Annotated Checklist of Fishes from Monterey Bay National Marine Sanctuary with Notes on Extralimital Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Practical Handbook for Determining the Ages of Gulf of Mexico And
A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399. -
Appendix E: Fish Species List
Appendix F. Fish Species List Common Name Scientific Name American shad Alosa sapidissima arrow goby Clevelandia ios barred surfperch Amphistichus argenteus bat ray Myliobatis californica bay goby Lepidogobius lepidus bay pipefish Syngnathus leptorhynchus bearded goby Tridentiger barbatus big skate Raja binoculata black perch Embiotoca jacksoni black rockfish Sebastes melanops bonehead sculpin Artedius notospilotus brown rockfish Sebastes auriculatus brown smoothhound Mustelus henlei cabezon Scorpaenichthys marmoratus California halibut Paralichthys californicus California lizardfish Synodus lucioceps California tonguefish Symphurus atricauda chameleon goby Tridentiger trigonocephalus cheekspot goby Ilypnus gilberti chinook salmon Oncorhynchus tshawytscha curlfin sole Pleuronichthys decurrens diamond turbot Hypsopsetta guttulata dwarf perch Micrometrus minimus English sole Pleuronectes vetulus green sturgeon* Acipenser medirostris inland silverside Menidia beryllina jacksmelt Atherinopsis californiensis leopard shark Triakis semifasciata lingcod Ophiodon elongatus longfin smelt Spirinchus thaleichthys night smelt Spirinchus starksi northern anchovy Engraulis mordax Pacific herring Clupea pallasi Pacific lamprey Lampetra tridentata Pacific pompano Peprilus simillimus Pacific sanddab Citharichthys sordidus Pacific sardine Sardinops sagax Pacific staghorn sculpin Leptocottus armatus Pacific tomcod Microgadus proximus pile perch Rhacochilus vacca F-1 plainfin midshipman Porichthys notatus rainwater killifish Lucania parva river lamprey Lampetra -
Fisheries Overview, Including Mixed-Fisheries Considerations
ICES Fisheries Overviews Bay of Biscay and Iberian Coast ecoregion Published 30 November 2020 Version 2: 3 December 2020 6.2 Bay of Biscay and Iberian Coast ecoregion – Fisheries overview, including mixed-fisheries considerations Table of contents Executive summary .................................................................................................................................................................. 1 Definition of the ecoregion ...................................................................................................................................................... 1 Mixed-fisheries considerations Bay of Biscay .......................................................................................................................... 2 Mixed-fisheries considerations Iberian waters ...................................................................................................................... 10 Who is fishing ........................................................................................................................................................................ 18 Catches over time .................................................................................................................................................................. 21 Description of the fisheries .................................................................................................................................................... 23 Fisheries management measures ......................................................................................................................................... -
Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted. -
Morphology and Significance of the Luminous Organs in Alepocephaloid Fishes
Uiblein, F., Ott, J., Stachowitsch,©Akademie d. Wissenschaften M. (Eds), Wien; 1996: download Deep-sea unter www.biologiezentrum.at and extreme shallow-water habitats: affinities and adaptations. - Biosystematics and Ecology Series 11:151-163. Morphology and significance of the luminous organs in alepocephaloid fishes Y. I. SAZONOV Abstract: Alepocephaloid fishes, or slickheads (two families, Alepocephalidae and Platytroctidae), are deep-sea fishes distributed in all three major oceans at depths of ca. 100-5000 m, usually between ca. 500 and 3000 m. Among about 150 known species, 13 alepocephalid and all (ca. 40) platytroctid species have diverse light organs: 1) postcleithral luminous gland (all platytroctids); it releases a luminescent secredon which presumably startles or blinds predators and allows the fish to escape; 2) relatively large, regulär photophores on the head and ventral parts of the body in the alepocephalid Microphotolepis and in 6 (of 14) platytroctid genera. These organs may serve for countershading and possibly for giving signals to other individuals of the same species; 3) small "simple" or "secondary" photophores covering the whole body and fins in 5 alepocephalid genera, and a few such structures in 1 platytroctid; these organs may be used for Camouflage in the glow of spontaneous bioluminescence; 4) the mental light organ in 2 alepocephalid genera from the abyssal zone (Bathyprion and Mirognathus) may be used as a Iure to attract prey. Introduction Alepocephaloid fishes, or slickheads, comprise two families of isospondyl- ous fishes (Platytroctidae and Alepocephalidae). The group is one of the most diverse among oceanic bathypelagic fishes (about 35 genera with 150 species), and these fishes play a significant role in the communities of meso- and bathypelagic animals. -
Order OSMERIFORMES
click for previous page 1884 Bony Fishes Order OSMERIFORMES ARGENTINIDAE Argentines by J.R. Paxton and D.M. Cohen iagnostic characters: Small to moderate-sized (to 60 cm) osmeriform fishes, body slender to Dmoderate, moderately compressed, and generally elongate. Head small. Eye moderate to large, not tubular; interorbital space not narrow. Snout moderate, generally equal to eye diameter. Mouth small; premaxilla present. Jaw teeth small; premaxilla and maxilla without teeth; dentary teeth present or absent; teeth on vomer and palatine; teeth present or absent on tongue, sometimes enlarged and recurved. Fins without spines; dorsal fin somewhat before middle of body, with 10 to 14 rays; anal fin far behind dorsal fin, with 10 to 17 rays; pelvic fins under or slightly behind dorsal fin, with 10 to 15 rays; pectoral fins close to ventral edge of body, with 12 to 25 rays; dorsal adipose fin present over anal fin. Lateral line running straight back on midline of body, not extending onto tail. Scales cycloid or spinose, deciduous. No light organs or luminous tissue. Branchiostegal rays 4 to 6. Total vertebrae 43 to 70. Colour: light, often with silvery and/or dark lateral band. Habitat, biology, and fisheries: Benthopelagic on the outer shelf and upper slope, rarely to 1 400 m. Feed as carnivores on epibenthic and some pelagic invertebrates and fishes. Moderately common to rare fishes, rarely of commercial importance. Remarks: Two genera with some 20 species throughout the world ocean in tropical to temperate and northern boreal latitudes; however, they are rarely found in the tropical Pacific. A comprehensive revison of the family is needed. -
Report on the Monitoring of Radionuclides in Fishery Products (March 2011 - January 2015)
Report on the Monitoring of Radionuclides in Fishery Products (March 2011 - January 2015) April 2015 Fisheries Agency of Japan 0 1 Table of Contents Overview…………………………………………………………………………………………………. 8 The Purpose of this Report………………………………………………………………………………9 Part One. Efforts to Guarantee the Safety of Fishery Products………………………………………..11 Chapter 1. Monitoring of Radioactive Materials in Food; Restrictions on Distribution and Other Countermeasures………...…………………………………………………………………11 1-1-1 Standard Limits for Radioactive Materials in Food………………………………………...……11 1-1-2 Methods of Testing for Radioactive Materials………………………………………...…………12 1-1-3 Inspections of Fishery Products for Radioactive Materials…………………………...…………14 1-1-4 Restrictions and Suspensions on Distribution and Shipping ……………………………………..18 1-1-5 Cancellation of Restrictions on Shipping and Distribution………………………………………20 Box 1 Calculation of the Limits for Human Consumption……..………………………………………23 Box 2 Survey of Radiation Dose from Radionuclides in Foods Calculation of the Limits…………….24 Box 3 Examples of Local Government Monitoring Plan………………………………...…………….25 Chapter 2. Results of Radioactive Cesium Inspections for Fishery Products…………………………26 1-2-1 Inspection Results for Nationwide Fishery Products in Japan (in total)…………………………26 1-2-2 Inspection Results for Fukushima Prefecture Fishery Products (all)…………………………….27 1-2-3 Inspection Results for Fishery Products (all) from Outside Fukushima Prefecture……………...30 1-2-4 Trends within Fish Species……………………………………………………………………….32 1-2-5 Inspection Results for Main Target Fish Species of Fishing and Farming by Fiscal Year……….42 1-2-6 Radioactive Material Concentrations within Fish within 20 km of the Fukushima Daiichi NPS.46 Box 4 Fukushima Fishing Trials………………………………...……………………………………...47 1-2-7 Screening Test by Prefectural and Municipal Governments……………………………………..48 Chapter 3. Inspection for Radionuclides Other Than Radioactive Cesium……………………………49 1-3-1 Inspections for Radioactive Strontium etc. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
UNIVERSITY of CALIFORNIA Los Angeles Design and Implementation of Environmental DNA Metabarcoding Methods for Monitoring the So
UNIVERSITY OF CALIFORNIA Los Angeles Design and Implementation of Environmental DNA Metabarcoding Methods for Monitoring the Southern California Marine Protected Area Network A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Zachary Jacob Gold 2020 © Copyright by Zachary Jacob Gold 2020 ABSTRACT OF THE DISSERTATION Design and Implementation of Environmental DNA Metabarcoding Methods for Monitoring the Southern California Marine Protected Area Network by Zachary Jacob Gold Doctor of Philosophy in Biology University of California, Los Angeles, 2020 Professor Paul Barber, Chair Marine protected areas (MPAs) are important tools for maintaining biodiversity and abundance of marine species. However, key to the effectiveness of MPAs is monitoring of marine communities. Current monitoring methods rely heavily on SCUBA-based visual observations that are costly and time consuming, limiting the scope of MPA monitoring. Environmental DNA (eDNA) metabarcoding is a promising cost effective, rapid, and automatable alternative for marine ecosystem monitoring. However, as a developing tool, the utility of eDNA metabarcoding requires improved bioinformatic techniques and reference barcode databases. Furthermore, it is important to understand how eDNA metabarcoding performs relative to visual surveys to better understand the strengths and limitations of each approach. This thesis improves eDNA metabarcoding approaches to survey the nearshore rocky reef and kelp forest ecosystems within the Southern California MPA network. It then tests the effectiveness of eDNA metabarcoding against visual surveys conducted by the Channel Islands National Park Service ii Kelp Forest Monitoring Program and Reef Check California. In Chapter 1, I develop FishCARD, a 12S reference barcode database specific to fishes of the California Current ecosystem. -
XIV. Appendices
Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar