai Beach Institute research staff and collaborators; Midoli Bresch, Margot Hessing-Lewis, Keith Holmes, Wayne Jacob, Keith Jordan, Dawson Korol, Skye McEwan, Erin Rechsteiner, Luba Reshitnyk, Nelson Roberts, Adam Turner, and Rod Wargo greatly improved this research. Many thanks also to HBI kitchen and grounds crew for maintaining a top notch research facility. We also greatly appreciate the intellectual guidance of our research collaborators Linda Nichol from Fisheries and Oceans Canada and Dr. Jane Watson from Vancouver Island University. Many thanks to our research collaborators at the Heiltsuk Integrated Resource Management Department, in particular research co-ordinator Harvey Humchitt and aquatics manager Mike Reid, and stewardship manager Peter Johnson from the Wuikinuxv Resource Management Department. Both departments provided important feedback supporting this research and permitted us to conduct research in their traditional territories. Finally, it is with deep gratitude that we thank Eric Peterson and Christina Munck for their steadfast support of this research and instrumental role in making it materialize. Financial support This project was funded by the Tula Foundation and a Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant to Anne Salomon. Graduate students Jenn Burt, Leah Honka, and Josh Silberg were funded by NSERC graduate scholarships. Jenn Burt and Josh Silberg were also financially supported as Hakai Scholars. In kind support was provided by REM, SFU and CMEC. 4 Field Crew Kelp Forest Diving Crew Clockwise from top: Dr. Anne Salomon (Principal Investigator), Dr. Kyle Demes (Project Lead), Jenn Burt, Britt Keeling, Stew Humchitt, Evan Henderson 5 Sea Otter Foraging Observation Crew Clockwise from top: Leah Honka (Project Lead), Angeleen Olson, Nate Glickman 6 Impact of Sea Otters on Fish Crew Hakai Beach Institute Crew Clockwise from top: Josh Silberg (Project Lead), Patrick Johnson, Margot Hessing-Lewis (dive/fish/eelgrass crew) HBI: Keith Holmes, Skye McEwan, Wayne Jacob, Nelson Roberts, Dawson Korol, Rod Wargo, Midoli Bresch 7 Introduction In the Northeastern Pacific, from Alaska to California, the recovery of sea otters (Enhydra lutris) has had profound implications for nearshore marine ecosystems and the social systems that depend on them. Sea otters are top predators that feed on a large diversity of marine invertebrates, consuming large quantities of prey items including sea urchins, an invertebrate grazer able to control the spatial extent and productivity of kelp forests. Consequently, the presence of sea otters in nearshore temperate reef systems can trigger a cascade of direct and indirect effects, which drive transitions between alternative kelp-depleted and kelp-dominated states. Studies comparing areas with and without otters suggest that indirect effects of sea otter re-colonization are far-reaching, but to date we have little ability to predict the magnitude and timing of these indirect effects or the thresholds at which they manifest. Depletion of otter prey species such as sea urchins, abalone, and clams has been strongly correlated to Photo Credit: Linda Nichol the duration
Recommended publications
  • Western Bering Sea Pacific Cod and Pacific Halibut Longline
    MSC Sustainable Fisheries Certification Western Bering Sea Pacific cod and Pacific halibut longline Public Consultation Draft Report – August 2019 Longline Fishery Association Assessment Team: Dmitry Lajus, Daria Safronova, Aleksei Orlov, Rob Blyth-Skyrme Document: MSC Full Assessment Reporting Template V2.0 page 1 Date of issue: 8 October 2014 © Marine Stewardship Council, 2014 Contents Table of Tables ..................................................................................................................... 5 Table of Figures .................................................................................................................... 7 Glossary.............................................................................................................................. 10 1 Executive Summary ..................................................................................................... 12 2 Authorship and Peer Reviewers ................................................................................... 14 2.1 Use of the Risk-Based Framework (RBF): ............................................................ 15 2.2 Peer Reviewers .................................................................................................... 15 3 Description of the Fishery ............................................................................................ 16 3.1 Unit(s) of Assessment (UoA) and Scope of Certification Sought ........................... 16 3.1.1 UoA and Proposed Unit of Certification (UoC) ..............................................
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Sea Otters and Kelp Forest fishes in the Aleutian Archipelago
    Oecologia (2005) DOI 10.1007/s00442-005-0230-1 COMMUNITY ECOLOGY Shauna E. Reisewitz Æ James A. Estes Charles A. Simenstad Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago Received: 24 January 2005 / Accepted: 25 July 2005 Ó Springer-Verlag 2005 Abstract Although trophic cascades—the effect of apex of otter-free systems at islands where otters were initially predators on progressively lower trophic level species abundant. Significant changes in greenling diet occurred through top-down forcing—have been demonstrated in between the mid-1980s and the 2000 although the rea- diverse ecosystems, the broader potential influences of sons for these changes were difficult to assess because of trophic cascades on other species and ecosystem pro- strong island-specific effects. Whereas urchin-dominated cesses are not well studied. We used the overexploita- communities supported more diverse fish assemblages tion, recovery and subsequent collapse of sea otter than kelp-dominated communities, this was not a simple (Enhydra lutris) populations in the Aleutian archipelago effect of the otter-induced trophic cascade because all to explore if and how the abundance and diet of kelp islands supported more diverse fish assemblages in 2000 forest fishes are influenced by a trophic cascade linking than in the mid-1980s. sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass den- Keywords Kelp Æ Rock greenling Æ Sea urchins Æ sity), kelp (numerical density) and fish (Catch per unit Trophic cascades effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all Introduction four islands).
    [Show full text]
  • Summary of Fish Catch Results for James Island E and James Island W, 2008 and 2009
    Summary of Fish Catch Results for James Island E and James Island W, 2008 and 2009 Skagit River System Cooperative Research Program December 2012 Beach seine sampling for fish was conducted at James Island E and James Island W as part of Washington State’s Salmon Recovery Funding Board Project # 07-1863 N: WRIA2 Habitat Based Assessment of Juvenile Salmon, also locally known as the Big Picture Project. James Island E and James Island W are located on James Island within the San Juan Islands (Figure 1). Sets were made on both sides of the isthmus of the island (E and W) using large net beach seines after methods described in Skagit System Cooperative Research Department (2003). We made 28 beach seine sets over the two-year study period. Beach seining occurred monthly from March through September 2008 and April through October 2009. The beach seine sites at both James Island E and James Island W consisted primarily of gravel to mixed coarse substrate. Vegetative cover consisted of eelgrass or mixed eelgrass and macro- algae 57% of the time, and was without any cover 43% of the time (both sites). Average maximum water depth was 2.79 meters and average salinity was 30.4 parts per thousand within the area seined at both sites. Water temperatures varied by month, but ranged from a low of 7.5 °C in April 2008 to a high of 12.8 °C in September 2008. The temperatures did not vary more than a half a degree C between the sites on each sampling day.
    [Show full text]
  • Highly Discordant Nuclear and Mitochondrial DNA Diversities in Atka Mackerel M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the .SU . U.S. Department of Commerce Department of Commerce 2010 Highly Discordant Nuclear and Mitochondrial DNA Diversities in Atka Mackerel M. F. Canino National Oceanic and Atmospheric Administration Fisheries, Alaska Fisheries Science Center, Seattle, Washington, [email protected] I. B. Spies National Oceanic and Atmospheric Administration Fisheries, Alaska Fisheries Science Center, Seattle, Washington S. A. Lowe National Oceanic and Atmospheric Administration Fisheries, Alaska Fisheries Science Center, Seattle, Washington W. S. Grant University of Alaska Anchorage Follow this and additional works at: http://digitalcommons.unl.edu/usdeptcommercepub Canino, M. F.; Spies, I. B.; Lowe, S. A.; and Grant, W. S., "Highly Discordant Nuclear and Mitochondrial DNA Diversities in Atka Mackerel" (2010). Publications, Agencies and Staff of ht e U.S. Department of Commerce. 532. http://digitalcommons.unl.edu/usdeptcommercepub/532 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the .SU . Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 2:375–387, 2010 [Special Section: Atka Mackerel] Ó Copyright by the American Fisheries Society 2010 DOI: 10.1577/C09-024.1 Highly Discordant Nuclear and Mitochondrial DNA Diversities in Atka Mackerel M. F. CANINO,* I. B. SPIES, AND S. A. LOWE National Oceanic and Atmospheric Administration Fisheries, Alaska Fisheries Science Center, 7600 Sand Point Way Northeast, Seattle, Washington 98115, USA W.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Gopher Rockfish
    Summary of Data Sources for Stock Assessments for the Species in the Nearshore Fisheries Management Plan (NFMP) Teresa Ish1,2 Meisha Key3 Yasmin Lucero1 1 Center for Stock Assessment Research (CSTAR), Department of Applied Mathematics and Statistics, UC Santa Cruz, Santa Cruz, CA 95064 2 Also with Sustainable Fishery Advocates, P.O. Box 233, Santa Cruz, CA 95061 3 California Department of Fish and Game, 20 Lower Ragsdale Drive, #100 Monterey, CA 93940 February 1, 2005 Table of Contents Scope and structure of report 1 Table 1: Ranking of species by data richness 2 Descriptions of data sources 3 Table 2: Summary of data by data source 10 Individual species reports and data summary tables Black rockfish (Sebastes melanops) 12 Black and yellow rockfish (Sebastes chrysomelas) 16 Blue rockfish (Sebastes mystinus) 20 Brown rockfish (Sebastes auriculatus) 24 Cabezon (Scorpaenichthys marmoratus) 28 Calico rockfish (Sebastes dalli) 32 China rockfish (Sebastes nebulosus) 35 Copper rockfish (Sebastes caurinus) 39 Gopher rockfish (Sebastes carnatus) 42 Grass rockfish (Sebastes rastrelliger) 46 Kelp greenling (Hexagrammos decagrammus) 50 Kelp rockfish (Sebastes atrovirens) 53 Monkeyface prickleback eel (Cebidichthys violaceus) 57 Olive rockfish (Sebastes serranoides) 60 Quillback rockfish (Sebastes maliger) 63 Rock greenling (Hexagrammos lagocephalus) 66 Scorpionfish (Scorpaena guttata) 68 Sheephead (Semicossyphus pulcher) 71 Treefish (Sebastes serriceps) 74 Scope and structure of report The purpose of this report is to summarize the data sources that are available for the 19 nearshore species identified in the Nearshore Fisheries Management Plan (NFMP), to provide a means for the California Fish and Game to determine which species have enough data to assess and where more data need to be collected.
    [Show full text]
  • A Cyprinid Fish
    DFO - Library / MPO - Bibliotheque 01005886 c.i FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B.C. Circular No. 65 RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B0C. Circular No. 65 9^ RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS ^5, Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FOREWORD This short Russian-English glossary is meant to be of assistance in translating scientific articles in the fields of aquatic biology and the study of fishes and fisheries. j^ Definitions have been obtained from a variety of sources. For the names of fishes, the text volume of "Commercial Fishes of the USSR" provided English equivalents of many Russian names. Others were found in Berg's "Freshwater Fishes", and in works by Nikolsky (1954), Galkin (1958), Borisov and Ovsiannikov (1958), Martinsen (1959), and others. The kinds of fishes most emphasized are the larger species, especially those which are of importance as food fishes in the USSR, hence likely to be encountered in routine translating. However, names of a number of important commercial species in other parts of the world have been taken from Martinsen's list. For species for which no recognized English name was discovered, I have usually given either a transliteration or a translation of the Russian name; these are put in quotation marks to distinguish them from recognized English names.
    [Show full text]
  • RACE Species Codes and Survey Codes 2018
    Alaska Fisheries Science Center Resource Assessment and Conservation Engineering MAY 2019 GROUNDFISH SURVEY & SPECIES CODES U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service SPECIES CODES Resource Assessment and Conservation Engineering Division LIST SPECIES CODE PAGE The Species Code listings given in this manual are the most complete and correct 1 NUMERICAL LISTING 1 copies of the RACE Division’s central Species Code database, as of: May 2019. This OF ALL SPECIES manual replaces all previous Species Code book versions. 2 ALPHABETICAL LISTING 35 OF FISHES The source of these listings is a single Species Code table maintained at the AFSC, Seattle. This source table, started during the 1950’s, now includes approximately 2651 3 ALPHABETICAL LISTING 47 OF INVERTEBRATES marine taxa from Pacific Northwest and Alaskan waters. SPECIES CODE LIMITS OF 4 70 in RACE division surveys. It is not a comprehensive list of all taxa potentially available MAJOR TAXONOMIC The Species Code book is a listing of codes used for fishes and invertebrates identified GROUPS to the surveys nor a hierarchical taxonomic key. It is a linear listing of codes applied GROUNDFISH SURVEY 76 levelsto individual listed under catch otherrecords. codes. Specifically, An individual a code specimen assigned is to only a genus represented or higher once refers by CODES (Appendix) anyto animals one code. identified only to that level. It does not include animals identified to lower The Code listing is periodically reviewed
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]
  • Common Seashore Animals of Southeastern Alaska a Field Guide by Aaron Baldwin
    Common seashore animals of Southeastern Alaska A field guide by Aaron Baldwin All pictures taken by Aaron Baldwin Last update 9/15/2014 unless otherwise noted. [email protected] Seashore animals of Southeastern Alaska By Aaron Baldwin Introduction Southeast Alaska (the “Alaskan Panhandle”) is an ecologically diverse region that extends from Yakutat to Dixon Entrance south of Prince of Wales Island. A complex of several hundred islands, fjords, channels, and bays, SE Alaska has over 3,000 miles of coastline. Most people who live or visit Southeast Alaska have some idea of the incredible diversity of nature found here. From mountain tops to the cold, dark depths of our many fjords, life is everywhere. The marine life of SE Alaska is exceptionally diverse for several reasons. One is simply the amount of coast, over twice the amount of the coastline of Washington, Oregon, and California combined! Within this enormous coastline there is an incredible variety of habitats, each with their own ecological community. Another reason for SE Alaska’s marine diversity is that we are in an overlap zone between two major faunal provinces. These provinces are defined as large areas that contain a similar assemblage of animals. From northern California to SE Alaska is a faunal province called the Oregonian Province. From the Aleutian Island chain to SE Alaska is the Aleutian Province. What this means is that while our sea life is generally similar to that seen in British Columbia and Washington state, we also have a great number of northern species present. History of this guide http://www.film.alaska.gov/ This guide began in 2009 as a simple guide to common seashore over 600 species! In addition to expanding the range covered, I animals of Juneau, Alaska.
    [Show full text]
  • REPORTS Revisiting the Fish Remains from CA-SLO-2
    Journal of California and Great Basin Anthropology | Vol. 38, No. 1 (2018) | pp. 101–118 REPORTS Revisiting the Fish Remains were important as well, but comparisons between from CA-SLO-2, Diablo Canyon, methods and the use of micromesh samples do not San Luis Obispo County, necessarily indicate the relative importance of small versus large fish. Diachronic comparisons from all three California: Searching for the samples indicate that fishing increased during the Middle Elusive Wolf-eel (Anarrhichthys Period. Two of the three data sets suggest that fishing ocellatus) then declined at Diablo Canyon during the Late Period. KENNETH W. GOBALET Excavations in 1968 at CA-SLO-2, located at Diablo Department of Biology, Emeritus, Canyon in San Luis Obispo County, California (Fig. 1), California State University, Bakersfield, CA 93311 yielded one of the larger trans-Holocene faunal Current Address: 625 Wisconsin St., San Francisco, CA 94107 collections from western North America. The site was TERRY L. JONES originally excavated and described by Greenwood (1972), Department of Social Sciences, but limited resources prevented a complete analysis of California Polytechnic State University San Luis Obispo, CA 93407-0329 faunal materials. John Fitch, a fisheries biologist with the California Department of Fish and Game, devoted John Fitch’s (1972) report on CA-SLO-2 is perhaps the an inordinate effort to the identification of 12,161 fish single most iconic study of fish remains in California. The elements from one column sample (Fitch 1972), leaving site was excavated by Roberta Greenwood in 1968, and most of the larger vertebrate remains unstudied for more Fitch devoted over 900 hours to the analysis of (mostly) than 35 years (Jones et al.
    [Show full text]